RESEARCH Open Access

An upper bound for the Z-spectral radius of adjacency tensors

Zhi-Yong Wu, Jun He*, Yan-Min Liu and Jun-Kang Tian

*Correspondence: hejunfan1@163.com School of Mathematics, Zunyi Normal College, Zunyi, P.R. China

Abstract

Let \mathcal{H} be a k-uniform hypergraph on n vertices with degree sequence $\Delta = d_1 \ge \cdots \ge d_n = \delta$. In this paper, in terms of degree d_i , we give a new upper bound for the Z-spectral radius of the adjacency tensor of \mathcal{H} . Some examples are given to show the efficiency of the bound.

MSC: 15A18; 15A69; 65F15; 65F10

Keywords: Hypergraph; *Z*-eigenvalue; Bound; Nonnegative tensor

1 Introduction

Let $A = (a_{i_1 i_2 \cdots i_m})$ be an mth order n-dimensional real square tensor, x be a real n-vector. Then we define the following real n-vector:

$$\mathcal{A}x^{m-1} = \left(\sum_{i_2, \dots, i_m = 1}^n a_{ii_2 \cdots i_m} x_{i_2} \cdots x_{i_m}\right)_{1 \le i \le n}, \qquad x^{[m-1]} = \left(x_i^{m-1}\right)_{1 \le i \le n}.$$

If there exist a real vector x and a real number λ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]},$$

then λ is called an H-eigenvalue of \mathcal{A} and x is called an eigenvector of \mathcal{A} associated with λ [1, 2]. If there exist a real vector x and a real number λ such that

$$Ax^{m-1} = \lambda x, \qquad x^T x = 1,$$

then λ is called a Z-eigenvalue of A and x is called an eigenvector of A associated with λ . You can see more about the eigenvalues of tensors in [3–7].

Let \mathcal{H} be a hypergraph with a vertex set $V(\mathcal{H})$ and an edge set $E(\mathcal{H}) = \{e_1, e_2, \dots, e_t\}$. If every edge of \mathcal{H} contains exactly k distinct vertices, then \mathcal{H} is called a k-uniform hypergraph. The degree of a vertex i in \mathcal{H} is the number of edges incident with i, denoted by d_i . If $d_i = d$ for any $i \in V(\mathcal{H})$, then the hypergraph \mathcal{H} is called a regular hypergraph. Recently, the spectral radii of hypergraphs have been studied in [8, 9].

Let $\{i_1, ..., i_k\} \in E(\mathcal{H})$ mean that there is an edge containing k distinct vertices $i_1, ..., i_k$. Then the adjacency tensor $\mathcal{A}(\mathcal{H}) = (a_{i_1 ... i_k})$ of a hypergraph \mathcal{H} is a kth order n-dimensional

tensor with entries:

$$a_{i_1\cdots i_k} = \begin{cases} \frac{1}{(k-1)!}, & \text{if } \{i_1,\ldots,i_k\} \in E(\mathcal{H}), \\ 0, & \text{otherwise.} \end{cases}$$

Let $D(\mathcal{H}) = \operatorname{diag}(d_1, d_2, \dots, d_n)$ be the degree diagonal tensor of the graph \mathcal{H} . Then the tensor $Q(\mathcal{H}) = D(\mathcal{H}) + \mathcal{A}(\mathcal{H})$ is called the signless Laplacian tensor of the hypergraph \mathcal{H} . The largest modulus of the Z-eigenvalues of the adjacency tensor $\mathcal{A}(\mathcal{H})$ is denoted by $\rho_Z(\mathcal{H})$, which is called the Z-spectral radius of the adjacency tensor $\mathcal{A}(\mathcal{H})$.

For a k-uniform hypergraph \mathcal{H} , let $\Delta = d_1 \ge \cdots \ge d_n = \delta$ be the degree sequence of the hypergraph \mathcal{H} . In 2013, Xie and Chang [8] presented the following upper bound for the largest Z-eigenvalues $\rho_Z(\mathcal{H})$ of adjacency tensors:

$$\rho_Z(\mathcal{H}) \le \Delta. \tag{1}$$

In this paper, we give a new upper bounds in terms of degree d_i for the Z-spectral radius of hypergraphs, which improves the bound as shown in (1). Then we give some examples to compare these bounds for Z-spectral radius of hypergraphs.

2 Preliminaries

Some basic definitions and useful results are listed as follows.

Definition 2.1 ([10]) The tensor \mathcal{A} is called reducible if there exists a nonempty proper index subset $\mathbb{J} \subset \{1, 2, ..., n\}$ such that $a_{i_1, i_2, ..., i_m} = 0$, $\forall i_1 \in \mathbb{J}$, $\forall i_2, ..., i_m \notin \mathbb{J}$. If \mathcal{A} is not reducible, then we call \mathcal{A} to be irreducible.

Definition 2.2 Let \mathcal{A} be an m-order and n-dimensional tensor. We define $\sigma(\mathcal{A})$ the Z-spectrum of \mathcal{A} by the set of all Z-eigenvalues of \mathcal{A} . Assume $\sigma(\mathcal{A}) \neq \emptyset$, then the Z-spectral radius of \mathcal{A} is denoted by

$$\rho_Z(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma(\mathcal{A})\}.$$

The concept of *weakly symmetric* was first introduced and used by Chang, Pearson, and Zhang [11] in order to study the following Perron–Frobenius theorem for the Z-eigenvalue of nonnegative tensors.

Lemma 2.1 ([11]) Let $A = (a_{i_1 i_2 \cdots i_m})$ be a weakly symmetric nonnegative tensor, then the spectral radius $\rho_Z(A)$ is a positive Z-eigenvalue with a nonnegative Z-eigenvector x. Furthermore, if A is irreducible, x is positive.

 $|\mathcal{A}|$ means that $(|\mathcal{A}|)_{i_1\cdots i_m} = |a_{i_1\cdots i_m}|$. Two useful lemmas are given as follows.

Lemma 2.2 Let A and B be two weakly symmetric and irreducible tensors of order m and dimension n. If B and B - |A| are nonnegative, then $\rho_Z(B) \ge \rho_Z(|A|)$.

Proof Let y be the eigenvector associated with β , where β is a Z-eigenvalue of A. Then we can get

$$|\beta||y| = \left|\mathcal{A}y^{[m-1]}\right| \le |\mathcal{A}|\left|y^{[m-1]}\right| \le \mathcal{B}\left|y^{[m-1]}\right|.$$

By Theorem 4.7 of [11], we have

$$\rho_Z(\mathcal{B}) = \max_{y \ge 0} \min_{|y_i| > 0} \frac{(\mathcal{B}|y|^{[m-1]})_i}{|y_i|} \ge \min_{|y_i| > 0} \frac{(\mathcal{B}|y|^{[m-1]})_i}{|y_i|} \ge |\beta|.$$

Then

$$\rho_Z(\mathcal{B}) \ge \rho_Z(|\mathcal{A}|).$$

Lemma 2.3 Let $\{A_k\}$ be a sequence of nonnegative, weakly symmetric tensors of order m and dimension n, and $A_k - A_{k+1}$ be nonnegative for each positive integer k. Then

$$\lim_{k\to\infty} \rho_Z(\mathcal{A}_k) = \rho_Z \Big(\lim_{k\to\infty} \mathcal{A}_k\Big).$$

Proof Let $A = \lim_{k \to \infty} A_k$. Since $A_k - A_{k+1}$ is nonnegative, by Lemma 2.2, we know that $\{\rho_Z(A_k)\}$ is a monotone decreasing sequence with a lower bound $\rho_Z(A)$. So $\lim_{k \to \infty} A_k$ exists and

$$\lambda = \lim_{k \to \infty} \rho_Z(\mathcal{A}_k) \ge \rho_Z(\mathcal{A}).$$

Since $\{A_k\}$ is nonnegative, weakly symmetric, then there exists a nonnegative vector $x^{(k)}$ such that $A_k(x^{(k)})^{m-1} = \rho_Z(A_k)x^{(k)}$ and $(x^{(k)})^Tx^{(k)} = 1$. Then $\{x^{(k)}\}$ is a bounded sequence, it has a convergent subsequence $\{y_t\}$. Suppose that $y = \lim_{k \to \infty} y_t$. By $A_k y_t^{m-1} = \rho_Z(A_k)y_t$, we get $Ay^{m-1} = \lambda y$. So λ is an eigenvalue of A. Since $\lambda \leq \rho_Z(A)$, we have $\rho_Z(A) = \lambda$.

3 The Z-spectral radius of tensors and hypergraphs

In this section, let $r_i(A) = \sum_{i_2,...,i_m=1}^n |a_{ii_2...i_m}| - |a_{ii...i}|$, we give some bounds on the *Z*-spectral radius of tensors and hypergraphs.

Theorem 3.1 Let A be weakly symmetric nonnegative tensors of order m and dimension n. Then

$$\rho_Z(\mathcal{A}) \leq \max_{a_{i_1 \cdots i_m} \neq 0} \left\{ \prod_{j=1}^m r_{i_j}^{\frac{1}{m}}(\mathcal{A}) \right\}.$$

Proof Case 1. If A is irreducible, by Lemma 2.1, let $u = (u_i)$ be the positive eigenvector associated with the largest Z-eigenvalues $\rho_Z(A)$ of A. Then

$$\mathcal{A}u^{m-1} = \rho_7(\mathcal{A})u$$
.

Let $u_{\alpha} = \max\{u_{i_1} \cdots u_{i_m} : a_{i_1 \cdots i_m} \neq 0, 1 \leq i_1, \dots, i_m \leq n\}$, then

$$\rho_{Z}(\mathcal{A})u_{i}^{2} = \sum_{i_{2},\dots,i_{m}=1}^{n} a_{ii_{2}\dots i_{m}} u_{i}u_{i_{2}} \cdots u_{i_{m}}$$

$$= \sum_{a_{ii_{2}\dots i_{k}}\neq 0} a_{ii_{2}\dots i_{k}} u_{i}u_{i_{2}} \cdots u_{i_{m}}$$

$$\leq r_{i}(\mathcal{A})u_{\alpha}.$$
(2)

Suppose that $u_{\alpha} = u_{j_1} \cdots u_{j_m}$. Then, from (2), we can get

$$\rho_{Z}(\mathcal{A})u_{j_{1}}^{2} \leq r_{j_{1}}(\mathcal{A})u_{\alpha},$$

$$\vdots$$

$$\rho_{Z}(\mathcal{A})u_{i_{m}}^{2} \leq r_{i_{m}}(\mathcal{A})u_{\alpha}.$$

Then, by $u_{\alpha}^m \leq u_{\alpha}^2$, we have

$$\prod_{l=1}^{m} \rho_Z^m(\mathcal{A}) u_{j_l}^2 \le u_\alpha^m \prod_{l=1}^{m} r_{i_l}(\mathcal{A}) \le u_\alpha^2 \prod_{l=1}^{m} r_{i_l}(\mathcal{A}).$$

Therefore,

$$\rho_Z(\mathcal{A}) \leq \max_{a_{i_1 \dots i_m \neq 0}} \left\{ \prod_{i=1}^m r_{i_j}^{\frac{1}{m}}(\mathcal{A}) \right\}.$$

Case 2. If \mathcal{A} is reducible. Let $\mathcal{T}=(t_{i_1i_2\cdots i_m})$, $t_{i_1i_2\cdots i_m}=1$ for all $1\leq i_1,i_2,\ldots,i_m\leq n$. Then $\mathcal{A}+\epsilon\mathcal{T}$ is an irreducible nonnegative tensor for any chosen positive real number ϵ . Now we substitute $\mathcal{A}+\epsilon\mathcal{T}$ for \mathcal{A} , respectively, in the previous case. When $\epsilon\to 0$, the result follows by the continuity of $\rho_Z(\mathcal{A}+\epsilon\mathcal{T})$.

By Theorem 3.1, a bound on the Z-spectral radius of a uniform hypergraph is obtained, we also compare the bound with the result in (1).

Theorem 3.2 Let \mathcal{H} be a k-uniform hypergraph on n vertices with the degree sequence $\Delta = d_1 \geq \cdots \geq d_n = \delta$. Then

$$\rho_Z(\mathcal{H}) \le \max_{\{i_1,\dots,i_k\} \in E(\mathcal{H})} \left\{ \prod_{i=1}^k d_{i_j}^{\frac{1}{k}}(\mathcal{A}) \right\}. \tag{3}$$

Proof Case 1. $\mathcal{A}(\mathcal{H})$ is irreducible. In this case, by Lemma 2.1, there exists a positive eigenvector corresponding to the spectral radius $\rho_Z(\mathcal{H})$. Then, by Theorem 3.1, we have

$$\rho_Z(\mathcal{H}) \leq \max_{\{i_1,\dots,i_k\} \in E(H)} \left\{ \prod_{i=1}^k d_{i_j}^{\frac{1}{k}}(\mathcal{A}) \right\}.$$

Case 2. If $\mathcal{A}(\mathcal{H})$ is reducible. Let $\mathcal{T} = (t_{i_1 i_2 \cdots i_k})$, $t_{i_1 i_2 \cdots i_k} = 1$, for all $1 \leq i_1, i_2, \dots, i_k \leq n$. Then $\mathcal{A}(\mathcal{H}) + \epsilon \mathcal{T}$ is an irreducible nonnegative tensor for any chosen positive real number ϵ . Now we substitute $\mathcal{A}(\mathcal{H}) + \epsilon \mathcal{T}$ for $\mathcal{A}(\mathcal{H})$, respectively, in the previous case. When $\epsilon \to 0$, the result follows by the continuity of $\rho_Z(\mathcal{A}(\mathcal{H}) + \epsilon \mathcal{T})$.

Remark Obviously, we can get

$$\max_{\{i_1,\dots,i_k\}\in E(H)}\left\{\prod_{i=1}^k d_{i_j}^{\frac{1}{k}}(\mathcal{A})\right\}\leq \Delta.$$

That is to say, our bound in Theorem 3.2 is always better than the bound in (1).

Table 1 Upper bounds for the hypergraphs \mathcal{H}_1 and \mathcal{H}_2

	(1)	(3)
$\overline{\mathcal{H}_1}$	3	3 3
\mathcal{H}_2	3	3 3

We now show the efficiency of the new upper bound in Theorem 3.2 by the following examples.

Example 1 Consider 3-uniform hypergraph \mathcal{H}_1 with a vertex set $V(\mathcal{H}_1) = \{1, 2, 3, 4, 5, 6, 7\}$ and an edge set $E(\mathcal{H}_1) = \{e_1, e_2, e_3\}$, where $e_1 = \{1, 2, 3\}$, $e_2 = \{1, 4, 5\}$, $e_3 = \{1, 6, 7\}$.

Example 2 Consider 3-uniform hypergraph \mathcal{H}_2 with a vertex set $V(\mathcal{H}_2) = \{1, 2, 3, 4, 5, 6, 7\}$ and an edge set $E(\mathcal{H}_2) = \{e_1, e_2, e_3\}$, where $e_1 = \{1, 6, 7\}$, $e_2 = \{2, 6, 7\}$, $e_3 = \{3, 6, 7\}$.

From Table 1, we can find that bound (3) is always better than (1).

4 Conclusion

In this paper, we get a new bound for the Z-spectral radius of tensors. As applications, in terms of the degree sequence d_i , we obtain a new bound for the Z-spectral radius of hypergraphs, which is always better than the bound in [8]. We list two examples to show the efficiency of our new bound.

Acknowledgements

Wu is supported by the Research Center for Qianbei Culture of Guizhou Higher Education Humanistic and Social Science Research Base Foundation: Kelaofolk Mathematical Investigation and Cultural Inheritance [2015]D114]. He is supported by the Science and Technology Foundation of Guizhou Province (Qian ke he Ji Chu [2016]1161); Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2016]255); the Doctoral Scientific Research Foundation of Zunyi Normal College (BS[2015]09); High-level Innovative Talents of Guizhou Province (Zun Ke He Ren Cai [2017]8). Liu is supported by the National Science Foundation of China (71461027); Science and Technology Talent Training Object of Guizhou Province Outstanding Youth (Qian ke he ren zi [2015]06); Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2014]295); 2013, 2014, and 2015 Zunyi 15851 Talents Elite Project funding; Zhunyi Innovative Talent Team (Zunyi KH (2015)38). Tian is supported by Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2015]2451); Science and Technology Foundation of Guizhou Province (Qian ke he J zi [2015]2147).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 December 2017 Accepted: 3 April 2018 Published online: 06 April 2018

Reference

- 1. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
- 2. Qi, L.: Eigenvalues and invariants of tensor. J. Math. Anal. Appl. 325, 1363–1377 (2007)
- Yang, Y., Yang, Q.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)
- 4. Yang, Y., Yang, Q.: Further results for Perron–Frobenius theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32, 1236–1250 (2011)
- 5. Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)
- 6. He, J., Huang, T.Z.: Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110–114 (2014)
- 7. Li, W., Liu, D.: Z-Eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182–199 (2015)
- Xie, J., Chang, A.: On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. Linear Algebra Appl. 439, 2195–2204 (2013)

- 9. Bu, C., Jin, X., Li, H., Deng, C.: Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl. **512**, 234–248 (2017)
- Chang, K.C., Zhang, T., Pearson, K.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)
- 11. Chang, K.C., Zhang, T., Pearson, K.: Some variational principles for *Z*-eigenvalues of nonnegative tensors. Linear Algebra Appl. **438**, 4166–4182 (2013)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com