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Abstract
To globally solve a nonconvex quadratic programming problem, this paper presents
an accelerating linearizing algorithm based on the framework of the
branch-and-bound method. By utilizing a new linear relaxation approach, the initial
quadratic programming problem is reduced to a sequence of linear relaxation
programming problems, which is used to obtain a lower bound of the optimal value
of this problem. Then, by using the deleting operation of the investigated regions, we
can improve the convergent speed of the proposed algorithm. The proposed
algorithm is proved to be convergent, and some experiments are reported to show
higher feasibility and efficiency of the proposed algorithm.
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1 Introduction
In this paper, we consider the following nonconvex quadratic programming problem
(NQP):

(NQP) :

⎧
⎨

⎩

min f (y) = cT y + yT Qy

s.t. y ∈ Y 0 = {y ∈ Rn | Ay ≤ b},

where Q = (qjk)n×n is a real n × n symmetric matrix; A = (ajk)m×n is a real m × n matrix,
and c, y ∈ Rn; b ∈ Rm.

The (NQP) is an important class of global optimization problems, and it is not only
because they have broad applications in the fields of statistics and design engineering,
optimal control, economic equilibria, financial management, production planning, com-
binatorial optimization, and so on [1, 2], but also because many other nonlinear problems
can be transformed into this form [3–7], such as the following linear multiplicative pro-
gramming (LMP) problem:

(LMP) :

⎧
⎨

⎩

min f (y) =
∑p

i=1(cT
i y + di)(eT

i y + fi)

s.t. y ∈ Y 0 = {y ∈ Rn | Ay ≤ b},
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where p ≥ 0, cT
i = (c1, c2, . . . , cn), eT

i = (e1, e2, . . . , en) ∈ Rn; A = (ajk)m×n is a real m×n matrix,
and di, fi ∈ R, i = 1, 2, . . . , n; b ∈ Rm. Obviously, the (LMP) can be easily transformed into
the (NQP). So, the applications of the (NQP) also include all the applications of the (LMP).

In the last decades, many solution methods have been developed for globally solv-
ing the (NQP) and its special forms. For example, branch-and-cut algorithm [8] and
branch-and-bound algorithm [9] for box-constrained nonconvex quadratic programs;
two efficient algorithms for linear constrained quadratic programming (LCQP) by Cam-
bini et al. [10] and Li et al. [11]; branch-and-reduce approach by Gao et al. [12]; fi-
nite branch-and-bound approach by Burer and Vandenbussche [13]; branch-and-bound
method based on outer approximation and linear relaxation by Al-Khayyal et al. [14];
two simplicial branch-and-bound algorithms by Linderoth [15] and Raber [16]; branch-
and-cut algorithm by Sherali et al. [17] and Audet et al. [18], and so on. In addi-
tion, a branch-and-bound algorithm for finding a global optimal solution for a non-
convex quadratic program with convex quadratic constraints has been proposed by
Cheng Lu et al. [19]; based on the different properties of a quadratic function, five
different branch-and-bound approaches for solving the (NQP) have been proposed in
Refs. [20–24].

Based on the above-mentioned methods, we will present an accelerating algorithm for
effectively solving the (NQP) in this paper. Firstly, we present a new linear relaxation tech-
nique, which can be used to construct the linear relaxation programming (LRP) of the
(NQP). In addition, we divide the initial feasible region into a number of sub-regions and
use deleting techniques to reduce the scope of the investigation. Then, the initial problem
(NQP) is converted into a series of linear relaxation programming subproblems. We can
prove that the solutions of these subproblems can converge to the global optimal value of
the original problem (NQP). Finally, numerical results and comparison with the methods
mentioned in recent literature show that our algorithm works as well as or better than
those methods.

This paper is organized as follows. In Sect. 2, we describe a new linear relaxation ap-
proach for establishing the linear relaxation programming of the (NQP). In Sect. 3, a range
deleting technique is given for improving the convergent speed of the proposed algorithm,
then a range division and deleting algorithm is proposed and its convergence is proved.
Some numerical experiments are reported to show the feasibility and effectiveness of our
algorithm in Sect. 4.

2 New linear relaxation approach
In this section, we will show how to construct the (LRP) for the (NQP). Let the ith row of
the matrix Q be Qi, and let zi = Qiy =

∑n
k=1 qikyk , i = 1, 2, . . . , n, we obtain

z = (z1, z2, . . . , zn)T = (Q1y, Q2y, . . . , Qny)T = Qy.

By introducing new variables zi, i = 1, 2, . . . , n, the function f (y) can be expressed as fol-
lows:

f (y, z) = cT y + yT z =
n∑

i=1

ciyi +
n∑

i=1

yizi,
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and the set D is defined as

D =
{

y | Ay ≤ b, y ∈ Rn}.

We compute the initial variable bounds by solving the following linear programming prob-
lems:

y0
i

= min
y∈D

y, y0
i = max

y∈D
y, i = 1, 2, . . . , n,

z0
i = min

y∈D
Qiy, z0

i = max
y∈D

Qiy, i = 1, 2, . . . , n,

and let

Y 0 =
{

y ∈ Rn | y0
i
≤ yi ≤ y0

i , i = 1, 2, . . . , n
}

,

Z0 =
{

z ∈ Rn | z0
i ≤ zi ≤ z0

i , i = 1, 2, . . . , n
}

,

�0 =
{

(y, z) ∈ R2n | y0
i
≤ yi ≤ y0

i , z0
i ≤ zi ≤ z0

i , i = 1, 2, . . . , n
}

.

Based on the above discussion, we can transform the initial problem into the following
equivalent problem (EP):

(EP) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f (y, z) =
∑n

i=1 ciyi +
∑n

i=1 yizi

s.t. Ay ≤ b,

zi =
∑n

k=1 qikyk , i = 1, 2, . . . , n,

(y, z) ∈ �0.

For globally solving the (NQP), the computation of lower bounds for this problem and its
subdivided subproblems is the principal operation in the establishment of a branch-and-
bound procedure. A lower bound on the optimal value of the (NQP) and its subdivided
subproblems can be gotten by solving a linear relaxation programming of the (EP), which
can be derived by a new linear relaxation approach.

Let

Y =
{

y ∈ Rn | –∞ ≤ y
i
≤ yi ≤ yi ≤ +∞, i = 1, 2, . . . , n

} ⊆ Y 0,

Z =
{

z ∈ Rn | –∞ ≤ zi ≤ zi ≤ zi ≤ +∞, i = 1, 2, . . . , n
} ⊆ Z0

for any y ∈ Y , z ∈ Z, i ∈ {1, 2, . . . , n}, define the functions

ϕ(yi) = y2
i , ϕl(yi) = (y

i
+ yi)yi –

(y
i
+ yi)2

4
,

ϕu(yi) = (y
i
+ yi)yi – y

i
yi,

ϕ(zi) = z2
i , ϕl(zi) = (zi + zi)zi –

(zi + zi)2

4
,

ϕu(zi) = (zi + zi)zi – zizi, ϕ(yi, zi) = yizi,
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ϕl(yi, zi) =
1
2

[

(y
i
+ yi)zi + (zi + zi)yi –

(y
i
+ yi + zi + zi)2

4
+ y

i
yi + zizi

]

,

ϕu(yi, zi) =
1
2

[

(y
i
+ yi)zi + (zi + zi)yi – (y

i
+ zi)(yi + zi) +

(y
i
+ yi)2

4
+

(zi + zi)2

4

]

.

Since ϕ(yi) = y2
i is a convex function of yi over [yi, yi], its affine concave envelope is

ϕu(yi) = (yi + yi)yi – yiyi. Moreover, the tangential supporting function for ϕ(yi) is parallel

with the ϕu(yi), thus the point of tangential support will occur at yi+yi
2 , and the correspond-

ing tangential supporting function is ϕl(yi) = (yi + yi)yi – (yi+yi)2

4 . Hence, by the geometric
property of the function ϕ(yi), we have

ϕl(yi) = (yi + yi)yi –
(yi + yi)2

4
≤ y2

i ≤ (yi + yi)yi – yiyi = ϕu(yi). (1)

Similarly, it follows that

ϕl(zi) ≤ ϕ(zi) ≤ ϕu(zi).

Furthermore, assume that (yi + zi) is a single variable, then (yi + zi)2 is a convex function
about the univariate variable (yi + zi) over the interval [yi + zi, yi + zi]. By the conclusion
above, we have

(yi + zi + yi + zi)(yi + zi) –
(yi + zi + yi + zi)2

4
≤ (yi + zi)2 (2)

and

(yi + zi)2 ≤ (yi + zi + yi + zi)(yi + zi) – (yi + zi)(yi + zi). (3)

By (1)–(3), we can obtain

ϕ(yi, zi) =
1
2
[
(yi + zi)2 – y2

i – z2
i
]

≥ 1
2

[

(y
i
+ zi + yi + zi)(yi + zi) –

(y
i
+ zi + yi + zi)2

4

]

–
1
2
[
(y

i
+ yi)yi – y

i
yi + (zi + zi)zi – zizi

]

=
1
2

[

(y
i
+ yi)zi + (zi + zi)yi –

(y
i
+ zi + yi + zi)2

4
+ y

i
yi + zizi

]

= ϕl(yi, zi),

and

ϕ(yi, zi) =
1
2
[
(yi + zi)2 – y2

i – y2
k
]

≤ 1
2
[
(y

i
+ zi + yi + zi)(yi + zi) – (y

i
+ zi)(yi + zi)

]
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–
1
2

[

((y
i
+ yi)yi –

(y
i
+ yi)2

4
+ (zi + zi)zi –

(zi + zi)2

4

]

=
1
2

[

(y
i
+ yi)zi + (zi + zi)yi – (y

i
+ zi)(yi + zi) +

(y
i
+ yi)2

4
+

(zi + zi)2

4

]

= ϕu(yi, zi).

Hence, we have

ϕl(yi, zi) ≤ ϕ(yi, zi) ≤ ϕu(yi, zi). (4)

Furthermore, we define the difference functions as follows:

�(yi) = ϕ(yi) – ϕl(yi), ∇(yi) = ϕu(yi) – ϕ(yi),

�(zi) = ϕ(zi) – ϕl(zi), ∇(zi) = ϕu(zi) – ϕ(zi),

�(yi, zi) = ϕ(yi, zi) – ϕl(yi, zi), ∇(yi, zi) = ϕu(yi, zi) – ϕ(yi, zi).

Since �(yi) is convex about yi, for any yi ∈ [yi, yi], it follows that �(yi) can attain the max-
imum at the point yi or yi. Then

max
yi∈[yi ,yi]

�(yi) = ϕ(yi) – ϕl(yi) = ϕ(yi) – ϕl(yi) =
(yi – yi)2

4
.

On the other hand, since ∇(yi) is concave about yi, for any yi ∈ [yi, yi], ∇(yi) can attain

the maximum at the point yi+yi
2 , i.e.,

max
yi∈[yi ,yi]

∇(yi) = ϕu
(yi + yi

2

)

– ϕ

(yi + yi

2

)

=
(yi – yi)2

4
.

So, we have

max
yi∈[yi ,yi]

�(yi) = max
yi∈[yi ,yi]

∇(yi) → 0, as |yi – y
i
| → 0, (5)

that is, �(yi), ∇(yi) → 0, as ‖y – y‖ → 0.
Similarly, we can prove that

max
zi∈[zi ,zi]

�(zi) = max
zi∈[zi ,zi]

∇(zi) → 0, as |zi – zi| → 0, (6)

and �(zi), ∇(zi) → 0, as ‖z – z‖ → 0.
Define

�(yi + zi) = (yi + zi)2 –
[

(y
i
+ yi + zi + zi)(yi + zi) –

(y
i
+ yi + zi + zi)2

4

]

,

∇(yi + zi) = (y
i
+ yi + zi + zi)(yi + zi) – (y

i
+ zi)(yi + zi) – (yi + zi)2.
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Using the similar method, we can get the following conclusions:

max
(yi+zi)∈[(yi+zi),(yi+zi)]

�(yi + zi)

= max
(yi+zi)∈[(yi+zi),(yi+zi)]

∇(yi + zi) → 0, as ‖y – y‖ → 0,‖z – z‖ → 0. (7)

Since

�(yi, zi) = ϕ(yi, zi) – ϕl(yi, zi)

= yizi –
1
2

[

(y
i
+ yi)zi + (zi + zi)yi –

(y
i
+ yi + zi + zi)2

4
+ y

i
yi + zizi

]

=
1
2
[
(yi + zi)2 – y2

i – y2
k
]

–
1
2

[

(y
i
+ yi)zi + (zi + zi)yi –

(y
i
+ yi + zi + zi)2

4
+ y

i
yi + zizi

]

=
1
2

[

(yi + zi)2 –
(

(y
i
+ yi + zi + zi)(yi + zi) –

(y
i
+ yi + zi + zi)2

4

)]

+
1
2
[(

(y
i
+ yi)yi – y

i
yi – y2

i
)

+
(
(zi + zi)zi – zizi – z2

i
)]

=
1
2
�(yi + zi) +

1
2
∇(yi) +

1
2
∇(zi)

≤ 1
2

max
(yi+zi)∈[(yi+zi),(yi+zi)]

�(yi + zi) +
1
2

max
yi∈[yi ,yi]

∇(yi) +
1
2

max
zi∈[zi ,zi]

∇(zi),

by (5)–(7), we can get that

�(yi, zi) → 0, as ‖y – y‖ → 0,‖z – z‖ → 0. (8)

Similarly, we can prove that ∇(yi, zi) → 0, as ‖y – y‖ → 0, ‖z – z‖ → 0.
For convenience, without loss of generality, for any y ∈ Y ⊆ Y 0, z ∈ Z ⊆ Z0, define

f L(y, z) =
n∑

i=1

ciyi +
n∑

i=1

ϕl(yi, zi).

By utilizing the convexity of a univariate quadratic function, we establish an effective
method for generating the linear underestimation and linear overestimation of the func-
tions y2

i , z2
i , and yizi, respectively. By the conclusions above, the linear relaxation underesti-

mation function f L(y, z) of the function f (y, z) for the (EP) can be established. Thus, by the
former discussions, we can construct the corresponding approximation linear relaxation
programming (LRP) of the (EP) as follows:

(LRP) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f L(y, z) =
∑n

i=1 ciyi +
∑n

i=1 ϕl(yi, zi)

s.t. Ay ≤ b,

zi =
∑n

k=1 qikyk , i = 1, 2, . . . , n,

(y, z) ∈ �0.
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By (4), it is obvious that

yizi – ϕl(yi, zi) ≥ 0,

then

f (y, z) – f L(y, z)

=
n∑

k=1

ciyi +
n∑

k=1

yizi –

[ n∑

k=1

ciyi +
n∑

k=1

ϕl(yi, zi)

]

=
n∑

k=1

[
yizi – ϕl(yi, zi)

]

≥ 0.

Thus, we have f (y, z) – f L(y, z) ≥ 0, i.e., f (y, z) ≥ f L(y, z).
Furthermore, we have

f (y, z) – f L(y, z) =
n∑

k=1

[
yizi – ϕl(yi, zi)

]

=
n∑

k=1

�(yi, zi).

By (8), we have that �(yi, zi) → 0, as ‖y – y‖ → 0, ‖z – z‖ → 0.
Therefore, we have that

f (y, z) – f L(y, z) → 0 as ‖y – y‖ → 0,‖z – z‖ → 0.

Remark 1 From above, we only need to solve the (LRP) instead of solving the (EP) to obtain
the lower and upper bounds of the optimal value in problem (NQP).

Remark 2 Based on the construction of the (LRP), each feasible point of the (NQP) in the
sub-range � is also feasible to LRP, and the global minimum value of LRP is not more than
that of the (NQP) in the sub-range �. Thus, the (LRP) can provide a valid lower bound for
the global optimum value of problem NQP in the sub-range �.

Remark 3 The conclusions above ensure that the linear relaxation programming LRP can
infinitely approximate the (NQP), as ‖Y‖ → 0 (obviously, ‖Z‖ → 0), this will guarantee
the global convergence of the proposed algorithm.

3 Accelerating branch-and-bound algorithm and its convergence
Now we establish an accelerating branch-and-bound algorithm based upon the former
linear relaxation approach for globally solving the (NQP). We will introduce the algorithm
process at first and then give the convergence analysis of the algorithm.
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3.1 Branching process
The critical operation of the branching process is iteratively subdividing the initial range
�0 into some sub-ranges, each sub-range denoted by � is concerned with a node of the
branch and bound, such that any infinite iterative sequence of partition sets shrinks to a
singleton. Here, we will adopt a standard range bisection approach, which is adequate to
ensuring global convergence of the proposed algorithm. Detailed process is described as
follows.

For any selected sub-range �′ ∈ �0, Y ′ = [y′, y′] ⊆ Y 0, let q ∈ arg max{y′
i – y′

i
: i =

1, 2, . . . , n}, and ym = (y′
q

+ y′
q)/2, then divide �′ into two sub-ranges �′

1 and �′
2 by sub-

dividing the interval [y′
q
, y′

q] into two subintervals [y′
q
, ym] and [ym, y′

q].
From the above branching operation, we can notice that the intervals [z′, z′] of z will

never be partitioned by the branching processes. Hence, these branching operations only
occur in a space of dimension n, i.e., the proposed algorithm economizes the required
computations.

3.2 Range deleting technique
At the kth iteration of the algorithm, for any rectangle �k ⊆ �0, we want to check whether
�k contains a global optimal solution of the (EP)(�0), where

�k = �k
1 × �k

2 × · · · × �k
q–1 × �k

q × �k
q+1 × · · · × �k

n,

with

�k
q =

{
(yq, zq) ∈ R2 | yk

q
≤ yk

q ≤ yk
q, z0

q ≤ z0
q ≤ z0

q
}

.

Theorem 3.1 Assume that f is a known upper bound of the optimal value v of the (EP), for
any sub-range �k ⊆ �0, the following conclusions hold: (i) If ELBk > f , then there is no global
optimal solution for the (EP) over �k ; (ii) If ELBk ≤ f , then we have: for any τ ∈ {1, 2, . . . , n},
if cτ > 0, then the sub-range �

k does not contain any global optimal solution of the (EP);

else if cτ < 0, then the sub-range �
k

does not contain any global optimal solution of the (EP),
where

ELBk =
n∑

i=1

min
{

ciyk
i
, ciyk

i
}

+
n∑

i=1

min
{

yk
i
z0

i , yk
i
z0

i , yk
i z0

i , yk
i z0

i
}

,

ρk
τ =

f – RLBk + min{cτ yk
τ
, cτ yk

τ }
cτ

, τ = 1, . . . , n,

�
k = �k

1 × �k
2 × · · · × �k

τ–1 × �
k
τ × �k

τ+1 × · · · × �k
n,

�
k

= �k
1 × �k

2 × · · · × �k
τ–1 × �

k
τ × �k

τ+1 × · · · × �k
n,

with

�
k
τ =

{
(yτ , zτ ) ∈ R2 | ρk

τ ≤ yk
τ ≤ yk

τ , z0
τ ≤ z0

τ ≤ z0
τ

} ∩ �k
τ ,

�
k
τ =

{
(yτ , zτ ) ∈ R2 | yk

τ
≤ yk

τ ≤ ρk
τ , z0

τ ≤ z0
τ ≤ z0

τ

} ∩ �k
τ .
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Proof (i) If ELBk > f , then for all (y, z) ∈ �k ,

f (y, z) =
n∑

i=1

ciyi +
n∑

i=1

yizi

≥
n∑

i=1

min
{

ciyk
i
, ciyk

i
}

+
n∑

i=1

min
{

yk
i
z0

i , yk
i
z0

i , yk
i z0

i , yk
i z0

i
}

= ELBk > f .

Therefore, there is no global optimal solution for the (EP) over �k .
(ii) If ELBk ≤ f , for any τ ∈ {1, 2, . . . , n}, then consider the following two cases.
Case 1: If cτ > 0, for all (y, z) ∈ �

k , we have yτ > ρτ , i.e., cτ yτ > f – ELBk + min{cτ yk
τ
, cτ yk

τ }.
Furthermore, we can get that

f (y, z) =
n∑

i=1,i
=τ

ciyi + cτ yτ +
n∑

i=1

yizi

≥
n∑

i=1,i
=τ

min
{

ciyk
i
, ciyk

i
}

+ cτ yτ +
n∑

i=1

min
{

yk
i
z0

i , yk
i
z0

i , yk
i z0

i , yk
i z0

i
}

>
n∑

i=1,i
=τ

min
{

ciyk
i
, ciyk

i
}

+
n∑

i=1

min
{

yk
i
z0

i , yk
i
z0

i , yk
i z0

i , yk
i z0

i
}

+ f

– ELBk + min
{

cτ yk
τ
, cτ yk

τ

}

= ELBk + f – ELBk

= f .

Thus, we have

f (y, z) > f .

Therefore, the range �
k does not contain any global optimal solution of the (EP).

Case 2: If cτ < 0, then for any (y, z) ∈ �
k
, we have yτ < ρτ , i.e., cτ yτ > f – ELBk +

min{cτ yk
τ
, cτ yk

τ }.
Similar to the proof of Case 1, we can get that

f (y, z) > f ,

thus the range �
k

does not contain any global optimal solution of the (EP). Thus, the proof
is completed. �

According to Theorem 3.1, we can construct the following range reduction technique to
reject the whole investigated sub-range �k or delete a part of the investigated sub-range
�k which does not contain any global optimal solution of the (EP).

Range deleting algorithm
Calculate ELBk , if ELBk > f , then let �k = ∅. Otherwise, for each τ ∈ {1, . . . , n}, if cτ > 0

and ρk
τ < yk

τ , then let yk
τ = ρk

τ and �
k with �

k
τ = {(yτ , zτ ) ∈ R2 | yk

τ
≤ yk

τ ≤ yk
τ , z0

τ ≤ z0
τ ≤ z0

τ };



Ge and Liu Journal of Inequalities and Applications  (2018) 2018:178 Page 10 of 16

else if cτ < 0 and ρk
τ > yk

τ
, then let yk

τ
= ρk

τ and �
k with �

k
τ = {(yτ , zτ ) ∈ R2 | yk

τ
≤ yk

τ ≤ yk
τ , z0

τ ≤
z0
τ ≤ z0

τ }.

3.3 Branch-and-bound algorithm
Assume that we have gotten the set of active nodes �k at the kth iteration of the algorithm,
and each node is associated with a sub-range � ⊆ �0 for all � ∈ �k . For each sub-range
�, use the proposed range deleting technique to compress the sub-range �, still denote
the remaining sub-range by �, and obtain a lower bound LB(�) of the optimum value of
the (NQP) by solving the (LRP) in �.

Let fr(�) and (yr(�), zr(�)) be the optimal value and the optimal solution of the (LRP)
over the sub-range �, respectively. Combining the former linear relaxation method,
branching process, and range deleting technique, the basic steps of the proposed accel-
erating algorithm for globally solving the (NQP) may be stated as follows.

Algorithm statement
Initialization step. Let the initial iteration counter k := 0, the initial set of active nodes

�0 = {�0}, the initial upper bound f = +∞, the convergent error ε > 0, and the initial
collection of feasible points F := ∅.

Solve the (LRP) over �0, obtain its optimal solution y0 := yr(�0), z0 := zr(�0) and op-
timal objective function value LB0 := fr(�0). If (y0, z0) is feasible to the (NQP), then let
f = f (y0, z0) and F = F ∪ {(y0, z0)}. If f – LB0 ≤ ε, then algorithm stops with (y0, z0) as an
ε-global optimum solution for the (NQP). Otherwise, proceed with the following Range
deleting step.

Range deleting step. For each sub-range �, use the proposed range deleting technique in
Sect. 3.2 to contract each sub-range � and still denote the remaining sub-range by �.

Range division step. Apply the presented range division approach to subdivide �k into
two new sub-ranges, and denote the collection of new subdivided sub-ranges by �̂k .

Renewing the lower and upper bound step. If �̂k 
= ∅ for each � ∈ �̂k , then solve the
LRP(�) to get fr(�) and (yr(�), zr(�)). Let LB(�) := fr(�), if LB(�) > f , set �̂k := �̂k \ �.
The residual subdivided set is now �k := (�k \ �k) ∪ �̂k , and renew the lower bound
LBk := inf�∈�k LB(�).

If the midpoint ymid of Y is feasible to problem (NQP), set zmid = Qymid, then let F :=
F ∪ {(ymid, zmid)}. Furthermore, if yr(�) is feasible to problem (NQP), then let F := F ∪
{(yr(�)), zr(�)}.

If F 
= ∅, renew the upper bound f := min(y,z)∈F f (y, z), and denote the known best feasible
solution by (ybest, zbest) := argmin(y,z)∈F f (y, z).

Termination checking step. If f – LBk ≤ ε, the algorithm ends with f and ybest as the
ε-global optimum value and a global optimal solution of problem (NQP). Otherwise, set
k := k + 1 and pick out an active node �k+1 satisfying �k+1 = argmin�∈�k

LB(�), and return
to Range deleting step.

3.4 Convergence analysis
In this subsection, the convergence of this algorithm is discussed as follows.

Theorem 3.2 Suppose that the feasible region D of the (NQP) is nonempty, then the above
algorithm either terminates finitely with a global optimum solution of the (NQP), or gen-
erates an infinite sequence {yk} of which any accumulation point will be a global optimal
solution of the (NQP).
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Proof If the algorithm terminates finitely, it terminates at the kth iteration, where k ≥ 0.
Upon termination, by steps in the algorithm, we get that f – LBk ≤ ε. By the first five
steps in the algorithm, there exists a feasible solution y∗ for the (NQP), which satisfies that
f = f (y∗), and f (y∗) – LBk ≤ ε. According to the algorithm, we have that LBk ≤ v. Since y∗

is a feasible solution of the (NQP), we have f (y∗) ≥ v. Combining the above inequalities,
we get that v ≤ f (y∗) ≤ LBk + ε ≤ v + ε, i.e., v ≤ f (y∗) ≤ v + ε. Therefore, y∗ is a global
ε-optimum solution for the (NQP).

If the algorithm is infinite, according to the algorithm, we have that {LBk} is a non-
decreasing sequence and it has an upper bound miny∈D f (y), which ensures the exis-
tence of the limit LB := limk→∞ LBk ≤ miny∈D f (y). Since the sequence {yk} is included
in a compact set Y 0, there must exist a convergent subsequence {ys} ⊆ {yk} and as-
sume that lims→∞ ys = y∗. Then by the branching process and deleting method, there
must exist a decreasing subsequence {Y r} ⊂ Y s, where (Y s, Zs) ∈ �s with yr ∈ Y r ,
LBr = LB(Y r) = f L(yr) and limr→∞ Y r = {y∗}. By the continuity of function �0(y), we
have

lim
r→∞ LBr = lim

r→∞ f L(yr)

= lim
r→∞ f

(
yr)

= f
(
y∗).

Then, since Y 0 is a closed set and {yk} ⊂ Y 0, obviously, we have that y∗ ∈ Y 0, i.e., y∗ is a
feasible solution of the (NQP). Thus, the proof is completed. �

4 Numerical experiments
To verify the performance of the proposed algorithm, some numerical experiments are
reported and compared with the known methods [19–25]. The algorithm is implemented
by Matlab 2016a, and the tests are run in a microcomputer with Intel(R) Xeon(R) proces-
sor of 2.4 GHz, 4 GB of RAM memory, under the Win10 operational system. We used
linprog solver to solve all linear programming problems, and the convergent error is set
to ε in our procedure. For these test examples, the numerical results compared with the
current algorithms are demonstrated in Tables 1 and 2, where the following notations have

Table 1 Numerical comparisons for test Examples 1–6

E.g. Methods Opt. val. Opt. sol. Iter. Time (s)

1 ours 10.00000 (2.0000, 8.0000) 3 0.35725
[25] 10.0000090 (1.9999998, 7.9999988) 41 0.02
[26] 10 (2, 8) 27 10.83
[27] 10 (2, 8) 53 0.3

2 ours 3.00000 (0.0000, 4.0000) 8 0.01791
[28] 3.00000 (0.0000, 4.0000) 25 0.750

3 ours 0.890185 (1.3148, 0.1396, 0.0, 0.4233) 1 0.38982
[27] 0.8902 (1.3148, 0.1396, 0.0, 0.4233) 1 0.1880
[29] 0.890193 (1.314792, 0.13955, 0.0, 0.423286) 6

4 ours –16.22662 (0.0, 3.6403, 0.0, 2.9029, 1.9388, 0.0) 5 0.59005
5 ours –3.00000 (3.0000, 3.0000) 30 4.15970
6 ours –1.06250 (0.7500, 2.0000) 3 0.26845
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Table 2 Numerical comparisons with Ref. [12, 30] for Example 7

Dimension Methods Opt. val. Iter. Time (s)

n = 5 [12] –25.0 141 10.11
[30] –25.0 12 0.0187
ours –25.0 1 0.01254

n = 10 [12] –100.0 283 21.86
[30] –100.0 31 0.3342
ours –100.0 7 0.25649

n = 20 [12] –400.0 651 47.00
[30] –400.0 86 5.9396
ours –400.0 15 2.73556

n = 30 [12] –900.0 965 106.33
[30] –900.0 204 44.8577
ours –900.0 18 11.25635

n = 50 [12] –2500.0 1891 304.30
ours –2500.0 21 17.35219

n = 80 ours –6400.0 37 40.45623
n = 100 ours –10,000.0 51 44.35865
n = 150 ours –22,500.0 66 112.99298

been used in column headers: Opt.Val.: optimal value; Opt.Sol.: optimal solution; Iter.: the
number of iterations.

Example 1 (Refs. [25–27])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(y1 + y2)(y1 – y2 + 7)

s.t. 2y1 + y2 ≤ 14,

y1 + y2 ≤ 10,

– 4y1 + y2 ≤ 0,

2y1 + y2 ≥ 6,

y1 + 2y2 ≥ 6,

y1 – y2 ≤ 3,

y1 ≤ 5,

y1 + y2 ≥ 0,

y1 – y2 + 7 ≥ 0.

Example 2 (Ref. [28])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min y1 + (2y1 – 3y2 + 13)(y1 + y2 – 1)

s.t. – y1 + 2y2 ≤ 8,

– y2 ≤ –3,

y1 + 2y2 ≤ 12,

y1 – 2y2 ≤ –5,

y1, y2 ≥ 0.
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Example 3 (Refs. [27, 29])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(0.813396y1 + 0.67440y2 + 0.305038y3 + 0.129742y4 + 0.217796)

× (0.224508y1 + 0.063458y2 + 0.932230y3 + 0.528736y4 + 0.091947)

s.t. 0.488509y1 + 0.063565y2 + 0.945686y3 + 0.210704y4 ≤ 3.562809,

–0.324014y1 – 0.501754y2 – 0.719204y3 + 0.099562y4 ≤ –0.052215,

0.445225y1 – 0.346896y2 + 0.637939y3 – 0.257623y4 ≤ 0.427920,

–0.202821y1 + 0.647361y2 + 0.920135y3 – 0.983091y4 ≤ 0.840950,

–0.886420y1 – 0.802444y2 – 0.305441y3 – 0.180123y4 ≤ –1.353686,

–0.515399y1 – 0.424820y2 + 0.897498y3 + 0.187268y4 ≤ 2.137251,

–0.591515y1 + 0.060581y2 – 0.427365y3 + 0.579388y4 ≤ –0.290987,

0.423524y1 + 0.940496y2 – 0.437944y3 – 0.742941y4 ≤ 0.373620,

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.

Example 4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 6.5y1 – 0.5y2
1 – y2 – 2y3 – 3y4 – 2y5 – y6

s.t. y1 + 2y2 + 8y3 + y4 + 3y5 + 5y6 ≤ 16,

–8y1 – 4y2 – 2y3 + 2y4 + 4y5 – y6 ≤ –1,

2y1 + 0.5y2 + 0.2y3 – 3y4 – y5 – 4y6 ≤ 24,

0.2y1 + 2y2 + 0.1y3 – 4y4 + 2y5 + 2y6 ≤ 12,

–0.1y1 – 0.5y2 + 2y3 + 5y4 – 5y5 + 3y6 ≤ 3,

0 ≤ yi ≤ 10, i = 1, 2, . . . , 6.

Example 5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 2y1 + 3y2 – 2y2
1 – 2y2

2 + 2y1y2

s.t. –y1 + y2 ≤ 1,

y1 – y2 ≤ 1,

–y1 + 2y2 ≤ 3,

2y1 – y2 ≤ 3,

0 ≤ y1 ≤ 15, 0 ≤ y2 ≤ 15.

Example 6

⎧
⎪⎪⎨

⎪⎪⎩

min yT Qy + cT y

s.t. Ay ≤ b,

y ∈ Y 0 = {0 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 2},

where c = (2, 4)T , b = (1, 2, 4, 3, 1)T , Q =
( –1 2

2 –4

)
, A =

⎛

⎝

–4 2
0 1
1 1
1 0
1 –4

⎞

⎠.
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Example 7 (Ref. [12])

⎧
⎪⎪⎨

⎪⎪⎩

min –
∑n

i=1 y2
i

s.t.
∑j

i=1 yi ≤ j, j = 1, 2, . . . , n,

yi ≥ 0, i = 1, 2, . . . , n.

Table 2 lists the numerical results of our algorithm, Gao’s algorithm [12], and Jiao’s algo-
rithm [30] on Example 7. By comparing the numerical results in Table 2, we can conclude
that our algorithm applied to Example 7 is superior to Gao’s algorithm [12] and Jiao’s al-
gorithm [30] in terms of number of iterations and time.

Some randomly generated test examples with a large scale number of variables and con-
straints are used to validate the robustness of the proposed algorithm. These randomly
generated examples and their computational results are given as follows.

Example 8

⎧
⎪⎪⎨

⎪⎪⎩

min yT Qy + cT y

s.t. Ay ≤ b,

y ∈ Y 0 = {–10 ≤ yi ≤ 10, i = 1, 2, . . . , n},

where Qn×n is a real symmetric matrix, all the real elements of Qn×n, Am×n, and cn×1 are
randomly generated in Interval [–2, 2], all the real elements of bm×1 are randomly gener-
ated in Interval [1, 10]. For Example 8, we solved 10 different random instances for each
size and presented statistics of the results. The computational results are summarized in
Table 3, where the following notations have been used in column headers: Ave.Iter.: the
average number of iterations; Ave.Time (s): the average CPU execution time for the algo-
rithm in seconds; m: the number of constraints; n: the number of variables.

From Table 3 and Fig. 1, it can be seen that, when m and n are below 50, the algorithm
can find the global optimal solution in a short time and with lower iteration number. As
the problem size becomes larger, the average number of iterations and the average CPU
time of our algorithm are also increased, but they are not very sensitive to the problem
size.

Table 3 Numerical results for Example 8

n m Ave.Iter. Ave.Time (s)

5 5 1.2 0.5089
10 10 1.2 1.1423
15 10 1.3 4.7854
30 30 1.3 8.9569
40 40 1.2 8.4528
50 50 2.5 21.3985
80 80 2.4 33.3828
100 50 3.6 29.3468
100 100 5.4 64.5159
200 20 3.2 26.9366
200 50 3.2 42.3695
300 50 3.5 89.3652
300 100 4.8 436.2315
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(a) (b)

Figure 1 The variation tendency of performance index with scale of Example 8

From the experimental results in Table 3, we can see that the proposed algorithm with
the given convergent error can be used to globally solve the (NQP) with a large scale num-
ber of constraints and variables. The results in Tables 1–3 show that our algorithm is both
feasible and efficient.

5 Concluding remarks
In this paper, we propose a new branch-and-bound algorithm for globally solving the non-
convex quadratic programming problem. In this algorithm, we present a new linear re-
laxation method, which can be used to derive the linear programs relaxation problem of
the investigated problem (NPQ). To accelerate the computational speed of the proposed
branch-and-bound algorithm, an interval deleting rule is used to reduce the investigated
regions. By subsequently partitioning the initial region and solving a sequence of linear
programs relaxation problems, the proposed algorithm is convergent to the global optima
of the initial problem (NPQ). Finally, compared with some existent algorithms, numerical
results show higher computational efficiency of the proposed algorithm.
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