
Rim et al. Journal of Inequalities and Applications  (2018) 2018:168 
https://doi.org/10.1186/s13660-018-1757-0

R E S E A R C H Open Access

Identities between harmonic,
hyperharmonic and Daehee numbers
Seog-Hoon Rim1, Taekyun Kim2 and Sung-Soo Pyo3*

*Correspondence:
ssoopyo@gmail.com
3Department of Mathematics
Education, Silla University, Busan,
Korea
Full list of author information is
available at the end of the article

Abstract
In this paper, we present some identities relating the hyperharmonic, the Daehee and
the derangement numbers, and we derive some nonlinear differential equations from
the generating function of a hyperharmonic number. In addition, we use this
differential equation to obtain some identities in which the hyperharmonic numbers
and the Daehee numbers are involved.
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1 Introduction
For any n, we denote by (x)n the falling factorial (x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – n + 1)
and 〈x〉n for rising factorial 〈x〉0 = 1, 〈x〉n = x(x + 1)(x + 2) · · · (x + n – 1). Formally, (x)n =
〈x〉n = 0 if n < 0.

The Stirling numbers are defined by xn and (x)n as

xn =
n∑

k=0

S2(n, k)(x)k ,

(x)n =
n∑

k=0

S1(n, k)xk ,

where S1(n, k) and S2(n, k) are called the Stirling numbers of the first kind and the second
kind, respectively.

As is well known, the unsigned Stirling numbers of the first kind, denoted by |S1(n, k)|,
are (–1)n+kS1(n, k). The unsigned Stirling numbers of the first kind |S1(n, k)| count the
number of permutations of n elements with k disjoint cycles and the definition is given by

〈x〉n =
n∑

k=0

∣∣S1(n, k)
∣∣xk .

A derangement is a permutation of the elements of a set, such that no element appears
in its original position. In other words, derangement is a permutation that has no fixed
points. The number of derangements of a set of size n, denoted by dn, is called the nth
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derangement number. The generating function of derangement numbers is given by

e–t

1 – t
=

∞∑

n=0

dn
tn

n!
.

The Cauchy numbers of order r, denoted by C(r)
n , are defined by the generating function

to be

(
t

log(1 + t)

)r

=
∞∑

n=0

C(r)
n

tn

n!
.

It is well known that the nth harmonic numbers, denoted by Hn, are defined by

Hn =
1
1

+
1
2

+
1
3

+ · · · +
1
n

(1)

with H0 = 0.
The harmonic numbers have many applications in combinatorics and other areas. Sev-

eral interesting properties of harmonic numbers can be found in [10].
In [3], the nth hyperharmonic numbers of order r, denoted by H (r)

n , are defined by

H (r)
n =

⎧
⎪⎪⎨

⎪⎪⎩

0 if n ≤ 0 or r < 0,
1
n if n > 0 and r = 0,
∑n

i=1 H (r–1)
i if r, n ≥ 1.

(2)

From (1) and (2), we note that H (1)
n is the ordinary harmonic number Hn. Many authors

have studied the hyperharmonic numbers [1–3, 5, 10, 21].
The Daehee numbers, denoted by Dn, are defined by the generating function to be

log(1 + t)
t

=
∞∑

n=0

Dn
tn

n!
. (3)

It is clear that

D0 = 1, D1 = –
1
2

, . . . , Dn = (–1)n n!
n + 1

. (4)

The Daehee numbers serve as an intermediate medium connecting between several spe-
cial numbers [6, 7, 11, 13, 31]. The higher-order Daehee numbers led to many combina-
torial identities [8, 9, 13, 19, 22, 24, 29, 30]. In addition, the degenerate Daehee numbers
have been defined and studied [13, 29, 30]. Recently many interesting results have been
published regarding the degenerate Daehee numbers.

The higher-order Daehee numbers, denoted by D(r)
n , are defined by the generating func-

tion,

(
log(1 + t)

t

)r

=
∞∑

n=0

D(r)
n (x)

tn

n!
(see [8, 9, 13, 19, 22, 24, 29, 30]). (5)
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Recently, a group of mathematicians used a differential equations to study special num-
bers. In [11, 13], the Daehee and degenerate Daehee numbers are considered by using
differential equations arising from the generating function. The identities for ordered Bell
numbers [12] and Bernoulli numbers of the second kind [14] were derived arising from the
differential equations of the generating functions, and the other identities of special poly-
nomials can be found in [15–18, 20, 23, 25–27]. In this paper, we present some identities
between the Daehee and hyperharmonic numbers. In addition, we derive some nonlin-
ear differential equations from the generating function of the hyperharmonic number. In
addition, we use this differential equations to obtain some identities in which the hyper-
harmonic numbers and the Daehee numbers are involved.

2 Harmonic numbers and hyperharmonic numbers
Since – log(1 – t) = t + t2

2 + t3

3 + · · · , the generating function of the harmonic numbers Hn

is as follows:

–
log(1 – t)

1 – t
=

∞∑

n=0

Hntn. (6)

From the definition of hyperharmonic numbers (2) and the generating function of har-
monic numbers (6), we get the generating function of the hyperharmonic numbers:

–
log(1 – t)

(1 – t)r =
∞∑

n=0

H (r)
n tn. (7)

The generating functions of harmonic and hyperharmonic numbers can be found in [1,
5] and [4].

A recurrence relation of the hyperharmonic numbers can be obtained by the generating
function as follows:

–
log(1 – t)
(1 – t)r (1 – t) =

∞∑

n=0

H (r)
n tn –

∞∑

n=0

H (r)
n tn+1

=
∞∑

n=0

H (r)
n tn –

∞∑

n=1

H (r)
n–1tn

=
∞∑

n=0

(
H (r)

n – H (r)
n–1

)
tn,

–
log(1 – t)
(1 – t)r (1 – t) = –

log(1 – t)
(1 – t)r–1

=
∞∑

n=0

H (r–1)
n tn.

Therefore we get

H (r)
n = H (r)

n–1 + H (r–1)
n for n ≥ 1. (8)

This recurrence relation (8) is shown in [1], which we obtained in another way.
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We note that, for 1 ≤ s ≤ r,

–
log(1 – t)
(1 – t)r = –

log(1 – t)
(1 – t)r–s

1
(1 – t)s

=
∞∑

l=0

H (r–s)
l tl

∞∑

k=0

(
–s
k

)
(–1)ktk

=
∞∑

l=0

H (r–s)
l tl

∞∑

k=0

(
s + k – 1

s – 1

)
tk

=
∞∑

n=0

n∑

l=0

H (r–s)
l

(
s + n – l – 1

s – 1

)
tn. (9)

Equation (9) yields some identities that are presented in [1] as follows:

H (r)
n =

n∑

m=1

(
n + r – m – 1

r – 1

)
1
m

,

H (r)
n =

n∑

m=1

(
n + r – m – s – 1

r – s – 1

)
H (s)

m , 0 ≤ s ≤ n – 1.

(10)

3 Relations between hyperharmonic numbers and Daehee numbers
From the definition of Daehee numbers, we obtain

log(1 + t)
t

=
– log(1 + t)

(1 + t)
1 + t
–t

=
∞∑

n=1

(–1)n+1Hntn
(

1 +
1
t

)

=
∞∑

n=1

(–1)n+1Hntn +
∞∑

n=0

(–1)nHn+1tn

=
∞∑

n=1

(
(–1)n+1Hn + (–1)nHn+1

)
tn + H1. (11)

Since Hn+1 – Hn = 1
n+1 , from (4) and (11), we get

D0 = H1, Dn = (–1)nn!(Hn+1 – Hn) for n ≥ 1.

Let us investigate the relationship between the Daehee and hyperharmonic numbers.

log(1 + t)
t

=
– log(1 + t)

(1 + t)r
(1 + t)r

–t

=
∞∑

i=1

(–1)i+1H (r)
i ti–1

∞∑

j=0

(
r
j

)
tj

=
∞∑

i=0

(–1)iH (r)
i+1ti

∞∑

j=0

(
r
j

)
tj
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=
∞∑

n=0

n∑

i=0

(–1)i
(

r
n – i

)
H (r)

i+1tn. (12)

From (12) and the definition of the Daehee numbers (3), we get the following identity.

Theorem 1 For any non-negative integer n,

Dn = n!
n∑

i=0

(–1)i
(

r
n – i

)
H (r)

i+1.

From (4), we note that
∑n–1

i=0
(–1)iDi

i! = Hn. Theorem 1 yields the following identity:

Hn =
n–1∑

i=0

i∑

k=0

(–1)k+iH (r)
k+1

(
r

i – k

)
, for n ≥ 1.

Let us consider higher-order Daehee numbers:

(
log(1 + t)

t

)r

= –
log(1 + t)
(1 + t)k

(
log(1 + t)

t

)r–1 (1 + t)k

–t

=

( ∞∑

i=0

(–1)iH (k)
i+1ti

)( ∞∑

j=0

D(r–1)
j

tj

j!

)( ∞∑

l=0

(k)l
tl

l!

)

=

( ∞∑

i=0

(–1)iH (k)
i+1ti

)( ∞∑

m=0

m∑

j=0

(
m
j

)
D(r–1)

j (k)m–j
tm

m!

)

=
∞∑

n=0

n∑

i=0

n–i∑

j=0

(–1)i
(

n – i
j

) (k)n–i–jD(r–1)
j H (k)

i+1

(n – i)!
tn. (13)

The following is found in Eq. (13) along with the definition of higher-order Daehee num-
bers.

Theorem 2 For any non-negative integer n and k ≥ 1,

D(r)
n = n!

n∑

i=0

n–i∑

j=0

(–1)i
(

n – i
j

) (k)n–i–jD(r–1)
j H (k)

i+1

(n – i)!
.

Now, we want to express Hn as a summation of Dk . We have

–
log(1 – t)

1 – t
=

∞∑

n=0

Hntn

=
log(1 – t)

–t
t

1 – t

=
∞∑

i=0

(–1)i Di

i!
ti

∞∑

j=1

tj

=
∞∑

n=1

n–1∑

j=0

(–1)j Dj

j!
tn. (14)
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By comparing coefficients of the first line and fourth line in (14), we get an obvious
identity:

Hn =
n–1∑

j=0

(–1)j Dj

j!
.

Let us observe the definition of hyperharmonic and Daehee numbers. We have

–
log(1 – t)

(1 – t)r =
log(1 – t)

–t
t

(1 – t)r

=
∞∑

k=0

(–1)kDk
tk

k!

∞∑

l=0

(–r)l(–1)l tl+1

l!

=
∞∑

k=0

(–1)kDk
tk

k!

∞∑

l=1

(–r)l–1(–1)l–1l
tl

l!

=
∞∑

n=1

n–1∑

k=0

(
n
k

)
(–1)n–1Dk(–r)k–1(n – k)

tn

n!
. (15)

Equation (15) yields Theorem 3.

Theorem 3 For any positive integer n,

n!H (r)
n =

n–1∑

k=0

(
n
k

)
(–1)n–1(n – k)(–r)k–1Dk . (16)

Theorem 3 shows that hyperharmonic numbers, H (r)
n , can be expressed as a kind of sum

of Daehee numbers. Naturally we can think of whether it is possible to express the Daehee
number Dn in terms of the hyperharmonic numbers H (r)

n .
Let us observe Eq. (15) from a different point of view:

–
log(1 – t)

(1 – t)r =
(

log(1 – t)
–t

)r( –t
log(1 – t)

)r–1 t
(1 – t)r

=
∞∑

k=0

(–1)kD(r)
k

tk

k!

∞∑

l=0

(–1)lC(r–1)
l

tl

l!

∞∑

m=0

(–r)m(–1)m tm+1

m!

=
∞∑

k=0

(–1)kD(r)
k

tk

k!

∞∑

l=0

(–1)lC(r–1)
l

tl

l!

∞∑

m=1

(–r)m–1m(–1)m–1 tm

m!

=
∞∑

k=0

(–1)kD(r)
k

tk

k!

∞∑

n=1

n–1∑

l=0

(
n
l

)
(–1)n–1C(r–1)

l (–r)n–l–1(n – l)
tn

n!

=
∞∑

n=1

n–1∑

k=0

n–1∑

l=0

(
n
k

)(
n
l

)
(–1)k+1D(r)

n–kC(r–1)
l (–r)n–l–1(n – l)

tn

n!
. (17)

Theorem 4 For any positive integer n,

n!H (r)
n =

n–1∑

k=0

n–1∑

l=0

(
n
k

)(
n
l

)
(–1)k+1D(r)

n–kC(r–1)
l (–r)n–l–1(n – l). (18)
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By multiplying the generating function of the hyperharmonic numbers by e–1, the fol-
lowing can be observed:

–
log(1 – t)

(1 – t)r e–t =
∞∑

l=0

H (r)
l tl

∞∑

k=0

(–1)k

k!
tk

=
∞∑

n=0

n∑

l=0

H (r)
l

(–1)n–l

(n – l)!
tn. (19)

From (19), we get the following identity:

–
log(1 – t)

(1 – t)r e–t = –
log(1 – t)
(1 – t)r–1

e–t

1 – t

=
∞∑

l=0

H (r–1)
l tl

∞∑

k=0

dk

k!
tk

=
∞∑

n=0

n∑

l=0

H (r–1)
l

dn–l

(n – l)!
tn, (20)

where dk denotes the kth derangement number. From (19) and (20), we get the following
identity.

Theorem 5 For any positive integer n,

n∑

l=0

H (r)
l

(–1)n–l

(n – l)!
=

n∑

l=0

H (r–1)
l

dn–l

(n – l)!
, (21)

where dk denotes the kth derangement number.

4 Some identities of hyperharmonic numbers and Daehee numbers arising
from differential equations

From now on, throughout this article, we set

G = G(t) = – log(1 – t),

F = F(t) = log(1 + t),

and

FN = F × · · · × F︸ ︷︷ ︸
N-times

,

F (0) = F , F (N) =
d
dt

F (N–1).

In [28], Kwon et al. showed that F = F(t) = log(1 + t) is a solution of the following differ-
ential equation:

F (N) = (–1)N–1(N – 1)!
∞∑

n=0

(–1)nNn Fn

n!
. (22)
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From Eq. (22), some relationships between the Daehee numbers and other special num-
bers have been found [28].

In [28], the authors presented two identities,

F (N) = (–1)N–1(N – 1)!
∞∑

n=0

( n∑

m=0

(–1)mNmS1(n, m)

)
tn

n!

=
∞∑

n=0

(n + N)Dn+N–1
tn

n!
. (23)

From the definition of G, we get

G′ =
1

1 – t
= e– log(1–t) = eG. (24)

By differentiation of both sides of Eq. (24), we get

G′′ = eGG′ = eGeG = e2G,

G(3) = e2G(2G)′ = 2e3G.

By repeating this process, we can easily get

G(N) = (N – 1)!eNG, for N ≥ 1. (25)

From Eq. (12), we obtain

G(N) = (N – 1)!eNG

= N !
∞∑

m=0

Nm–1 Gm

m!

= N !
∞∑

m=0

Nm–1 (– log(1 – t))m

m!

= N !
∞∑

m=0

Nm–1(–1)m
∞∑

n=m
(–1)nS1(n, m)

tn

n!

= N !
∞∑

n=0

n∑

m=0

Nm–1(–1)n+mS1(n, m)
tn

n!
. (26)

From the definition of G and the hyperharmonic numbers,

G(N) =
(

d
dt

)N(
– log(1 – t)

(1 – t)r · (1 – t)r
)

=
(

d
dt

)N
( ∞∑

m=0

H (r)
m tm

∞∑

k=0

(
r
k

)
(–1)ktk

)

=
(

d
dt

)N
( ∞∑

n=0

n∑

k=0

(
r

n – k

)
(–1)n–kH (r)

k tn

)
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=
∞∑

n=0

n∑

k=0

(
d
dt

)N(
r

n – k

)
(–1)n–kH (r)

k tn

=
∞∑

n=N

n∑

k=0

(
r

n – k

)
(–1)n–kH (r)

k (n)N tn–N

=
∞∑

n=0

n+N∑

k=0

(
r

n + N – k

)
(–1)n+N–kH (r)

k (n + N)N tn. (27)

Equations (26) and (27) yield the following theorem.

Theorem 6 For any positive integer N and non-negative integer n,

1
n!

n∑

k=0

Nk–1(–1)kS1(n, k) =
(

n + N
N

) n+N∑

k=0

(
r

n + N – k

)
(–1)N–kH (r)

k .

We note that

F(t) = –G(–t). (28)

From (28), we have

F (N)(t) = (–1)N+1G(N)(–t). (29)

Apply (29) to (27), then

(–1)N+1G(N)(–t) = (–1)N+1
∞∑

n=0

n+N∑

k=0

(
r

n + N – k

)
(–1)N–kH (r)

k (n + N)N tn

=
∞∑

n=0

n+N∑

k=0

(
r

n + N – k

)
(–1)k+1H (r)

k (n + N)N tn. (30)

The definition of the Daehee numbers (3), (29) and (30) yields the following identity.
This is a kind of inversion formula associated with Theorem 3.

Theorem 7 For any positive integer N ,

Dn+N–1 = (n + N – 1)N–1

n+N∑

k=0

(
r

n + N – k

)
(–1)k+1H (r)

k .

From the definition of higher-order Daehee numbers (5),

Gm =
(
– log(1 – t)

)m

=
(

log(1 – t)
–t

)m

tm

=
∞∑

l=0

(–1)lD(m)
l

tl+m

l!
. (31)
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Let us observe Eq. (27) in a different way:

G(N) = (N – 1)!eNG

= (N – 1)!
∞∑

m=0

Nm Gm

m!

= (N – 1)!
∞∑

m=0

Nm

m!

∞∑

k=0

(–1)kD(m)
k (k + m)m

tk+m

(k + m)!

= (N – 1)!
∞∑

n=0

n∑

k=0

(–1)k
(

n
k

)
Nn–kD(n–k)

k
tn

n!
. (32)

From (27) and (32), we have a relation between hyperharmonic and higher-order Daehee
numbers.

Theorem 8 For any positive integer N ,

n+N∑

k=0

(
r

n + N – k

)
(–1)n+N–kH (r)

k (n + N)N n!

= (N – 1)!
n∑

k=0

(–1)k
(

n
k

)
Nn–kD(n–k)

k .

Substituting 1 – et instead of t at (14) and (15), we have

G(N)(1 – et) = (N – 1)!
∞∑

n=0

(–1)nNn tn

n! (33)

and

G(N)(1 – et)

=
∞∑

m=0

m+N∑

k=0

(
r

m + N – k

)
(–1)N–kH (r)

k (m + N)N
(
et – 1

)m

=
∞∑

m=0

m+N∑

k=0

∞∑

n=m

(
r

m + N – k

)
(–1)N–kH (r)

k (m + N)N m!S2(n, m)
tn

n!

=
∞∑

n=0

n∑

m=0

m+N∑

k=0

(
r

m + N – k

)
(–1)N–kH (r)

k (m + N)N m!S2(n, m)
tn

n!
. (34)

From (33) and (34), we have the following theorem.

Theorem 9 For any positive integer N and non-negative integer n,

(–1)n(N – 1)!Nn =
n∑

m=0

m+N∑

k=0

(
r

m + N – k

)
(–1)N–kH (r)

k (m + N)N m!S2(n, m).
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5 Results and discussion
In this paper, we have studied the harmonic, the hyperharmonic, the Daehee and the
higher-order Daehee numbers which are different from the previous research articles. In
Sect. 2, we present some elementary identities between the harmonic and the hyperhar-
monic numbers. In Sect. 3, we study some relations and properties for the harmonic and
the hyperharmonic numbers, the Daehee and the higher-order Daehee numbers. Addi-
tionally, the derangement numbers and the Cauchy numbers are also studied in Sect. 3. In
Sect. 4, we study a nonlinear differential equation arising from the generating function of
the harmonic numbers and we give some identities of harmonic and hyperharmonic num-
bers, the Daehee and higher-order Daehee numbers which are derived from this nonlinear
differential equation.

6 Conclusion
For a long time, research on the harmonic numbers was mainly focused on the study of
inequalities. In this paper, we tried to study of the inequalities of the harmonic numbers
by showing the relationship between harmonic numbers with other special numbers.
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