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Abstract
LetWv(x) = xIv(x)/Iv+1(x) with Iv be the modified Bessel functions of the first kind of
order v. In this paper, we prove the monotonicity of the function

x �→ (Wv(x) – p)2 – (2v + 2 – p)2

x2

on (0,∞) for different values of parameter p with v > –2. As applications, we deduce
some new Simpson–Spector-type inequalities forWv(x) and derive a new type of
bounds p + r

√
x2 + q2 (r > 0) forWv(x). In particular, we show that the upper bound

U(2)
v–1(x) forWv(x) is the minimum over all upper bounds {U(2)

p (x) : p≤ v – 1, v > –2},
where

U(2)
p (x) = p +

√
2v + 2 – p
v + 2

x2 + (2v + 2 – p)2,

and is not comparable with other sharpest upper bounds. We also find such type of
upper bounds for v – 1 < p <min{v + 1/2, 2v + 2} with v > –2 and for 2v + 2 < p <
v + 1/(2v + 5) with –2 < v < –3/2.
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1 Introduction
The modified Bessel functions of the first kind of order v, denoted by Iv(x), are a class of
particular solutions of the second-order differential equation [1, p. 77]

x2 d2y
dx2 + x

dy
dx

–
(
x2 + v2)y = 0, (1.1)

which is represented explicitly by the infinite series

Iv(x) =
∞∑

n=0

(x/2)2n+v

n!�(v + n + 1)
=

(x/2)v

�(v + 1)

∞∑

n=0

(x/2)2n

n!(v + 1)n
, x ∈R, v ∈R \ {–1, –2, . . .}, (1.2)
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where

(a)n = a(a + 1) · · · (a + n – 1) =
�(a + n)

�(a)
for n ∈N and (a)0 = 1

with a �= 0, –1, –2, . . . .
It is well known that the ratio Wv(x) = xIv(x)/Iv+1(x) plays an important role in the finite

elasticity [2, 3] and epidemiological models [4, 5]. It was proved in [2, Theorem 2] by
Simpson and Spector that Wv is strictly increasing and convex on (0,∞) for v ≥ 0, and the
inequality

Wv(x)2 – (2v + 1)Wv(x) –
(

x2 + v +
1
2

)
> 0 (1.3)

holds for x > 0 and v ≥ 0. For this, such an inequality similar to (1.3) was called Simpson–
Spector-type inequality for Wv(x) by Yang and Zheng [6, p. 2]. In [7, Proposition 5] Neu-
man presented a reversed version of (1.3):

Wv(x)2 – (2v + 1)Wv(x) –
(

x2 + v +
1
2

)
< v +

3
2

(1.4)

for x > 0 and v > –3/2. In 2007, Baricz and Neuman [8, Theorem 2.2] extended the range
of v from v ≥ 0 to v > –2 such that Wv is strictly increasing on (0,∞), and showed that the
inequality

Wv(x)2 – 2vWv(x) – x2 > 4(v + 1) (1.5)

holds for x > 0 and v > –2. Very recently, Yang and Zheng in [6] got the necessary and
sufficient conditions for the Simpson–Spector-type inequality Sp,v(x) < u or Sp,v(x) > l to
hold for x > 0 by establishing the monotonicity of Sp,v(x) in x ∈ (0,∞) with v > –3/2, where

Sp,v(x) = Wv(x)2 – 2pWv(x) – x2,

which actually answered an open problem recently posed by Hornik and Grün in [9]. Other
similar or equivalent inequalities involving the ratio Wv(x) can be found in [10, Eqs. (11)
and (16)], [11], [12, E1. (A.5)], [13], [14, Theorem 1.1], [15, Eqs. (22) and (61)], [9, 16–18]
and the references therein.

Motivated by these above-mentioned recent papers, the main aim of this present paper
is to prove the monotonicity of the function

Fp(x) =
(Wv(x) – p)2 – (2v + 2 – p)2

x2 (1.6)

on (0,∞) for v > –2. Our main result is stated as follows.

Theorem 1.1 For v > –2, let the function Fp be defined in (0,∞) by (1.6) and cv be defined
by

cv =
2v3 + 9v2 + 9v – 4

2v2 + 11v + 16
. (1.7)
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(i) If p ≥ v + 1/2 for v ≥ –3/2 or p ≥ cv for –2 < v < –3/2, then the function Fp is
increasing from (0,∞) onto ((2v + 2 – p)/(v + 2), 1).

(ii) If p ≤ v – 1, then Fp is decreasing from (0,∞) onto (1, (2v + 2 – p)/(v + 2)).
(iii) If v – 1 < p < v + 1/2, then there exists an x0 > 0 such that Fp is increasing on (0, x0),

and decreasing on (x0,∞). Consequently, it holds that for x > 0,

min

{
2v + 2 – p

v + 2
, 1

}
< Fp(x) < λp, (1.8)

where λp = Fp(x0), and x0 is a unique solution of the equation F ′
p(x) = 0 on (0,∞).

(iv) If v + 1/2 ≤ p < cv for –2 < v < –3/2, then we have

2v + 2 – p
v + 2

< Fp(x) < θp (1.9)

for x > 0, where θp = supx>0 Fp(x). The lower and upper bounds for Fp(x) are sharp.

The rest of this paper is organized as follows. In Sect. 2, some lemmas are listed. The
proof of Theorem 1.1 is presented in Sect. 3. In Sect. 4, as applications of Theorem 1.1,
some Simpson–Spector-type inequalities for Wv(x) are established in Sect. 4.1; in Sect. 4.2,
a new type of bounds p+r

√
x2 + q2 (r > 0) for Wv(x) for p < 2v+2 with v > –2 is established,

and a new Amos-type upper bound p +
√

x2 + q2 for –2 < v < –3/2 is presented; some
computable bounds for Wv(x) for v – 1 < p < min{v + 1/2, 2v + 2} with v > –2 and for 2v + 2 <
p < v + 1/(2v + 5) with –2 < v < –3/2 are found in Sect. 4.3.

2 Lemmas
To prove Theorem 1.1, we need some lemmas. The following lemma which comes from
[19, (3.5)] (see also [20]) is useful.

Lemma 2.1 Let Iv be the modified Bessel function of the first kind of order v, which is showed
by (1.2). Then we have

Iu(x)Iv(x) =
1

�(u + 1)�(v + 1)

∞∑

n=0

(u + v + n + 1)n

n!(u + 1)n(v + 1)n

(
x
2

)2n+u+v

. (2.1)

In particular, we have

Iv(x)2 =
1

�(v + 1)2

∞∑

n=0

(2v + n + 1)n

n!(v + 1)2
n

(
x
2

)2n+2v

. (2.2)

Lemma 2.2 ([21]) Let A(x) =
∑∞

k=0 akxk and B(x) =
∑∞

k=0 bkxk be two real power series
converging on (–r, r) for some r > 0 with bk > 0 for all k. If the sequence {ak/bk} is increasing
(or decreasing) for all k, then the function x �→ A(x)/B(x) is also increasing (or decreasing)
on (0, r).

Lemma 2.2 is a powerful tool to deal with the monotonicity of the ratio between two
power series. An improvement of Lemma 2.2 has been presented in [22, Theorem 2.1].
A similar monotonicity rule for the ratio of two Laplace transforms was established in [23,
Lemma 4] (see also [24]).
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Lemma 2.3 Let A(x) =
∑∞

k=0 akxk and B(x) =
∑∞

k=0 bkxk be two real power series converg-
ing on R with bk > 0 for all k. If, for certain m ∈ N, the non-constant sequence {ak/bk} is
increasing (or decreasing) for 0 ≤ k ≤ m and decreasing (or increasing) for k ≥ m, then
there is a unique x0 ∈ (0,∞) such that the function A/B is increasing (or decreasing) on
(0, x0) and decreasing (or increasing) on (x0,∞).

Lemma 2.3 first appeared in [25, Lemma 6.4] without giving the details of the proof. Two
strict proofs were given in [22] and [26]. Another useful tool associated with Lemma 2.3 is
the sign rule of a class of special series or polynomials, see, for example, [25, Lemma 6.3],
[27, Lemma 7], [28]).

Lemma 2.4 ([29, Problems 85, 94]) If two given sequences {un}n≥0 and {vn}n≥0 satisfy the
following conditions:

vn > 0,
∞∑

n=0

vntn converges for all values of t, and lim
n→∞

un

vn
= s;

then
∑∞

n=0 untn must be convergent for all values of t too, and

lim
t→∞

∑∞
n=0 untn

∑∞
n=0 vntn = s.

3 Proof of Theorem 1.1
Now we are in a position to prove Theorem 1.1.

Proof Let us write Fp(x) as follows:

Fp(x) =
x2Iv(x)2 – 2pxIv(x)Iv+1(x) + 4(v + 1)(p – v – 1)Iv+1(x)2

x2Iv+1(x)2 :=
f1(x)
f2(x)

,

where

f1(x) = x2Iv(x)2 – 2pxIv(x)Iv+1(x) + 4(v + 1)(p – v – 1)Iv+1(x)2,

f2(x) = x2Iv+1(x)2.

Using formulas (2.1) and (2.2), we have

f1(x) =
1

�(v + 1)2

∞∑

n=0

[
4

(n + 2v + 1)n

n!(v + 1)2
n

– 4p
(n + 2v + 2)n

n!(v + 1)n+1(v + 1)n

+ 4(v + 1)(p – v – 1)
(n + 2v + 3)n

n!(v + 1)2
n+1

](
x
2

)2n+2v+2

:=
4(x2/4)v+1

�(v + 1)2

∞∑

n=1

an

(
x2

4

)n

,

where

an = n
n2 + (5v – 2p + 4)n + (v + 1)(4v + 1) – p(2v + 1)

(2n + 2v + 1)(n + v + 1)(n + 2v + 2)
(n + 2v + 2)n

n!(v + 1)2
n

;
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and

f2(x) = x2Iv+1(x)2 =
1

�(v + 2)2 x2
∞∑

n=0

(n + 2v + 3)n

n!(v + 2)2
n

(
x
2

)2n+2v+2

:=
4(x2/4)v+1

�(v + 1)2

∞∑

n=1

bn

(
x2

4

)n

,

where

bn =
n

2n + 2v + 1
(n + 2v + 2)n

n!(v + 1)2
n

.

Therefore, Fp(x) can be written in the form of

Fp(x) =
4(x2/4)v+1

�(v+1)2
∑∞

n=1 an( x2

4 )n

4(x2/4)v+1

�(v+1)2
∑∞

n=1 bn( x2
4 )n

=
∑∞

n=0 an+1(x2/4)n
∑∞

n=0 bn+1(x2/4)n .

A direct computation yields

an

bn
= n

n2 + (5v – 2p + 4)n + (v + 1)(4v + 1) – p(2v + 1)
(2n + 2v + 1)(n + v + 1)(n + 2v + 2)

/ n
2n + 2v + 1

=
n2 + (5v – 2p + 4)n + (v + 1)(4v + 1) – p(2v + 1)

(n + 2v + 2)(n + v + 1)
; (3.1)

and from Lemma 2.4 we get

Fp(0) =
a1

b1
=

2v + 2 – p
v + 2

and Fp(∞) = lim
n→∞

an

bn
= 1. (3.2)

Therefore, to show the monotonicity of the ratio f1/f2, it suffices to observe the mono-
tonicity of the sequence {an/bn}n≥1. Since bn > 0 for n ≥ 1 and v > –2, we have

an+1

bn+1
–

an

bn
=

2n2 + 4(v + 1)n + v(2v + 3)
(n + 2v + 2)(n + 2v + 3)(n + v + 1)(n + v + 2)

[
p – gn(v)

]
, (3.3)

where

gn(v) =
(2v + 1)n2 + (4v2 + 4v – 1)n + (2v + 3)(v – 2)(v + 1)

2n2 + 4(v + 1)n + v(2v + 3)
,

gn+1(v) – gn(v) =
2(2v + 3)(n + v + 2)(n + 2v + 3)

[2n2 + 4(v + 1)n + v(2v + 3)][2n2 + 4(v + 2)n + (v + 2)(2v + 3)]
⎧
⎪⎪⎨

⎪⎪⎩

≥ 0 if v ≥ – 3
2 and n ≥ 1,

= 4(v+3)
2v2+11v+16 > 0 if – 2 < v < – 3

2 and n = 1,

< 0 if – 2 < v < – 3
2 and n ≥ 2.

(3.4)

This shows that the sequence {gn(v)}n≥1 is increasing if v ≥ –3/2, and increasing for n = 1, 2
then decreasing for n ≥ 2 if –2 < v < –3/2. Consequently, we deduce that for n ≥ 1,

v – 1 = g1(v) ≤ gn(v) < g∞(v) = v +
1
2

(3.5)
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if v ≥ –3/2 and

v – 1 = g1(v) < v +
1
2

= g∞(v) < gn(v) < g2(v) = cv (3.6)

if –2 < v < –3/2, where cv is given by (1.7).
Now we discuss the monotonicity of Fp by dividing it into two cases.
Case 1. v ≥ –3/2.
Subcase 1.1. p ≥ g∞(v) = v + 1/2. From relation (3.3) it is obtained that the sequence

{an/bn}n≥1 is increasing. By Lemma 2.2 it follows that the ratio f1/f2 is increasing on (0,∞).
Subcase 1.2. p ≤ g1(v) = v – 1. It is seen that the sequence {an/bn}n≥1 is decreasing, and

from Lemma 2.2 it follows that the ratio f1/f2 is decreasing on (0,∞).
Subcase 1.3. v – 1 < p < v + 1/2. Noting that the sequence {hn(v)}n≥1 = {p – gn(v)}n≥1 is

decreasing, and

h1(v) = p – g1(v) = p – (v – 1) > 0,

h∞(v) < p – g∞(v) = p –
(

v +
1
2

)
< 0,

it is seen that there exists n0 > 1 such that hn(v) > 0 for 1 ≤ n ≤ n0, and hn(v) < 0 for n ≥
n0. This implies that {an/bn} is increasing for 1 ≤ n ≤ n0 and decreasing for n ≥ n0. By
Lemma 2.3 it is derived that there is x0 > 0 such that the ratio f1/f2 is increasing on (0, x0)
and decreasing on (x0,∞). Consequently, we have

min

{
2v + 2 – p

v + 2
, 1

}
= min

{
lim
x→0

f1(x)
f2(x)

, lim
x→∞

f1(x)
f2(x)

}
≤ f1(x)

f2(x)
≤ f1(x0)

f2(x0)
(3.7)

for x > 0, that is, inequalities (1.8) hold.
Case 2. –2 < v < –3/2.
Subcase 2.1. p ≥ g2(v) = cv. In the same way, we get that the ratio f1/f2 is increasing on

(0,∞).
Subcase 2.2. p ≤ g1(v) = v–1. Similarly, we find that the ratio f1/f2 is decreasing on (0,∞).
Subcase 2.3. v – 1 = g1(v) < p < g∞(v) = v + 1/2. We have

a2

b2
–

a1

b1
=

p – (v – 1)
2(v + 2)(v + 3)

> 0,

and notice that gn(v) ≥ g∞(v) = v + 1/2 for n ≥ 2. Hence, we get that for n ≥ 2,

sgn

(
an+1

bn+1
–

an

bn

)
= sgn

(
p – gn(v)

) ≤ v +
1
2

–
(

v +
1
2

)
= 0.

This shows that the sequence {an/bn} is increasing for n = 1, 2 and decreasing for n ≥ 2. By
Lemma 2.3 it is derived that there is x0 > 0 such that the ratio f1/f2 is increasing on (0, x0)
and decreasing on (x0,∞). Therefore, inequality (3.7) holds, which implies inequalities
(1.8).
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Subcase 2.4. v + 1/2 = g∞(v) ≤ p < g2(v) = cv. We easily check that a1/b1 – a1/b1 = 0, and
for n ≥ 2,

an

bn
–

a1

b1
=

n2 + (5v – 2p + 4)n + (v + 1)(4v + 1) – p(2v + 1)
(n + 2v + 2)(n + v + 1)

–
2v + 2 – p

v + 2

= (n – 1)
(n + v)p – nv – v2 + v + 2

(v + 2)(n + v + 1)(n + 2v + 2)

≥ (n – 1)
(n + v)(v + 1/2) – nv – v2 + v + 2

(v + 2)(n + v + 1)(n + 2v + 2)

=
1
2

(n – 1)
n + 3v + 4

(v + 2)(n + v + 1)(n + 2v + 2)
> 0.

This yields

Fp(x) =
∑∞

n=0 an+1(x2/4)n
∑∞

n=0 bn+1(x2/4)n >
∑∞

n=0(a1bn+1/b1)(x2/4)n
∑∞

n=0 bn+1(x2/4)n =
a1

b1
=

2v + 2 – p
v + 2

for x > 0. Since Fp(0) = a1/b1, we see that the inequality is sharp.
The continuity of the function Fp(x) on (0,∞) together with Fp(0) = a1/b1 and Fp(∞) = 1

means that Fp(x) is bounded on (0,∞), so supx>0 Fp(x) exists, which completes the proof.�

Remark 3.1 In Subcase 2.4: v + 1/2 < p < cv for –2 < v < –3/2, we see that the sequence
{hn(v)}n≥2 = {p – gn(v)}n≥2 is increasing, and

h2(v) = p – g2(v) = p – cv < 0,

h∞(v) < p – g∞(v) = p –
(

v +
1
2

)
> 0,

which implies that there exists n1 > 2 such that hn(v) < 0 for 2 ≤ n ≤ n1 and hn(v) > 0 for
n ≥ n1. This indicates that the sequence {an/bn} is decreasing for 2 ≤ n ≤ n1 and increasing
for n ≥ n1. Since

a2

b2
–

a1

b1
=

p – (v – 1)
2(v + 2)(v + 3)

> 0,

we find that the sequence {an/bn} is increasing for n = 1, 2, decreasing for 2 ≤ n ≤ n1, and
increasing for n ≥ n1.

Clearly, we are not able to describe the monotone pattern of f1/f2 by directly using Lem-
mas 2.2 and 2.3. We here guess that there are two x1, x2 with x2 > x1 > 0 such that f1/f2 is
increasing on (0, x1) ∪ (x2,∞) and decreasing on (x1, x2).

4 Some new type of bounds for Wv(x)
4.1 Simpson–Spector-type inequality for Wv(x)
It is clear that

Fp(x) < (>)c ⇐⇒ (
Wv(x) – p

)2 – (2v + 2 – p)2 < (>)cx2,

where the latter indeed offers some new Simpson–Spector-type inequalities for Wv(x). In
fact, by Theorem 1.1 we immediately get the following.
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Proposition 4.1 Let

E1 =
{

p ≥ v +
1
2

, v ≥ –
3
2

}
, E2 =

{
p ≥ cv, –2 < v < –

3
2

}
,

E3 = {p ≤ v – 1, v > –2}, E4 =
{

v – 1 < p < v +
1
2

, v > –2
}

,

E5 =
{

v +
1
2

≤ p < cv, –2 < v < –
3
2

}
,

where cv is given in (1.7). Then the double inequality

αx2 <
(
Wv(x) – p

)2 – (2v + 2 – p)2 < βx2 (4.1)

holds for x > 0 and v > –2 if and only if

α ≤ l(p) = min

{
2v + 2 – p

v + 2
, 1

}
,

β ≥ u(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if (p, v) ∈ E1 ∪ E2,
2v+2–p

v+2 if (p, v) ∈ E3,

λp if (p, v) ∈ E4,

θp if (p, v) ∈ E5,

where θp = supx>0 Fp(x) if (p, v) ∈ E5, and

λp =
(Wv(x0) – p)2 – (2v + 2 – p)2

x2
0

,

and here x0 is the unique solution of the equation

y3 – (p + 2v + 1)y2 –
(
x2 – 2pv

)
y + px2 + 4(v + 1)(p – v – 1) = 0 (4.2)

on (0,∞) with y = Wv(x).

Proof (i) By Theorem 1.1 we see that the left-hand side inequality of (4.1) holds for x > 0
if and only if

α ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2v+2–p
v+2 if (p, v) ∈ E1 ∪ E2,

1 if (p, v) ∈ E3,

min{ 2v+2–p
v+2 , 1} if (p, v) ∈ E4,

2v+2–p
v+2 if (p, v) ∈ E5.

=

⎧
⎨

⎩

2v+2–p
v+2 , if (p, v) ∈ E1 ∪ E2 ∪ E5 ∪ (E4 ∩ {p ≥ v, v > –2}),

1, if (p, v) ∈ E3 ∪ (E4 ∩ {p ≤ v, v > –2}).
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It is easy to check that

E1 ∪ E2 ∪ E5 ∪ (
E4 ∩ {p ≥ v, v > –2}) = {p ≥ v, v > –2},

E3 ∪ (
E4 ∩ {p ≤ v, v > –2}) = {p ≤ v, v > –2},

which indicate that α ≤ l(p).
(ii) The necessary and sufficient conditions for the right-hand side inequality of (4.1) to

hold are obvious.
(iii) As shown in Simpson and Spector [2], Wv satisfies the Riccati equation

xW ′
v(x) = x2 + 2(v + 1)Wv(x) – Wv(x)2.

Then

x3

2
F ′

p(x) =
(
Wv(x) – p

)
xW ′

v(x) –
(
Wv(x) – p

)2 + (2v + 2 – p)2

= (y – p)
(
x2 + 2(v + 1)y – y2) – (y – p)2 + (2v + 2 – p)2

= –y3 + (p + 2v + 1)y2 +
(
x2 – 2pv

)
y – px2 – 4(v + 1)(p – v – 1),

where y = Wv(x). Clearly, if x0 is the unique solution of the equation F ′
p(x) = 0 on (0,∞),

then so is equation (4.2) on (0,∞).
This completes the proof. �

Remark 4.2 Taking p = v + 1/2 in Proposition 4.1 gives

2v + 3
2v + 4

x2 < Wv(x)2 – (2v + 1)Wv(x) – 2(v + 1) < x2 for x > 0 and v > –
3
2

,

where the left-hand side inequality holds for x > 0 and v > –2, the right-hand side one is
inequality (1.4).

Setting p = v in Proposition 4.1 yields

x2 < Wv(x)2 – 2vWv(x) – 4(v + 1) < λvx2 for x > 0 and v > –2,

where the left-hand side inequality is inequality (1.5).
In addition, putting p = cv with –2 < v < –3/2 in Proposition 4.1, where cv is given in

(1.7), we obtain a new Simpson–Spector-type inequality, which is stated as a corollary.

Corollary 4.3 Let –2 < v < –3/2. Then the double inequalities

(2v + 3)(v + 3)(v + 4)
(v + 2)(2v2 + 11v + 16)

x2

< Wv(x)2 – 2
2v3 + 9v2 + 9v – 4

2v2 + 11v + 16
Wv(x) – 8

(2v + 5)(v + 1)(v + 2)
2v2 + 11v + 16

< x2

hold for x > 0. The lower and upper bounds are sharp.
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4.2 Sharp bounds for Wv(x) in the form of p + r
√

x2 + q2

A bound in the form of

Ap,q(x) = p +
√

x2 + q2 (4.3)

for the ratio Wv(x) is known as Amos-type bound (see [6, 9, 10]). In this subsection, we
will give another type of bounds in the form of

Bp,q,r(x) = p + r
√

x2 + q2 (4.4)

for Wv(x) by Proposition 4.1. Clearly, Bp,q,1(x) = Ap,q(x).
As mentioned in Introduction, Baricz and Neuman [8, Theorem 2.2] (also see [6,

Lemma 4.2.]) have shown that Wv is strictly increasing from (0,∞) onto (2v + 2,∞) for
v > –2. This implies that Wv(x) – p > 0 for p < 2v + 2, and then the double inequality of (4.1)
is equivalent to

p +
√

αx2 + (2v + 2 – p)2 < Wv(x) < p +
√

βx2 + (2v + 2 – p)2 (4.5)

for x > 0 and p < 2v + 2 with v > –2. Thus from Proposition 4.1 we derive the following
statement.

Proposition 4.4 Let E0 = {p < 2v + 2, v > –2}. (i) The double inequality (4.5) holds for x > 0
and (p, v) ∈ E0 if and only if

α ≤ l(p) = min

{
2v + 2 – p

v + 2
, 1

}
,

β ≥ u∗(p) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if p ≥ v + 1
2 , v ≥ – 3

2 ,
2v+2–p

v+2 if p ≤ v – 1, v > –2,

λp if v – 1 < p < min{v + 1
2 , 2v + 2}, v > –2,

where λp is as in Proposition 4.1.
(ii) Furthermore, let

Lp(x) = p +
√

αmaxx2 + (2v + 2 – p)2, (4.6)

Up(x) = p +
√

βminx2 + (2v + 2 – p)2. (4.7)

Then we have

max
p<2v+2,v>–2

Lp(x) = v +
√

x2 + (v + 2)2 = Lv(x), (4.8)

min
p≥v+1/2,v≥–3/2

Up(x) = v +
1
2

+

√

x2 +
(

v +
3
2

)2

:= U (1)
v+1/2(x), (4.9)

min
p≤v–1,v>–2

Up(x) = v – 1 +
√

v + 3
v + 2

x2 + (v + 3)2 := U (2)
v–1(x). (4.10)

Moreover, minp≥v+1/2,v≥–3/2 Up(x) and minp≤v–1,v≥–3/2 Up(x) are not comparable for x ∈
(0,∞).
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Proof (i) By Proposition 4.1, the necessary and sufficient condition such that the left-hand
side inequality of (4.5) holds for x > 0 and (p, v) ∈ E0 is clear.

While the right-hand side inequality of (4.5) holds for x > 0 and (p, v) ∈ E0 if and only if

β ≥

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if (p, v) ∈ (E1 ∪ E2) ∩ E0,
2v+2–p

v+2 if (p, v) ∈ E3 ∩ E0,

λp if (p, v) ∈ E4 ∩ E0,

θp if (p, v) ∈ E5 ∩ E0,

where Ei (i = 1 – 5) are given in Proposition 4.1. Simplifying yields E1 ∩E0 = E1, E2 ∩E0 = ∅,
E3 ∩ E0 = E3, E5 ∩ E0 = ∅, and

E4 ∩ E0 =
{

v – 1 < p < min

{
v +

1
2

, 2v + 2
}

, v > –2
}

,

which imply that β ≥ u∗(p).
(ii) To prove the second assertion of this proposition, we first note that the function

p �→ p +
√

x2 + (2v + 2 – p)2

is increasing on R, and another function

p �→ p +
√

2v + 2 – p
v + 2

x2 + (2v + 2 – p)2

is decreasing on (–∞, 2v + 2].
Now, since

Lp(x) =

⎧
⎨

⎩
p +

√
2v+2–p

v+2 x2 + (2v + 2 – p)2 if v ≤ p ≤ 2v + 2,

p +
√

x2 + (2v + 2 – p)2 if p ≤ v,

the function p �→ Lp(x) is increasing on (–∞, v] and decreasing on [v, 2v+2], which implies
maxp≤2v+2,v>–2 Lp(x) = Lv(x).

If p ≥ v + 1/2 with v ≥ –3/2, then βmin = 1, and then

Up(x) = p +
√

x2 + (2v + 2 – p)2 := U (1)
p (x), (4.11)

which is increasing in p on [v + 1/2, 2v + 2]. This gives minp≥v+1/2,v≥–3/2 Up(x) = U (1)
v+1/2(x).

If p ≤ v – 1 with v > –2, then βmin = (2v + 2 – p)/(v + 2), and therefore,

Up(x) = p +
√

2v + 2 – p
v + 2

x2 + (2v + 2 – p)2 := U (2)
p (x), (4.12)

which is decreasing in p on (–∞, 2v + 2]. This leads to minp≤v–1,v>–2 Up(x) = U (2)
v–1(x).
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Finally, we show that minp≥v+1/2,v≥–3/2 Up(x) is not comparable with minp≤v–1,v≥–3/2 Up(x)
for x ∈ (0,∞). In fact, we have that for v ≥ –3/2,

U (1)
v+1/2(x) – U (2)

v–1(x) =
3
2

+

√

x2 +
(

v +
3
2

)2

–
√

v + 3
v + 2

x2 + (v + 3)2,

(
3
2

+

√

x2 +
(

v +
3
2

)2)2

–
v + 3
v + 2

x2 – (v + 3)2

= 3

√

x2 +
(

v +
3
2

)2

–
(

3
(

v +
3
2

)
+

x2

v + 2

)
,

(
3

√

x2 +
(

v +
3
2

)2)2

–
(

3
(

v +
3
2

)
+

x2

v + 2

)2

= –x2 x2 – 3(v + 2)(v + 3)
(v + 2)2 .

From this it is seen that U (1)
v+1/2(x) < U (2)

v–1(x) if x >
√

3(v + 2)(v + 3) and U (1)
v+1/2(x) > U (2)

v–1(x) if
0 < x <

√
3(v + 2)(v + 3).

This completes the proof. �

Remark 4.5 Amos [10, Eq. (11)] offered a lower bound Av,v+2(x) < Wv(x) for x > 0 and v ≥ 0.
Hornik and Grün [9, Theorem 6] showed that the Amos-type bound is the sharpest for
x > 0 and v > –1. Yang and Zheng [6, Theorem 4.6] extended the range of v from v > –1
to v > –3/2. Proposition 4.4 presents another lower bound Lp(x) defined in (4.6) for Wv(x)
for x > 0 with v > –2 and shows that Lv(x) defined by (4.8) is the maximum over all lower
bounds {Lp(x) : p < 2v + 2, v > –2}. It should be emphasized that our sharpest lower bound
Lv(x) extends the range of Av,v+2(x) from v > –3/2 to v > –2 although Lv(x) and Av,v+2(x)
have the same expression.

Remark 4.6 Amos [10, Eq. (16)] gave an upper bound Wv(x) < Av+1/2,v+3/2(x) for x > 0
and v ≥ 0. Hornik and Grün [9, Theorem 3] proved that this Amos-type upper bound
is the best for x > 0 and v > –1, where the range of v has been extended from v > –1
to v > –3/2 in [6, Theorem 4.4] by Yang and Zheng. Since U (1)

v+1/2(x) = Av+1/2,v+3/2(x), our
Proposition 4.4 demonstrates the same result in [6, Theorem 4.4] by a slightly different
approach.

Remark 4.7 Proposition 4.4 also gives another upper bounds for Wv(x) by U (2)
p (x) defined

in (4.10) for x > 0 and p ≤ v – 1 with v > –2, that is,

Wv(x) < p +
√

2v + 2 – p
v + 2

x2 + (2v + 2 – p)2 = U (2)
p (x). (4.13)

Not only the above inequalities are valid, but we explain that U (2)
v–1(x) is the minimum

over all upper bounds {U (2)
p (x) : p ≤ v – 1, v > –2}, and U (2)

v–1(x) and U (1)
v+1/2(x) are not

comparable in x on (0,∞) for v ≥ –3/2. This indicates that U (2)
v–1(x) for v > –2 is indeed

a new sharpest upper bound for Wv(x). Consequently, Proposition 4.4 in fact offers a
new type of bounds p + r

√
x2 + q2 (r > 0) for Wv(x), which is clearly different from the

Amos-type bound Ap,q(x) = p +
√

x2 + q2. Moreover, inequality (4.13) is sharp at x = 0 in
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view of

Wv(x) – U (2)
p (x) ∼ (2v + 2) – p – |2v + 2 – p| = 0

as x → 0.

As a direct consequence of Proposition 4.4, we have the following.

Corollary 4.8 If v + 1/2 ≤ p < 2v + 2 with v ≥ –3/2, then the double inequality

p +
√

2v + 2 – p
v + 2

x2 + (2v + 2 – p)2 < Wv(x) < p +
√

x2 + (2v + 2 – p)2 (4.14)

holds for all x > 0. Inequalities (4.14) are reversed if p ≤ v – 1 with v > –2.
In particular, taking p = v + 1/2, v + 1, (2v + 2)– and p = v – 1, –∞, we have

v +
1
2

+

√
v + 3/2
v + 2

x2 +
(

v +
3
2

)2

< Wv(x) < v +
1
2

+

√

x2 +
(

v +
3
2

)2

for v ≥ –
3
2

, (4.15)

v + 1 +
√

v + 1
v + 2

x2 + (v + 1)2 < Wv(x) < v + 1 +
√

x2 + (v + 1)2 for v > –1, (4.16)

2(v + 1) < Wv(x) < 2v + 2 + x for v ≥ –
3
2

, (4.17)

v – 1 +
√

x2 + (v + 3)2 < Wv(x) < v – 1 +
√

v + 3
v + 2

x2 + (v + 3)2 for v > –2,

2(v + 1) < Wv(x) < 2(v + 1) +
1
2

x2

v + 2
for v > –2. (4.18)

Remark 4.9 The right-hand side in inequality (4.15) for v ≥ 0 was proved in [10, Eq. (16)]
by Amos, and for v > –3/2 it follows from Neuman’s inequality (1.4). The right-hand side
one in (4.16) for v ≥ 0 is also due to Amos [10, Eq. (11)], which for v > –1 was proved by
Yuan and Kalbfleisch [12, Eq. (A.5)], and Laforgia and Natalini [14, Theorem 1.1]. While
the left-hand side inequality in (4.16) for v > –1 was showed by Segura [15, Eq. (61)]. In-
equalities (4.17) were proved by Yang and Zheng in [6, Remark 4.9]. Moreover, the rational
bounds given in (4.18) appeared in [4, Appendix] for v > –1, so the right-hand side inequal-
ity of (4.18) can be viewed as a new one in the sense that the range of v is extended from
v > –1 to v > –2.

Now let us return to Proposition 4.1. First, if (p, v) ∈ E2 = {p ≥ cv, –2 < v < –3/2}, then
the right-hand side inequality of (4.1) holds for x > 0 if and only if β ≥ 1, which implies
that the double inequality

p –
√

βx2 + (2v + 2 – p)2 < Wv(x) < p +
√

βx2 + (2v + 2 – p)2 (4.19)

holds for x > 0. Second, according to the guess presented in Remark 3.1, θp = supx>0 Fp(x)
may equal Fp(∞) = 1 for certain p ∈ [v + 1/2, cv) with –2 < v < –3/2. If so, then the right-
hand side inequality of (4.1) holds for x > 0 if and only if β ≥ θp = 1, which implies that the
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double inequality (4.19) also holds for x > 0 and certain p ∈ [v + 1/2, cv) with –2 < v < –3/2,
where β = 1 is the best possible constant. In fact, this claim is valid.

Proposition 4.10 Let –2 < v < –3/2. Then the double inequality (4.19) holds for x > 0 and
p ≥ c∗

v = v + 1/(2v + 5) with the best constant β = 1.

Proof (i) For p ≥ cv, the desired result is evidently valid by Proposition 4.1.
(ii) For c∗

v ≤ p < cv, where cv is defined by (1.7), it is easy to check that

c∗
v –

(
v +

1
2

)
= –

1
2

2v + 3
2v + 5

> 0,

c∗
v – cv = 2

(2v + 3)(v + 2)(v + 3)
(2v + 5)(2v2 + 11v + 16)

< 0,

which imply c∗
v ∈ [c + 1/2, cv). To prove the desired assertion, it suffices to prove that

Fp(x) =
f1(x)
f2(x)

=
∑∞

n=0 an+1(x2/4)n
∑∞

n=0 bn+1(x2/4)n < 1 (4.20)

for x > 0 and c∗
v ≤ p < cv with –2 < v < –3/2. Indeed, we have

a1

b1
– 1 = –

p – v
v + 2

< 0,

and for n ≥ 2,

an

bn
– 1 =

–p(2n + 2v + 1) + n(2v + 1) + (v + 1)(2v – 1)
(n + v + 1)(n + 2v + 2)

≤ –c∗
v (2n + 2v + 1) + n(2v + 1) + (v + 1)(2v – 1)

(n + v + 1)(n + 2v + 2)

=
(n – 2)(2v + 3)

(n + 2v + 2)(2v + 5)(n + v + 1)
≤ 0,

which yield

Fp(x) =
∑∞

n=0 an+1(x2/4)n
∑∞

n=0 bn+1(x2/4)n <
∑∞

n=0 bn+1(x2/4)n
∑∞

n=0 bn+1(x2/4)n = 1.

In view of Fp(∞) = 1, the upper bound given in (4.20) is sharp, and by Proposition 4.1 the
desired assertion follows. Thus we complete the proof. �

Remark 4.11 It is easy to check that the lower bound for Wv(x) given in (4.19) is weaker
than 2v + 2, but the upper bound for β = 1 is clearly a new Amos-type bound for p ≥ c∗

v
with –2 < v < –3/2 since it is not comparable with the sharpest upper bound U (2)

v–1(x) for
p ≥ c∗

v with –2 < v < –3/2, while another one U (1)
v+1/2(x) is restricted in v ≥ –3/2.

4.3 Some computable bounds for Wv(x)
From Proposition 4.4 we see that the minimum βmin = λp for v – 1 < p < min{v + 1/2, 2v + 2}
with v > –2 such that the inequality

Wv(x) < p +
√

λpx2 + (2v + 2 – p)2 = U (3)
p (x)



Yang and Zheng Journal of Inequalities and Applications  (2018) 2018:57 Page 15 of 21

holds for x > 0. Since λp = f1(x0)/f2(x0), where x0 is the unique solution of equation (4.2)
on (0,∞), the number λp is usually not computable, and so is U (3)

p (x). Therefore, it is in-
teresting and useful to find some upper bounds for λp by elementary functions.

In this subsection, we will find some upper bounds for λp in terms of elementary func-
tions to obtain some computable upper bounds for Wv(x) by using relation (3.7), that is,

λp =
f1(x0)
f2(x0)

> min

{
2v + 2 – p

v + 2
, 1

}
,

and an analogous technique used in the proof of Subcase 2.4 of Theorem 1.1.

Proposition 4.12 Let v – 1 < p < min{v + 1/2, 2v + 2} with v > –2. Then the inequality

Wv(x) < p +
√

λ∗
px2 + (2v + 2 – p)2

holds for x > 0, where

λ∗
p = min

{
4v + 5 – 2p

2(v + 2)
,

v + 3
v + 2

}
. (4.21)

Proof It suffices to prove an/bn ≤ λ∗
p. We first prove that

an

bn
≤ 4v + 5 – 2p

2(v + 2)
= 1 +

v + 1/2 – p
v + 2

=
2v + 2 – p

v + 2
+

1
2

1
v + 2

holds for all n ≥ 1 by dividing the proof into two cases.
Case 1. min{v + 1/2, 2v + 2} = v + 1/2, namely v ≥ –3/2. For this, we write an/bn as

an

bn
=

2n + 2v + 1
(n + 2v + 2)(n + v + 1)

(
v +

1
2

– p
)

+
n2 + (3v + 3)n + 2v2 + 3v + 1/2

(n + 2v + 2)(n + v + 1)
.

Then we have

an

bn
–

4v + 5 – 2p
2(v + 2)

=
2n + 2v + 1

(n + 2v + 2)(n + v + 1)

(
v +

1
2

– p
)

–
v + 1/2 – p

v + 2

+
n2 + (3v + 3)n + 2v2 + 3v + 1/2

(n + 2v + 2)(n + v + 1)
– 1

= –
(n – 1)(n + v)(v + 1/2 – p)

(v + 2)(n + v + 1)(n + 2v + 2)
–

v + 3/2
(n + 2v + 2)(n + v + 1)

< 0

for n ≥ 1.
Case 2. min{v + 1/2, 2v + 2} = 2v + 2, namely –2 < v < –3/2. Similarly, we write an/bn as

an

bn
=

2n + 2v + 1
(n + 2v + 2)(n + v + 1)

(2v + 2 – p) +
n – 1

n + 2v + 2
.
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Then we get

an

bn
–

4v + 5 – 2p
2(v + 2)

=
2n + 2v + 1

(n + 2v + 2)(n + v + 1)
(2v + 2 – p) –

2v + 2 – p
v + 2

+
n – 1

n + 2v + 2
–

1
2

1
v + 2

= –
(n – 1)(n + v)(2v + 2 – p)

(v + 2)(n + v + 1)(n + 2v + 2)
+

1
2

(n – 2)(2v + 3)
(v + 2)(n + 2v + 2)

< 0

for n ≥ 1.
Second, to prove that for all n ≥ 1,

an

bn
≤ v + 3

v + 2
,

we write an/bn in the form of

an

bn
=

2n + 2v + 1
(n + 2v + 2)(n + v + 1)

(v – 1 – p) +
n2 + 3(v + 2)n + 2v2 + 6v + 2

(n + 2v + 2)(n + v + 1)
.

Then, for n ≥ 1, we have

an

bn
–

v + 3
v + 2

=
(v – 1 – p)(2n + 2v + 1)
(n + 2v + 2)(n + v + 1)

+
n2 + 3(v + 2)n + 2v2 + 6v + 2

(n + 2v + 2)(n + v + 1)
–

v + 3
v + 2

=
(v – 1 – p)(2n + 2v + 1)
(n + 2v + 2)(n + v + 1)

–
(n – 1)(n – 2)

(v + 2)(n + v + 1)(n + 2v + 2)
< 0.

Finally, it is obtained that

λp =
f1(x0)
f2(x0)

=
∑∞

n=0 an(x2
0/4)n

∑∞
n=0 bn(x2

0/4)n <
∑∞

n=0 λ∗
pbn(x2

0/4)n

∑∞
n=0 bn(x2

0/4)n = λ∗
p,

which completes the proof. �

Now by Proposition 4.12 we have the following.

Corollary 4.13 Let v – 1 < p < min{v + 1/2, 2v + 2} with v > –2.
(i) For v – 1 < p ≤ v – 1/2, the inequality

Wv(x) < p +
√

v + 3
v + 2

x2 + (2v + 2 – p)2 = U∗∗
p (x) (4.22)

holds for x > 0.
(ii) For v – 1/2 < p < min{v + 1/2, 2v + 2}, the inequality

Wv(x) < p +

√
4v + 5 – 2p

2(v + 2)
x2 + (2v + 2 – p)2 = U∗

p (x) (4.23)
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holds for x > 0. In particular, taking p = v and letting p → v + 1/2 with v ≥ –3/2 and
p → 2v + 2 with –2 < v < –3/2, the following inequalities hold for x > 0:

Wv(x) < v +

√
2v + 5

2(v + 2)
x2 + (v + 2)2 = U∗

v (x) for v > –2, (4.24)

Wv(x) < v +
1
2

+

√

x2 +
(

v +
3
2

)2

= U∗
v+1/2(x) for v ≥ –

3
2

, (4.25)

Wv(x) < 2v + 2 +
x√

2v + 4
= U∗

2v+2(x) for – 2 < v < –
3
2

. (4.26)

Remark 4.14 It is easy to check that the function p �→ U∗∗
p (x) defined in (4.22) is increasing

on R, which yields

U∗∗
p (x) > U∗∗

v–1(x) = v – 1 +
√

v + 3
v + 2

x2 + (v + 3)2 = U (2)
v–1(x)

for v – 1 < p ≤ v – 1/2 with v > –2. This shows that the upper bound U∗∗
p (x) for Wv(x) is

weaker than U (2)
v–1(x) as the sharpest one given in Proposition 4.4. Inequality (4.26) seems

to be a new one.

Remark 4.15 Clearly, U∗
v+1/2(x) = U (1)

v+1/2(x) for v ≥ –3/2. In general, the upper bound U∗
p (x)

for v – 1/2 < p < min{v + 1/2, 2v + 2} with v > –2 given in (4.23) is not comparable with
other two sharpest upper bounds U (1)

v+1/2 for v ≥ –3/2 and U (2)
v–1(x) for v > –2 given in

Proposition 4.4. For example, for v ≥ –3/2, U∗
v (x) < U (1)

v+1/2(x) if 0 < x <
√

2(v + 2) and
U∗

v (x) > U (1)
v+1/2(x) if x >

√
2(v + 2), since

U∗
v (x) – Uv+1/2(x) = v +

√
2v + 5

2(v + 2)
x2 + (v + 2)2 –

(
v +

1
2

+

√

x2 +
(

v +
3
2

)2)

=

√
2v + 5

2(v + 2)
x2 + (v + 2)2 –

(
1
2

+

√

x2 +
(

v +
3
2

)2)
,

2v + 5
2(v + 2)

x2 + (v + 2)2 –
(

1
2

+

√

x2 +
(

v +
3
2

)2)2

=
(v + 2)(2v + 3) + x2

2(v + 2)
–

√

x2 +
(

v +
3
2

)2

,

(
(v + 2)(2v + 3) + x2

2(v + 2)

)2

–
(

x2 +
(

v +
3
2

)2)
=

1
4

x2 x2 – 2(v + 2)
(v + 2)2 .

Similarly, for v > –2, U∗
v (x) < U (2)

v–1(x) if x >
√

8(v + 2)(v + 3) and U∗
v (x) > U (2)

v–1(x) if 0 < x <√
8(v + 2)(v + 3). In fact, some elementary computations give

U∗
v (x) – U (2)

v–1(x) = v +

√
2v + 5

2(v + 2)
x2 + (v + 2)2 –

(
v – 1 +

√
v + 3
v + 2

x2 + (v + 3)2
)

=

√
2v + 5

2(v + 2)
x2 + (v + 2)2 + 1 –

√
v + 3
v + 2

x2 + (v + 3)2,
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(√
2v + 5

2(v + 2)
x2 + (v + 2)2 + 1

)2

–
(

v + 3
v + 2

x2 + (v + 3)2
)

= 2

√
2v + 5

2(v + 2)
x2 + (v + 2)2 –

4(v + 2)2 + x2

2(v + 2)
,

(
2

√
2v + 5

2(v + 2)
x2 + (v + 2)2

)2

–
(

4(v + 2)2 + x2

2(v + 2)

)2

= –
1
4

x2 x2 – 8(v + 2)(v + 3)
(v + 2)2 .

It thus can be seen that the upper bound U∗
p (x) for v – 1/2 < p < min{v + 1/2, 2v + 2} with

v > –2 belongs to the new type of bounds p + r
√

x2 + q2 (r > 0) for Wv(x).

Let us return to Proposition 4.1 again. We note that the number λp is also not com-
putable in the case of

(p, v) ∈ E4 ∩ {p > 2v + 2, v > –2} =
{

2v + 2 < p < v +
1
2

, –2 < v < –
3
2

}
.

If a better upper estimation λ∗∗
p > 0 holds for λp, then by Proposition 4.1 we can obtain

some bounds Wv(x) similar to the double inequality (4.19), which also implies the new
type of bounds. In fact, by the same technique as the proof of Proposition 4.12, we can
prove the following proposition, but omit all the details of the proof.

Proposition 4.16 Let 2v + 2 < p < v + 1/2 with –2 < v < –3/2. Then the double inequality

p –
√

λ∗∗
p x2 + (2v + 2 – p)2 < Wv(x) < p +

√
λ∗∗

p x2 + (2v + 2 – p)2 (4.27)

holds for x > 0, where

λ∗∗
p = min

{
v + 1/2 – p

v + 2
+

4v2 + 18v + 21
4(v + 2)(v + 3)

,
1

2(v + 2)

}
.

From Proposition 4.10, we know the number θp = 1 for p ≥ c∗
v = v + 1/(2v + 5) with –2 <

v < –3/2. It remains to estimate θp for p ∈ [v + 1/2, c∗
v ) with –2 < v < –3/2. By a similar

technique as the proof of Proposition 4.12, we have

θp < θ∗
p = min

{
4v2 + 18v + 21
4(v + 2)(v + 3)

,
c∗

v – p
v + 2

+ 1
}

(4.28)

for p ∈ [v + 1/2, c∗
v ) with –2 < v < –3/2. Thus, by Proposition 4.1 we conclude the following

proposition.

Proposition 4.17 Let v + 1/2 ≤ p < c∗
v = v + 1/(2v + 5) with –2 < v < –3/2. Then the double

inequality

p –
√

θ∗
p x2 + (2v + 2 – p)2 < Wv(x) < p +

√
θ∗

p x2 + (2v + 2 – p)2 (4.29)

holds for x > 0, where θ∗
p is given in (4.28).
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Remark 4.18 Similarly, the lower bounds given by (4.27) and (4.29) are trivial due to the
fact that they are weaker than 2v + 2. However, the upper bounds are new ones which
belong to the type of bounds p + r

√
x2 + q2 (r > 0).

5 Conclusions
This paper is mainly devoted to proving the monotonicity of

Fp(x) =
(Wv(x) – p)2 – (2v + 2 – p)2

x2

on (0,∞) for v > –2. As one of applications, from this we arrived at the Simpson–Spector-
type inequalities for Wv(x) (4.1) and other new ones (Proposition 4.1 and Corollary 4.3),
which immediately led to some known Simpson–Spector-type inequalities.

As more important applications, we reproved some known results and also found a new
type of bounds p + r

√
x2 + q2 for Wv(x).

(i) Proposition 4.4 showed that the lower bound

Lv(x) = v +
√

x2 + (v + 2)2 with v > –2

for Wv(x) is the sharpest, which for v ≥ 0, v > –1 and v ≥ –3/2 are known results (see [6,
9, 10]).

(ii) Proposition 4.4 also indicated that both the upper bounds

U (1)
v+1/2(x) = v +

1
2

+

√

x2 +
(

v +
3
2

)2

with v ≥ –
3
2

,

U (2)
v–1(x) = v – 1 +

√
v + 3
v + 2

x2 + (v + 3)2 with v > –2

for Wv(x) are the sharpest, where the former appeared in [6] and for v ≥ 0 and v > –1
was proved in [9, 10], while the latter is a new comer and belongs to the type of bounds
p + r

√
x2 + q2 (r > 0).

(iii) We obtained in Proposition 4.10 a new Amos-type bound for Wv(x), that is,

Wv(x) < p +
√

x2 + (2v + 2 – p)2

holds for x > 0 and p ≥ c∗
v = v + 1/(2v + 5) with –2 < v < –3/2.

(iv) For v – 1/2 < p < min{v + 1/2, 2v + 2} with v > –2, the number λp given in Proposi-
tion 4.1 is in general not computable. But by replacing λp with λ∗

p defined by (4.21), we
gave in Proposition 4.12 a class of elementary function upper bounds

Wv(x) < U∗
p (x) = p +

√
4v + 5 – 2p

2(v + 2)
x2 + (2v + 2 – p)2.

As mentioned in Remark 4.15, as an upper bound, U∗
p (x) is in general not comparable with

other two sharpest upper bounds U (1)
v+1/2 for v ≥ –3/2 and U (2)

v–1(x) for v > –2, and belongs
to the new type of bounds p + r

√
x2 + q2 (r > 0).
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(v) Using the same technique as Proposition 4.12, we established two new double in-
equalities for Wv(x) in the cases of 2v + 2 < p < v + 1/2 and v + 1/2 ≤ p < c∗

v for –2 < v < –3/2,
that are, (4.27) and (4.29). However, the lower bounds given in (4.27) and (4.29) for Wv(x)
are trivial since they are weaker than 2v+2. The upper bounds belong to the type of bounds
p + r

√
x2 + q2 (r > 0).

Additionally, as a consequence of our results, we deduced some new inequalities for
Wv(x), for example, (4.18), (4.26), and also reobtained some known important inequalities,
such as the inequalities proved by Amos [10], Yuan and Kalbfleisch [12, (A.5)], Laforgia
and Natalini [14, Theorem 1.1], Segura [15, (61)], [4, Appendix] and so on.
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