## RESEARCH

### **Open Access**



Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly  $\eta$ -quasiconvex functions with modulus  $\mu \ge 0$ 

Eze R. Nwaeze<sup>1\*</sup>, Seth Kermausuor<sup>2</sup> and Ana M. Tameru<sup>1</sup>

\*Correspondence: enwaeze@tuskegee.edu <sup>1</sup>Department of Mathematics, Tuskegee University, Tuskegee, USA Full list of author information is available at the end of the article

## Abstract

A new class of quasiconvexity called strongly  $\eta$ -quasiconvex function was introduced in (Awan et al. in Filomat 31(18):5783–5790, 2017). In this paper, we obtain some new *k*-Riemann–Liouville fractional integral inequalities associated with this class of functions. For specific values of the associated parameters, we recover results due to Dragomir and Pearce (Bull. Aust. Math. Soc. 57:377–385, 1998), Ion (Ann. Univ. Craiova, Math. Sci. Ser. 34:82–87, 2007), and Alomari et al. (RGMIA Res. Rep. Collect. 12(Supplement):Article ID 14, 2009).

MSC: 26A51; 26D15; 26E60; 41A55

**Keywords:** Hermite–Hadamard inequality; Strongly  $\eta$ -quasiconvex; Riemann–Liouville fractional integrals

## **1** Introduction

Let  $I \subset \mathbb{R}$  be an interval, and let  $I^{\circ}$  denote the interior of I. We say that a function  $g: I \to \mathbb{R}$  is quasiconvex if

$$g(tx+(1-t)y) \le \max\{g(x),g(y)\}$$

for all  $x, y \in I$  and  $t \in [0, 1]$ .

For functions that are quasiconvex on [a, b], Dragomir and Pearce [5] established the following inequality of the Hermite–Hadamard type.

**Theorem 1** Let  $g : [a,b] \to \mathbb{R}$  be a quasiconvex positive function. If  $g \in L_1([a,b])$ , then we have the following succeeding inequality:

$$\frac{1}{b-a}\int_{a}^{b}g(t)\,dt \le \max\{g(a),g(b)\}.\tag{1}$$

Ion [8] obtained the following two results in the same direction.



© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

**Theorem 2** Let  $g : [a,b] \to \mathbb{R}$  be a differentiable function on (a,b). If, in addition, the absolute value function |g'| is quasiconvex on [a,b], then we have the following succeeding inequality:

$$\left|\frac{g(a)+g(b)}{2} - \frac{1}{b-a}\int_{a}^{b}g(t)\,dt\right| \le \frac{b-a}{4}\max\{|g'(a)|,|g'(b)|\}.$$
(2)

**Theorem 3** Let  $g : [a,b] \to \mathbb{R}$  be a differentiable function on (a,b). If, in addition, the absolute value function  $|g'|^{\frac{p}{p-1}}$  is quasiconvex on [a,b] with p > 1, then we have the following succeeding inequality:

$$\left|\frac{g(a)+g(b)}{2}-\frac{1}{b-a}\int_{a}^{b}g(t)\,dt\right| \leq \frac{b-a}{2(p+1)^{\frac{1}{p}}} \Big[\max\{|g'(a)|^{\frac{p}{p-1}},|g'(b)|^{\frac{p}{p-1}}\}\Big]^{\frac{p-1}{p}}.$$
(3)

Subsequently, Alomari et al. [2] obtained the following generalization of Theorem 2.

**Theorem 4** Let  $g: I \to \mathbb{R}$  be a differentiable function on  $I^{\circ}$  with  $a, b \in I^{\circ}$  and a < b. If, in addition, the absolute value function  $|g'|^q$  is quasiconvex on  $[a,b], q \ge 1$ , then we have the following succeeding inequality:

$$\left|\frac{g(a)+g(b)}{2}-\frac{1}{b-a}\int_{a}^{b}g(t)\,dt\right| \leq \frac{b-a}{4} \left[\max\{\left|g'(a)\right|^{q},\left|g'(b)\right|^{q}\}\right]^{\frac{1}{q}}.$$
(4)

Recently, Gordji et al. [6] introduced a new class of functions, called the  $\eta$ -quasiconvex functions. We present the definition for completeness.

**Definition 5** A function  $g: I \subset \mathbb{R} \to \mathbb{R}$  is said to be an  $\eta$ -quasiconvex function with respect to  $\eta: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  if

$$g(tx+(1-t)y) \le \max\{g(y),g(y)+\eta(g(x),g(y))\}$$

for all  $x, y \in I$  and  $t \in [0, 1]$ .

For some results concerning the  $\eta$ -convex functions and related results, we refer the interested reader to the papers [4, 7, 9, 10, 12, 13, 15–17] and the references therein. Recently, Awan et al. [3] proposed the following definition, which gives a further generalization of Definition 5.

**Definition 6** A function  $g : I \subset \mathbb{R} \to \mathbb{R}$  is said to be a strongly  $\eta$ -quasiconvex function with respect to  $\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  and modulus  $\mu \ge 0$  if

$$g(tx + (1-t)y) \le \max\{g(y), g(y) + \eta(g(x), g(y))\} - \mu t(1-t)(y-x)^2$$

for all  $x, y \in I$  and  $t \in [0, 1]$ .

*Example* 7 The function  $g(x) = x^2$  is strongly  $\eta$ -quasiconvex with respect to the bifunction  $\eta(x, y) = 2x + y$  and modulus  $\mu = 1$ . To see this, let  $t \in [0, 1]$ . Then

$$\max\{g(y), g(y) + \eta(g(x), g(y))\} - \mu t(1-t)(y-x)^2$$

$$\geq g(y) + \eta(g(x), g(y)) - t(1-t)(y-x)^{2}$$
  

$$\geq y^{2} + t(2x^{2} + y^{2}) - t(1-t)(y-x)^{2}$$
  

$$= t^{2}x^{2} + 2xyt(1-t) + (1-t)^{2}y^{2} + t(x^{2} + 2y^{2})$$
  

$$\geq t^{2}x^{2} + 2xyt(1-t) + (1-t)^{2}y^{2}$$
  

$$= g(tx + (1-t)y).$$

*Remark* 8 If *g* is strongly  $\eta$ -quasiconvex with respect to  $\eta(x, y) = x - y$  and modulus  $\mu = 0$ , then Definition 6 reduces to the classical definition of the quasiconvexity.

Our purpose in this paper is to prove analogues of inequalities (1)–(4) for the strongly  $\eta$ -quasiconvex functions via the *k*-Riemann–Liouville fractional integral operators. We recapture these inequalities as particular cases of our results (see Remark 20).

We close this section by presenting the definition of the *k*-Riemann–Liouville fractional integral operators.

**Definition 9** (See [11]) The left- and right-sided *k*-Riemann–Liouville fractional integral operators  ${}_{k}\mathbf{J}_{a^{+}}^{\alpha}$  and  ${}_{k}\mathbf{J}_{b^{-}}^{\alpha}$  of order  $\alpha > 0$ , for a real-valued continuous function g(x), are defined as

$${}_{k}J^{\alpha}_{a^{+}}g(x) = \frac{1}{k\Gamma_{k}(\alpha)}\int_{a}^{x}(x-t)^{\frac{\alpha}{k}-1}g(t)\,dt, \quad x > a,$$
(5)

and

$${}_{k}J^{\alpha}_{b^{-}}g(x) = \frac{1}{k\Gamma_{k}(\alpha)}\int_{x}^{b}(t-x)^{\frac{\alpha}{k}-1}g(t)\,dt, \quad x < b,$$
(6)

where k > 0, and  $\Gamma_k$  is the *k*-gamma function given by

$$\Gamma_k(x) := \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt, \quad \operatorname{Re}(x) > 0,$$

with the properties  $\Gamma_k(x + k) = x\Gamma_k(x)$  and  $\Gamma_k(k) = 1$ .

This paper is made up of two sections. In Sect. 2, our main results are framed and justified. Some new inequalities are also obtained as corollaries of the main results.

#### 2 Main results

In what follows, we will use the following notation (where convenient): for  $g : [a, b] \to \mathbb{R}$ and  $\eta : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ , we define

$$\mathcal{M}(g;\eta) := \max\{g(b), g(b) + \eta(g(a), g(b))\}$$

and

$$\mathcal{N}(g;\eta) := \max \{ g(a), g(a) + \eta \big( g(b), g(a) \big) \}.$$

We now state and prove our first result of this paper.

**Theorem 10** Let  $\alpha, k > 0$ , and let  $g : [a, b] \to \mathbb{R}$  be a positive strongly  $\eta$ -quasiconvex function with modulus  $\mu \ge 0$ . If  $g \in L_1([a, b])$ , then we have the following inequality:

$$\frac{\Gamma_k(\alpha+k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_k \mathbf{J}_{a^+}^{\alpha}g(b) +_k \mathbf{J}_{b^-}^{\alpha}g(a)\Big] \leq \frac{\mathcal{M}(g;\eta) + \mathcal{N}(g;\eta)}{2} - \alpha\mu(b-a)^2 \left(\frac{1}{\alpha+k} - \frac{1}{\alpha+2k}\right).$$

*Proof* The function *g* is strongly  $\eta$ -quasiconvex on [a, b] with  $\mu \ge 0$ . This implies that

$$g(ta + (1-t)b) \le \max\{g(b), g(b) + \eta(g(a), g(b))\} - \mu t(1-t)(b-a)^2$$
$$= \mathcal{M}(g; \eta) - \mu t(1-t)(b-a)^2$$
(7)

and

$$g((1-t)a+tb) \le \max\{g(a), g(a) + \eta(g(b), g(a))\} - \mu t(1-t)(b-a)^2$$
  
=  $\mathcal{N}(g; \eta) - \mu t(1-t)(b-a)^2$  (8)

for all  $t \in [0, 1]$ .

By adding (7) and (8) we obtain

$$g(ta + (1-t)b) + g((1-t)a + tb)$$
  

$$\leq \mathcal{M}(g;\eta) + \mathcal{N}(g;\eta) - 2\mu t (1-t)(b-a)^2.$$
(9)

Now, multiplying both sides of (9) by  $t^{\frac{\alpha}{k}-1}$  and thereafter integrating the outcome with respect to *t* over the interval [0, 1] give

$$\int_{0}^{1} t^{\frac{\alpha}{k}-1} g(ta+(1-t)b) dt + \int_{0}^{1} t^{\frac{\alpha}{k}-1} g((1-t)a+tb) dt$$

$$\leq \mathcal{M}(g;\eta) \int_{0}^{1} t^{\frac{\alpha}{k}-1} dt + \mathcal{N}(g;\eta) \int_{0}^{1} t^{\frac{\alpha}{k}-1} dt - 2\mu(b-a)^{2} \int_{0}^{1} t^{\frac{\alpha}{k}-1} t(1-t) dt$$

$$= \frac{2k}{\alpha} \bigg[ \frac{\mathcal{M}(g;\eta) + \mathcal{N}(g;\eta)}{2} - \alpha\mu(b-a)^{2} \bigg( \frac{1}{\alpha+k} - \frac{1}{\alpha+2k} \bigg) \bigg].$$
(10)

Using the substitutions x = ta + (1 - t)b and y = (1 - t)a + tb in the definition of the *k*-Riemann–Liouville fractional integrals, we obtain

$$\int_{0}^{1} t^{\frac{\alpha}{k}-1} g(ta+(1-t)b) dt = \frac{1}{(b-a)^{\frac{\alpha}{k}}} \int_{a}^{b} (b-x)^{\frac{\alpha}{k}-1} g(x) dx$$
$$= \frac{k\Gamma_{k}(\alpha)}{(b-a)^{\frac{\alpha}{k}}} \times_{k} \mathbf{J}_{a^{+}}^{\alpha} g(b)$$
(11)

and

$$\int_{0}^{1} t^{\frac{\alpha}{k}-1} g((1-t)a+tb) dt = \frac{1}{(b-a)^{\frac{\alpha}{k}}} \int_{a}^{b} (y-a)^{\frac{\alpha}{k}-1} g(y) dy$$
$$= \frac{k\Gamma_{k}(\alpha)}{(b-a)^{\frac{\alpha}{k}}} \times_{k} \mathbf{J}_{b}^{\alpha} g(a).$$
(12)

Employing (11) and (12) in (10), we get

$$\frac{k\Gamma_k(\alpha)}{(b-a)^{\frac{\alpha}{k}}} \Big[_k \mathbf{J}_{a^+}^{\alpha}g(b) +_k \mathbf{J}_{b^-}^{\alpha}g(a)\Big]$$
  
$$\leq \frac{2k}{\alpha} \Big[\frac{\mathcal{M}(g;\eta) + \mathcal{N}(g;\eta)}{2} - \alpha\mu(b-a)^2 \Big(\frac{1}{\alpha+k} - \frac{1}{\alpha+2k}\Big)\Big].$$

Hence the intended inequality is reached.

Setting  $\mu$  = 0 in Theorem 10, we get the following corollary.

**Corollary 11** Let  $\alpha, k > 0$ , and let  $g : [a, b] \to \mathbb{R}$  be a positive strongly  $\eta$ -quasiconvex function with modulus 0. If  $g \in L_1([a, b])$ , then we have the following inequality:

$$\frac{\Gamma_k(\alpha+k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_k J_{a^+}^{\alpha}g(b) +_k J_{b^-}^{\alpha}g(a)\Big] \le \frac{\mathcal{M}(g;\eta) + \mathcal{N}(g;\eta)}{2}.$$
(13)

The following lemmas will be useful in the proof of the remaining results of this paper.

**Lemma 12** Let  $\alpha, k > 0$ , and let  $g : [a,b] \to \mathbb{R}$  be a differentiable function on the interval (a,b). If  $g' \in L_1([a,b])$ , then we have the following equality for the k-fractional integral:

$$\frac{g(a)+g(b)}{2} - \frac{\Gamma_k(\alpha+k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_k \mathbf{J}_{a^+}^{\alpha}g(b) +_k \mathbf{J}_{b^-}^{\alpha}g(a)\Big]$$
$$= \frac{b-a}{2} \int_0^1 \Big[(1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}}\Big]g'\big(ta+(1-t)b\big)\,dt.$$

*Proof* The identity is achieved by setting s = 0 in [1, Lemma 2.1].

**Lemma 13** (See [14, 18]) *If*  $\sigma \in (0, 1]$  *and*  $0 \le x < y$ , *then* 

$$\left|x^{\sigma}-y^{\sigma}\right|\leq (y-x)^{\sigma}.$$

**Theorem 14** Let  $\alpha, k > 0$ , and let  $g : [a, b] \to \mathbb{R}$  be a differentiable function on (a, b). If |g'| is strongly  $\eta$ -quasiconvex on [a, b] with modulus  $\mu \ge 0$  and  $g' \in L_1([a, b])$ , then we have the following inequality:

$$\begin{aligned} \left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_k(\alpha + k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_k \mathbf{J}_a^{\alpha} + g(b) +_k \mathbf{J}_{b-}^{\alpha} g(a) \Big] \right| \\ &\leq \frac{b-a}{\frac{\alpha}{k}+1} \left(1 - \frac{1}{2^{\frac{\alpha}{k}}}\right) \mathcal{M}(|g'|;\eta) \\ &- \mu(b-a)^3 \left[\frac{1}{(\frac{\alpha}{k}+2)} \left(1 - \frac{1}{2^{\frac{\alpha}{k}+1}}\right) - \frac{1}{(\frac{\alpha}{k}+3)} \left(1 - \frac{1}{2^{\frac{\alpha}{k}+2}}\right) \right]. \end{aligned}$$

*Proof* We start by making the following observations: for  $t \in [0, 1]$ , we obtain

$$(1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \begin{cases} \geq 0, & 0 \leq t \leq \frac{1}{2}, \\ < 0, & \frac{1}{2} < t \leq 1, \end{cases}$$
(14)

and

$$\int_{0}^{1} \left| (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt = \int_{0}^{\frac{1}{2}} \left[ (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right] dt + \int_{\frac{1}{2}}^{1} \left[ t^{\frac{\alpha}{k}} - (1-t)^{\frac{\alpha}{k}} \right] dt$$
$$= \frac{2}{(\frac{\alpha}{k}+1)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k}}} \right).$$
(15)

Using a similar line of arguments (as previously), we obtain

$$\int_{0}^{1} t(1-t) \left| (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt = \frac{2}{(\frac{\alpha}{k}+2)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k}+1}} \right) - \frac{2}{(\frac{\alpha}{k}+3)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k}+2}} \right).$$
(16)

Now, using the fact that |g'| is strongly  $\eta$ -quasiconvex with  $\mu \ge 0$  and then applying Lemma 12, the properties of the modulus, and identities (15) and (16), we obtain:

$$\begin{split} \left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b - a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a^{+}}^{\alpha} g(b) +_{k} \mathbf{J}_{b^{-}}^{\alpha} g(a) \Big] \right| \\ &\leq \frac{b - a}{2} \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| \Big[ g'(ta + (1 - t)b) \Big| dt \\ &\leq \frac{b - a}{2} \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \Big| \Big[ \max\{ |g'(b)|, |g'(b)| + \eta(|g'(a)|, |g'(b)|) \} - \mu t(1 - t)(b - a)^{2} \Big] dt \\ &= \frac{b - a}{2} \max\{ |g'(b)|, |g'(b)| + \eta(|g'(a)|, |g'(b)|) \} \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt \\ &- \mu \frac{(b - a)^{3}}{2} \int_{0}^{1} t(1 - t) \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt \\ &= \frac{b - a}{2} \max\{ |g'(b)|, |g'(b)| + \eta(|g'(a)|, |g'(b)|) \} \frac{2}{(\frac{\alpha}{k} + 1)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k}}} \right) \\ &- \mu \frac{(b - a)^{3}}{2} \left[ \frac{2}{(\frac{\alpha}{k} + 2)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k} + 1}} \right) - \frac{2}{(\frac{\alpha}{k} + 3)} \left( 1 - \frac{1}{2^{\frac{\alpha}{k} + 2}} \right) \right]. \end{split}$$

Hence the result follows.

Putting  $\mu$  = 0 in Theorem 14, we obtain the following result.

**Corollary 15** Let  $\alpha, k > 0$ , and let  $g : [a,b] \to \mathbb{R}$  be a differentiable function on (a,b). If |g'| is strongly  $\eta$ -quasiconvex on [a,b] with modulus 0 and  $g' \in L_1([a,b])$ , then we have the following inequality:

$$\left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b - a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a^{+}}^{\alpha}g(b) +_{k} \mathbf{J}_{b^{-}}^{\alpha}g(a) \Big] \right| \\ \leq \frac{b - a}{\frac{\alpha}{k} + 1} \left( 1 - \frac{1}{2^{\frac{\alpha}{k}}} \right) \max\{ |g'(b)|, |g'(b)| + \eta(|g'(a)|, |g'(b)|) \}.$$
(17)

**Theorem 16** Let  $\alpha, k > 0, q > 1$ , and let  $g : [a, b] \to \mathbb{R}$  be a differentiable function on (a, b). If  $|g'|^q$  is strongly  $\eta$ -quasiconvex on [a, b] with modulus  $\mu \ge 0$  and  $g' \in L_1([a, b])$ , then we

have the following inequality:

$$\begin{aligned} \left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_k(\alpha + k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_k \mathbf{J}_{a^+}^{\alpha} g(b) +_k \mathbf{J}_{b^-}^{\alpha} g(a) \Big] \right| \\ &\leq \frac{b-a}{2} \left( \frac{1}{\frac{\alpha}{k}p+1} \right)^{\frac{1}{p}} \left( \mathcal{M}\big( \left| g' \right|^q; \eta \big) - \mu \frac{(b-a)^2}{6} \right)^{\frac{1}{q}}, \end{aligned}$$

where  $\frac{1}{p} + \frac{1}{q} = 1$  and  $\frac{\alpha}{k} \in (0, 1]$ .

*Proof* As a consequence of Lemma 13, we have that

$$\left|x^{\frac{\alpha}{k}} - y^{\frac{\alpha}{k}}\right| \le |x - y|^{\frac{\alpha}{k}}$$

for all  $x, y \in [0, 1]$  with  $\frac{\alpha}{k} \in (0, 1]$ . Using the above information, we make the following computations:

$$\int_{0}^{1} \left| (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right|^{p} dt \leq \int_{0}^{1} \left| 1 - 2t \right|^{\frac{\alpha}{k}p} dt$$

$$= \int_{0}^{\frac{1}{2}} \left| 1 - 2t \right|^{\frac{\alpha}{k}p} dt + \int_{\frac{1}{2}}^{1} \left| 1 - 2t \right|^{\frac{\alpha}{k}p} dt$$

$$= \int_{0}^{\frac{1}{2}} (1 - 2t)^{\frac{\alpha}{k}p} dt + \int_{\frac{1}{2}}^{1} (2t - 1)^{\frac{\alpha}{k}p} dt$$

$$= \frac{1}{\frac{\alpha}{k}p + 1}.$$
(18)

Since the function  $|g'|^q$  is strongly  $\eta$ -quasiconvex on [a, b] with modulus  $\mu \ge 0$ , we have

$$\left|g'(ta+(1-t)b)\right|^{q} \le \max\left\{\left|g'(b)\right|^{q}, \left|g'(b)\right|^{q} + \eta\left(\left|g'(a)\right|^{q}, \left|g'(b)\right|^{q}\right)\right\} - \mu t(1-t)(b-a)^{2}.$$
(19)

Now, applying Lemma 12, the Hölder inequality, the properties of absolute values, and inequalities (18) and (19), we obtain

$$\begin{split} \left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_{k} J_{a^{+}}^{\alpha} g(b) +_{k} J_{b^{-}}^{\alpha} g(a) \Big] \right| \\ &\leq \frac{b-a}{2} \int_{0}^{1} \left| (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| \left| g'(ta + (1-t)b) \right| dt \\ &\leq \frac{b-a}{2} \left( \int_{0}^{1} \left| (1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right|^{p} dt \right)^{\frac{1}{p}} \left( \int_{0}^{1} \left| g'(ta + (1-t)b) \right|^{q} dt \right)^{\frac{1}{q}} \\ &\leq \frac{b-a}{2} \left( \frac{1}{\frac{\alpha}{k}p+1} \right)^{\frac{1}{p}} \left( \int_{0}^{1} \left[ \max\{ |g'(b)|^{q}, |g'(b)|^{q} + \eta(|g'(a)|^{q}, |g'(b)|^{q}) \} \right. \\ &- \mu t (1-t)(b-a)^{2} \right] dt \Big)^{\frac{1}{q}} \\ &= \frac{b-a}{2} \left( \frac{1}{\frac{\alpha}{k}p+1} \right)^{\frac{1}{p}} \left( \max\{ |g'(b)|^{q}, |g'(b)|^{q} + \eta(|g'(a)|^{q}, |g'(b)|^{q}) \} - \mu \frac{(b-a)^{2}}{6} \right)^{\frac{1}{q}}. \end{split}$$

This completes the proof.

Taking  $\mu$  = 0 in Theorem 16, we get the following:

**Corollary 17** Let  $\alpha, k > 0, q > 1$ , and let  $g : [a, b] \to \mathbb{R}$  be a differentiable function on (a, b). If  $|g'|^q$  is strongly  $\eta$ -quasiconvex on [a, b] with modulus 0 and  $g' \in L_1([a, b])$ , then we have the following inequality:

$$\left|\frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b - a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a^{+}}^{\alpha}g(b) +_{k} \mathbf{J}_{b^{-}}^{\alpha}g(a)\Big]\right| \\ \leq \frac{b - a}{2} \left(\frac{1}{\frac{\alpha}{k}p + 1}\right)^{\frac{1}{p}} \left(\max\left\{\left|g'(b)\right|^{q}, \left|g'(b)\right|^{q} + \eta\left(\left|g'(a)\right|^{q}, \left|g'(b)\right|^{q}\right)\right\}\right)^{\frac{1}{q}},$$
(20)

*where*  $\frac{1}{p} + \frac{1}{q} = 1$  *and*  $\frac{\alpha}{k} \in (0, 1]$ .

Finally, we present the following result.

**Theorem 18** Let  $\alpha, k > 0, q \ge 1$ , and let  $g : [a, b] \to \mathbb{R}$  be a differentiable function on (a, b). If  $|g'|^q$  is strongly  $\eta$ -quasiconvex on [a, b] with modulus  $\mu \ge 0$  and  $g' \in L_1([a, b])$ , then we have the following inequality:

$$\left|\frac{g(a)+g(b)}{2} - \frac{\Gamma_{k}(\alpha+k)}{2(b-a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a^{+}}^{\alpha}g(b) +_{k} \mathbf{J}_{b^{-}}^{\alpha}g(a)\Big]\right|$$
  
$$\leq \frac{b-a}{2} \left(\mathcal{P}(\alpha;k)\right)^{1-\frac{1}{q}} \left(\mathcal{M}\left(\left|g'\right|^{q};\eta\right)\mathcal{P}(\alpha;k) - \mu(b-a)^{2}\mathcal{Q}(\alpha;k)\right)^{\frac{1}{q}},$$

where

$$\mathcal{P}(\alpha;k) = \frac{2}{\left(\frac{\alpha}{k}+1\right)} \left(1 - \frac{1}{2^{\frac{\alpha}{k}}}\right)$$

and

$$\mathcal{Q}(\alpha;k) = \frac{2}{\left(\frac{\alpha}{k}+2\right)} \left(1-\frac{1}{2^{\frac{\alpha}{k}+1}}\right) - \frac{2}{\left(\frac{\alpha}{k}+3\right)} \left(1-\frac{1}{2^{\frac{\alpha}{k}+2}}\right).$$

*Proof* We follow similar arguments as in the proof of the previous theorem. For this, we use again Lemma 12, the Hölder inequality, and the properties of the absolute values to obtain

$$\begin{split} \left| \frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b - a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a^{+}}^{\alpha} g(b) +_{k} \mathbf{J}_{b^{-}}^{\alpha} g(a) \Big] \right| \\ &\leq \frac{b - a}{2} \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| \left| g' \big( ta + (1 - t)b \big) \right| dt \\ &\leq \frac{b - a}{2} \bigg( \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt \bigg)^{1 - \frac{1}{q}} \bigg( \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| \left| g' \big( ta + (1 - t)b \big) \right|^{q} dt \bigg)^{\frac{1}{q}} \\ &\leq \frac{b - a}{2} \bigg( \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| dt \bigg)^{1 - \frac{1}{q}} \\ &\times \bigg( \int_{0}^{1} \left| (1 - t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| \bigg| \max \big\{ |g'(b)|^{q}, |g'(b)|^{q} + \eta \big( |g'(a)|^{q}, |g'(b)|^{q} \big) \big\} \\ &- \mu t (1 - t) (b - a)^{2} \bigg] dt \bigg)^{\frac{1}{q}}. \end{split}$$

The desired inequality follows by appealing to identities (15) and (16).

Taking  $\mu = 0$  in Theorem 18, we get the succeeding corollary.

**Corollary 19** Let  $\alpha, k > 0, q \ge 1$ , and let  $g : [a, b] \to \mathbb{R}$  be a differentiable function on (a, b). If  $|g'|^q$  is strongly  $\eta$ -quasiconvex on [a, b] with modulus 0 and  $g' \in L_1([a, b])$ , then we have the following inequality:

$$\left|\frac{g(a) + g(b)}{2} - \frac{\Gamma_{k}(\alpha + k)}{2(b - a)^{\frac{\alpha}{k}}} \Big[_{k} \mathbf{J}_{a}^{\alpha} g(b) +_{k} \mathbf{J}_{b}^{\alpha} g(a)\Big]\right|$$
  
$$\leq \frac{b - a}{2} \mathcal{P}(\alpha; k) \Big(\max\{|g'(b)|^{q}, |g'(b)|^{q} + \eta(|g'(a)|^{q}, |g'(b)|^{q})\}\Big)^{\frac{1}{q}}, \tag{21}$$

where

$$\mathcal{P}(\alpha;k) = \frac{2}{\left(\frac{\alpha}{k}+1\right)} \left(1 - \frac{1}{2^{\frac{\alpha}{k}}}\right).$$

*Remark* 20 Substituting  $\eta(x, y) = x - y$  and  $\alpha = k = 1$  into (13), (17), (20), and (21), we recover (1), (2), (3), and (4), respectively.

#### 3 Conclusion

Four main results of the Hermite–Hadamard kind for functions that are strongly  $\eta$ quasiconvex with modulus  $\mu \ge 0$  are hereby established. We recover known results in the literature by setting  $\eta(x, y) = x - y$ ,  $\alpha = k = 1$ , and  $\mu = 0$  in Theorems 10, 14, 16, and 18. More results can be obtained by choosing different bifunction  $\eta$  and then  $\mu$ .

#### Acknowledgements

Many thanks to the two anonymous referees for their suggestions and comments.

#### Funding

There is no funding to report at this point in time.

#### Competing interests

The authors declare that there are no competing interests.

#### Authors' contributions

All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Mathematics, Tuskegee University, Tuskegee, USA. <sup>2</sup>Department of Mathematics and Computer Science, Alabama State University, Montgomery, USA.

#### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

#### Received: 15 March 2018 Accepted: 14 June 2018 Published online: 20 June 2018

#### References

- 1. Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 55 (2017)
- 2. Alomari, M., Darus, M., Dragomir, S.S.: Inequalities of Hermite–Hadamard's type for functions whose derivatives absolute values are quasi-convex. RGMIA Res. Rep. Collect. **12**(Supplement), Article ID 14 (2009)
- Awan, M.U., Noorb, M.A., Noorb, K.I., Safdarb, F.: On strongly generalized convex functions. Filomat 31(18), 5783–5790 (2017)
- Delavar, M.R., De La Sen, D.: Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus 5, 1661 (2016)

- Dragomir, S.S., Pearce, C.E.M.: Quasi-convex functions and Hadamard's inequality. Bull. Aust. Math. Soc. 57, 377–385 (1998)
- 6. Gordji, M.E., Delavar, M.R., De La Sen, M.: On φ-convex functions. J. Math. Inequal. 10(1), 173–183 (2016)
- Gordji, M.E., Dragomir, S.S., Delavar, M.R.: An inequality related to η-convex functions (II). Int. J. Nonlinear Anal. Appl. 6(2), 26–32 (2015)
- Ion, D.A.: Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova, Math. Sci. Ser. 34, 82–87 (2007)
- 9. Jleli, M., Regan, D.O., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221–1230 (2016)
- Khan, M.A., Khurshid, Y., Ali, T.: Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. LXXXVI(1), 153–164 (2017)
- 11. Mubeen, S., Habibullah, G.M.: k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)
- 12. Nwaeze, E.R.: Inequalities of the Hermite–Hadamard type for quasi-convex functions via the (k, s)-Riemann–Liouville fractional integrals. Fract. Differ. Calc. (in press)
- 13. Nwaeze, E.R., Torres, D.F.M.: Novel results on the Hermite–Hadamard kind inequality for  $\eta$ -convex functions by means of the (*k*, *r*)-fractional integral operators. arXiv:1802.05619v1
- Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integral and series. In: Elementary Functions, vol. 1. Nauka, Moscow (1981)
- Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: (k, s)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016)
- Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities via k-Riemann–Liouville fractional integral. Appl. Math. Comput. 269, 29–34 (2015)
- Tomar, M., Mubeen, S., Choi, J.: Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016, 234 (2016)
- Wang, J., Zhu, C., Zhou, Y.: New generalized Hermite–Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013, 325 (2013)

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com