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Abstract
In this paper, we introduce a new type λ-Bernstein operators with parameter
λ ∈ [–1, 1], we investigate a Korovkin type approximation theorem, establish a local
approximation theorem, give a convergence theorem for the Lipschitz continuous
functions, we also obtain a Voronovskaja-type asymptotic formula. Finally, we give
some graphs and numerical examples to show the convergence of Bn,λ(f ; x) to f (x),
and we see that in some cases the errors are smaller than Bn(f ) to f .
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1 Introduction
In 1912, Bernstein [1] proposed the famous polynomials called nowadays Bernstein poly-
nomials to prove the Weierstrass approximation theorem as follows:

Bn(f ; x) =
n∑

k=0

f
(

k
n

)
bn,k(x), (1)

where x ∈ [0, 1], n = 1, 2, . . . , and Bernstein basis functions bn,k(x) are defined as:

bn,k(x) =

(
n
k

)
xk(1 – x)n–k . (2)

Based on this, there are many papers about Bernstein type operators [2–9]. In 2010, Ye et
al. [10] defined new Bézier bases with shape parameter λ by

⎧
⎪⎪⎨

⎪⎪⎩

b̃n,0(λ; x) = bn,0(x) – λ
n+1 bn+1,1(x),

b̃n,i(λ; x) = bn,i(x) + λ( n–2i+1
n2–1 bn+1,i(x) – n–2i–1

n2–1 bn+1,i+1(x)) (1 ≤ i ≤ n – 1),

b̃n,n(λ; x) = bn,n(x) – λ
n+1 bn+1,n(x),

(3)

where λ ∈ [–1, 1]. When λ = 0, they reduce to (2). It must be pointed out that we have
more modeling flexibility when adding the shape parameter λ.
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In this paper, we introduce the new λ-Bernstein operators,

Bn,λ(f ; x) =
n∑

k=0

b̃n,k(λ; x)f
(

k
n

)
, (4)

where b̃n,k(λ; x) (k = 0, 1, . . . , n) are defined in (3) and λ ∈ [–1, 1].
This paper is organized as follows: In the following section, we estimate the moments

and central moments of these operators (4). In Sect. 3, we investigate a Korovkin approx-
imation theorem, establish a local approximation theorem, give a convergence theorem
for the Lipschitz continuous functions, and obtain a Voronovskaja-type asymptotic for-
mula. In Sect. 4, we give some graphs and numerical examples to show the convergence
of Bn,λ(f ; x) to f (x) with different parameters.

2 Some preliminary results
Lemma 2.1 For λ-Bernstein operators, we have the following equalities:

Bn,λ(1; x) = 1; (5)

Bn,λ(t; x) = x +
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ; (6)

Bn,λ
(
t2; x

)
= x2 +

x(1 – x)
n

+ λ

[
2x – 4x2 + 2xn+1

n(n – 1)
+

xn+1 + (1 – x)n+1 – 1
n2(n – 1)

]
; (7)

Bn,λ
(
t3; x

)
= x3 +

3x2(1 – x)
n

+
2x3 – 3x2 + x

n2 + λ

[
–6x3 + 6xn+1

n2 +
3x2 – 3xn+1

n(n – 1)

+
–9x2 + 9xn+1

n2(n – 1)
+

–4x + 4xn+1

n3(n – 1)
+

(1 – xn+1 – (1 – x)n+1)(n + 3)
n3(n2 – 1)

]
; (8)

Bn,λ
(
t4; x

)
= x4 +

6(x3 – x4)
n

+
7x2 – 18x3 + 11x4

n2 +
x – 7x2 + 12x3 – 6x4

n3

+
[

6x2 – 2x3 – 8x4 + 4xn+1

n2 +
–x2 – 32x3 + 16x4 + 17xn+1

n3 +
x – xn+1

n4

+
7x2 – 7xn+1

n2(n – 1)
+

x – 23x2 + 22xn+1

n3(n – 1)
+

(1 – x)n+1 + x – 1
n4(n – 1)

]
λ. (9)

Proof From (4), it is easy to prove
∑n

k=0 b̃n,k(λ; x) = 1, then we can obtain (5). Next,

Bn,λ(t; x)

=
n∑

k=0

k
n

b̃n,k(λ; x)

=
n–1∑

k=0

k
n

[
bn,k(x) + λ

(
n – 2k + 1

n2 – 1
bn+1,k(x) –

n – 2k – 1
n2 – 1

bn+1,k+1(x)
)]

+ bn,n(x) –
λ

n + 1
bn+1,n(x)

=
n∑

k=0

k
n

bn,k(x) + λ

( n∑

k=0

k
n

n – 2k + 1
n2 – 1

bn+1,k(x) –
n–1∑

k=1

k
n

n – 2k – 1
n2 – 1

bn+1,k+1(x)

)
,
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as is well known, the Bernstein operators (1) preserve linear functions, that is to say, Bn(at +
b; x) = ax + b. We denote the latter two parts in the bracket of the last formula by �1(n; x)
and �2(n; x), then we have

Bn,λ(t; x) = x + λ
(�1(n; x) + �2(n; x)

)
. (10)

Now, we will compute �1(n; x) and �2(n; x),

�1(n; x) =
n∑

k=0

k
n

n – 2k + 1
n2 – 1

bn+1,k(x)

=
1

n – 1

n∑

k=0

k
n

bn+1,k(x) –
2

n2 – 1

n∑

k=0

k2

n
bn+1,k(x)

=
(n + 1)x
n(n – 1)

n–1∑

k=0

bn,k(x) –
2x2

n – 1

n–2∑

k=0

bn–1,k(x) –
2x

n(n – 1)

n–1∑

k=0

bn,k(x)

=
(n + 1)x
n(n – 1)

(
1 – xn) –

2x2

n – 1
(
1 – xn–1) –

2x
n(n – 1)

(
1 – xn)

=
x
n

–
2x2

n – 1
+

xn+1

n
+

2xn+1

n(n – 1)
, (11)

and

�2(n; x) = –
n–1∑

k=1

k
n

n – 2k – 1
n2 – 1

bn+1,k+1(x)

= –
x
n

n–1∑

k=1

bn,k(x) +
1

n(n + 1)

n–1∑

k=1

bn+1,k+1(x) +
2x2

n – 1

n–2∑

k=0

bn–1,k(x)

–
2x

n(n – 1)

n–1∑

k=1

bn,k(x) +
2

n(n2 – 1)

n–1∑

k=1

bn+1,k+1(x)

= –
x[1 – (1 – x)n – xn]

n
+

[1 – (1 – x)n+1 – (n + 1)x(1 – x)n – xn+1]
n(n + 1)

+
2x2(1 – xn–1)

n – 1
–

2x[1 – (1 – x)n – xn]
n(n – 1)

+
2[1 – (1 – x)n+1 – (n + 1)x(1 – x)n – xn+1]

n(n2 – 1)

=
2x2 – x – xn+1

n – 1
+

1 – (1 – x)n+1 – x
n(n – 1)

. (12)

Combining (10), (11) and (12), we have

Bn,λ(t; x) = x +
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ.
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Hence, (6) is proved. Finally, by (4), we have

Bn,λ
(
t2; x

)

=
n∑

k=0

k2

n2 b̃n,k(λ; x)

=
n–1∑

k=0

k2

n2

[
bn,k(x) + λ

(
n – 2k + 1

n2 – 1
bn+1,k(x) –

n – 2k – 1
n2 – 1

bn+1,k+1(x)
)]

+ bn,n(x) –
λ

n + 1
bn+1,n(x)

=
n∑

k=0

k2

n2 bn,k(x) + λ

( n∑

k=0

k2

n2
n – 2k + 1

n2 – 1
bn+1,k(x) –

n–1∑

k=1

k2

n2
n – 2k – 1

n2 – 1
bn+1,k+1(x)

)
,

since Bn(t2; x) =
∑n

k=0
k2

n2 bn,k(x) = x2 + x(1–x)
n , and we denote the latter two parts in the

bracket of last formula by �3(n; x) and �4(n; x), then we have

Bn,λ
(
t2; x

)
= x2 +

x(1 – x)
n

+ λ
(�3(n; x) + �4(n; x)

)
. (13)

On the one hand,

�3(n; x) =
n∑

k=0

k2

n2
n – 2k + 1

n2 – 1
bn+1,k(x)

=
1

n – 1

n∑

k=0

k2

n2 bn+1,k(x) –
2

n2 – 1

n∑

k=0

k3

n2 bn+1,k(x)

=
(n + 1)x2

n(n – 1)

n–2∑

k=0

bn–1,k(x) +
(n + 1)x

n2(n – 1)

n–1∑

k=0

bn,k(x) –
2x3

n

n–3∑

k=0

bn–2,k(x)

–
6x2

n(n – 1)

n–2∑

k=0

bn–1,k(x) –
2x

n2(n – 1)

n–1∑

k=0

bn,k(x)

=
(n + 1)x2(1 – xn–1)

n(n – 1)
+

(n + 1)x(1 – xn)
n2(n – 1)

–
2x3(1 – xn–2)

n

–
6x2(1 – xn–1)

n(n – 1)
–

2x(1 – xn)
n2(n – 1)

=
2xn+1 – 2x3

n
+

x2 – xn+1

n – 1
+

x – 5x2 + 4xn+1

n(n – 1)
+

xn+1 – x
n2(n – 1)

. (14)

On the other hand,

�4(n; x) = –
n–1∑

k=1

k2

n2
n – 2k – 1

n2 – 1
bn+1,k+1(x)

= –
1

n + 1

n–1∑

k=1

k2

n2 bn+1,k+1(x) +
2

n2 – 1

n–1∑

k=1

k3

n2 bn+1,k+1(x)
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= –
x2

n

n–2∑

k=0

bn–1,k(x) +
x
n2

n–1∑

k=1

bn,k(x) –
1

n2(n + 1)

n–1∑

k=1

bn+1,k+1(x)

+
2x3

n

n–3∑

k=0

bn–2,k(x) +
2x

n2(n – 1)

n–1∑

k=1

bn,k(x) –
2

n2(n2 – 1)

n–1∑

k=1

bn+1,k+1(x)

= –
x2(1 – xn–1)

n
+

x[1 – (1 – x)n – xn]
n2

–
1 – (1 – x)n+1 – (n + 1)x(1 – x)n – xn+1

n2(n + 1)

+
2x3(1 – xn–2)

n
+

2x[1 – (1 – x)n – xn]
n2(n – 1)

–
2[1 – (1 – x)n+1 – (n + 1)x(1 – x)n – xn+1]

n2(n2 – 1)

=
(2x – 1)x2

n
+

x
n(n – 1)

+
x – 1 + (1 – x)n+1

n2(n – 1)
–

xn+1

n – 1
. (15)

Combining (13), (14) and (15), we obtain

Bn,λ
(
t2; x

)
= x2 +

x(1 – x)
n

+ λ

[
2x – 4x2 + 2xn+1

n(n – 1)
+

xn+1 + (1 – x)n+1 – 1
n2(n – 1)

]
,

therefore, we get (7). Thus, Lemma 2.1 is proved.
Similarly, we can obtain (8) and (9) by some computations, here we omit these. �

Corollary 2.2 For fixed x ∈ [0, 1] and λ ∈ [–1, 1], using Lemma 2.1 and by some easy com-
putations, we have

Bn,λ(t – x; x)

=
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ ≤ 1 + 2x + xn+1 + (1 – x)n+1

n(n – 1)
:= φn(x); (16)

Bn,λ
(
(t – x)2; x

)

=
x(1 – x)

n
+

[
2x(1 – x)n+1 + 2xn+1 – 2xn+2

n(n – 1)
+

xn+1 + (1 – x)n+1 – 1
n2(n – 1)

]
λ

≤ x(1 – x)
n

+
2x(1 – x)n+1 + 2xn+1 + 2xn+2

n(n – 1)
+

xn+1 + (1 – x)n+1 + 1
n2(n – 1)

:= ψn(x); (17)

lim
n→∞ nBn,λ(t – x; x) = 0; (18)

lim
n→∞ nBn,λ

(
(t – x)2; x

)
= x(1 – x), x ∈ (0, 1); (19)

lim
n→∞ n2Bn,λ

(
(t – x)4; x

)
= 3x2 – 6x3 + 3x4 + 6

(
x2 – x3)λ, x ∈ (0, 1). (20)

Remark 2.3 For λ ∈ [–1, 1], x ∈ [0, 1], λ-Bernstein operators possess the endpoint inter-
polation property, that is,

Bn,λ(f ; 0) = f (0), Bn,λ(f ; 1) = f (1). (21)



Cai et al. Journal of Inequalities and Applications  (2018) 2018:61 Page 6 of 11

Figure 1 The graphs of b̃3,k(λ; x) with different values of λ (left) and their corresponding B3,λ(f ; x) (right)

Proof We can obtain (21) easily by using the definition of λ-Bernstein operators (4) and

b̃n,k(λ; 0) =

⎧
⎨

⎩
0 (k �= 0),

1 (k = 0),
b̃n,k(λ; 1) =

⎧
⎨

⎩
0 (k �= n),

1 (k = n).

Remark 2.3 is proved. �

Example 2.4 The graphs of b̃3,k(λ; x) with λ = –1, 0, –1 are shown in Fig. 1(left). The cor-
responding B3,λ(f ; x) with f (x) = 1 – cos(4ex) are shown in Fig. 1(right). The graphs show
the λ-Bernstein operators’ endpoint interpolation property, which is based on the inter-
polation property of b̃n,k(λ, x).

3 Convergence properties
As we know, the space C[0, 1] of all continuous functions on [0, 1] is a Banach space with
sup-norm ‖f ‖ := supx∈[0,1] |f (x)|. Now, we give a Korovkin type approximation theorem for
Bn,λ(f ; x).

Theorem 3.1 For f ∈ C[0, 1], λ ∈ [–1, 1], λ-Bernstein operators Bn,λ(f ; x) converge uni-
formly to f on [0, 1].

Proof By the Korovkin theorem it suffices to show that

lim
n→∞

∥∥Bn,λ
(
ti; x

)
– xi∥∥ = 0, i = 0, 1, 2.

We can obtain these three conditions easily by (5), (6) and (7) of Lemma 2.1. Thus the
proof is completed. �

The Peetre K-functional is defined by K2(f ; δ) := infg∈C2[0,1]{‖f – g‖ + δ‖g ′′‖}, where δ > 0
and C2[0, 1] := {g ∈ C[0, 1] : g ′, g ′′ ∈ C[0, 1]}. By [11], there exists an absolute constant C > 0
such that

K2(f ; δ) ≤ Cω2(f ;
√

δ), (22)
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where ω2(f ; δ) := sup0<h≤δ supx,x+h,x+2h∈[0,1] |f (x + 2h) – 2f (x + h) + f (x)| is the second order
modulus of smoothness of f ∈ C[0, 1]. We also denote the usual modulus of continuity of
f ∈ C[0, 1] by ω(f ; δ) := sup0<h≤δ supx,x+h∈[0,1] |f (x + h) – f (x)|.

Next, we give a direct local approximation theorem for the operators Bn,λ(f ; x).

Theorem 3.2 For f ∈ C[0, 1], λ ∈ [–1, 1], we have

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ Cω2

(
f ;

√
φn(x) + ψn(x)/2

)
+ ω

(
f ;φn(x)

)
, (23)

where C is a positive constant, φn(x) and ψn(x) are defined in (16) and (17).

Proof We define the auxiliary operators

B̃n,λ(f ; x) = Bn,λ(f ; x) – f
(

x +
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ

)
+ f (x). (24)

From (5) and (6), we know that the operators B̃n,λ(f ; x) are linear and preserve the linear
functions:

B̃n,λ(t – x; x) = 0. (25)

Let g ∈ C2[0, 1], by Taylor’s expansion,

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du,

and (25), we get

B̃n,λ(g; x) = g(x) + B̃n,λ

(∫ t

x
(t – u)g ′′(u) du; x

)
.

Hence, by (24) and (17), we have

∣∣̃Bn,λ(g; x) – g(x)
∣∣

≤
∣∣∣∣
∫ x+ 1–2x+xn+1–(1–x)n+1

n(n–1) λ

x

(
x +

1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ – u

)
g ′′(u) du

∣∣∣∣

+
∣∣∣∣Bn,λ

(∫ t

x
(t – u)g ′′(u) du; x

)∣∣∣∣

≤
∫ x+ 1–2x+xn+1–(1–x)n+1

n(n–1) λ

x

∣∣∣∣x +
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ – u

∣∣∣∣
∣∣g ′′(u)

∣∣du

+ Bn,λ

(∣∣∣∣
∫ t

x
(t – u)

∣∣g ′′(u)
∣∣du

∣∣∣∣; x
)

≤
[

Bn,λ
(
(t – x)2; x

)
+

1 + 2x + xn+1 + (1 – x)n+1

n(n – 1)

]∥∥g ′′∥∥

≤ [
φn(x) + ψn(x)

]∥∥g ′′∥∥.
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On the other hand, by (24), (5) and (4), we have

∣∣̃Bn,λ(f ; x)
∣∣ ≤ ∣∣Bn,λ(f ; x)

∣∣ + 2‖f ‖ ≤ ‖f ‖Bn,λ(1; x) + 2‖f ‖ ≤ 3‖f ‖. (26)

Now, (24) and (26) imply

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ ∣∣̃Bn,λ(f – g; x) – (f – g)(x)

∣∣ +
∣∣̃Bn,λ(g; x) – g(x)

∣∣

+
∣∣∣∣f

(
x +

1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
λ

)
– f (x)

∣∣∣∣

≤ 4‖f – g‖ +
[
φn(x) + ψn(x)

]∥∥g ′′∥∥ + ω
(
f ;φn(x)

)
.

Hence, taking infimum on the right hand side over all g ∈ C2[0, 1], we get

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ 4K2

(
f ;

φn(x) + ψn(x)
4

)
+ ω

(
f ;φn(x)

)
.

By (22), we have

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ Cω2

(
f ;

√
φn(x) + ψn(x)/2

)
+ ω

(
f ;φn(x)

)
,

where φn(x) and ψn(x) are defined in (16) and (17). This completes the proof of Theo-
rem 3.2. �

Remark 3.3 For any x ∈ [0, 1], we have limn→∞ φn(x) = 0 and limn→∞ ψn(x) = 0, these give
us a rate of pointwise convergence of the operators Bn,λ(f ; x) to f (x).

Now, we study the rate of convergence of the operators Bn,λ(f ; x) with the help of func-
tions of Lipschitz class LipM(α), where M > 0 and 0 < α ≤ 1. A function f belongs to
LipM(α) if

∣∣f (y) – f (x)
∣∣ ≤ M|y – x|α (x, y ∈R). (27)

We have the following theorem.

Theorem 3.4 Let f ∈ LipM(α), x ∈ [0, 1] and λ ∈ [–1, 1], then we have

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ M

[
ψn(x)

] α
2 ,

where ψn(x) is defined in (17).

Proof Since Bn,λ(f ; x) are linear positive operators and f ∈ LipM(α), we have

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ Bn,λ

(∣∣f (t) – f (x)
∣∣; x

)

=
n∑

k=0

b̃n,k(λ; x)
∣∣∣∣f

(
k
n

)
– f (x)

∣∣∣∣
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≤ M
n∑

k=0

b̃n,k(λ; x)
∣∣∣∣
k
n

– x
∣∣∣∣
α

≤ M
n∑

k=0

[
b̃n,k(λ; x)

(
k
n

– x
)2] α

2 [
b̃n,k(λ; x)

] 2–α
2 .

Applying Hölder’s inequality for sums, we obtain

∣∣Bn,λ(f ; x) – f (x)
∣∣ ≤ M

[ n∑

k=0

b̃n,k(λ; x)
(

k
n

– x
)2

] α
2
[ n∑

k=0

b̃n,k(λ; x)

] 2–α
2

= M
[
Bn,λ

(
(t – x)2; x

)] α
2 .

Thus, Theorem 3.4 is proved. �

Finally, we give a Voronovskaja asymptotic formula for Bn,λ(f ; x).

Theorem 3.5 Let f (x) be bounded on [0, 1]. Then, for any x ∈ (0, 1) at which f ′′(x) exists,
λ ∈ [–1, 1], we have

lim
n→∞ n

[
Bn,λ(f ; x) – f (x)

]
=

f ′′(x)
2

[
x(1 – x)

]
. (28)

Proof Let x ∈ [0, 1] be fixed. By the Taylor formula, we may write

f (t) = f (x) + f ′(x)(t – x) +
1
2

f ′′(x)(t – x)2 + r(t; x)(t – x)2, (29)

where r(t; x) is the Peano form of the remainder, r(t; x) ∈ C[0, 1], using L’Hopital’s rule, we
have

lim
t→x

r(t; x) = lim
t→x

f (t) – f (x) – f ′(x)(t – x) – 1
2 f ′′(x)(t – x)2

(t – x)2

= lim
t→x

f ′(t) – f ′(x) – f ′′(x)(t – x)
2(t – x)

= lim
t→x

f ′′(t) – f ′′(x)
2

= 0.

Applying Bn,λ(f ; x) to (29), we obtain

lim
n→∞ n

[
Bn,λ(f ; x) – f (x)

]
= f ′(x) lim

n→∞ nBn,λ(t – x; x) +
f ′′(x)

2
lim

n→∞ nBn,λ
(
(t – x)2; x

)

+ lim
n→∞ nBn,λ

(
r(t; x)(t – x)2; x

)
. (30)

By the Cauchy–Schwarz inequality, we have

Bn,λ
(
r(t; x)(t – x)2; x

) ≤
√

Bn,λ
(
r2(t; x); x

)√
Bn,λ

(
(t – x)4; x

)
, (31)

since r2(x; x) = 0, then we can obtain

lim
n→∞ nBn,λ

(
r(t; x)(t – x)2; x

)
= 0 (32)
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by (31) and (20). Finally, using (18), (19), (32) and (30), we get

lim
n→∞ n

[
Bn,λ(f ; x) – f (x)

]
=

f ′′(x)
2

[
x(1 – x)

]
.

Theorem 3.5 is proved. �

4 Graphical and numerical analysis
In this section, we give several graphs and numerical examples to show the convergence
of Bn,λ(f ; x) to f (x) with different values of λ and n.

Let f (x) = 1 – cos(4ex), the graphs of Bn,–1(f ; x) and Bn,1(f ; x) with different values of n are
shown in Figs. 2 and 3. In Table 1, we give the errors of the approximation of Bn,λ(f ; x) to
f (x). We can see from Table 1 that in some special cases (such as n = 10, 20 and λ > 0), the
errors of ‖f – Bn,λ(f )‖∞ are smaller than ‖f – Bn,0(f )‖∞ (where Bn,0(f ; x) are classical Bern-
stein operators). Figure 4 shows the graphs of Bn,λ(f ; x) with n = 10 and different values
of λ.

Figure 2 The graphs of Bn,–1(f ; x) with different
values of n

Figure 3 The graphs of Bn,1(f ; x) with different
values of n

Table 1 The errors of the approximation of Bn,λ(f ; x) to f (x) with different values of n and λ

λ ‖f – Bn,λ(f )‖∞
n = 10 n = 20 n = 50 n = 100 n = 150

–1 0.437813 0.242921 0.104883 0.054106 0.036478
–0.5 0.430221 0.241337 0.104880 0.054136 0.036496
0 0.422857 0.239850 0.104884 0.054166 0.036513
0.5 0.415719 0.238458 0.104897 0.054196 0.036531
1 0.408808 0.237158 0.104918 0.054229 0.036550
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Figure 4 The graphs of B10,λ(f ; x) with different
values of λ
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