
Pyo et al. Journal of Inequalities and Applications  (2018) 2018:32 
https://doi.org/10.1186/s13660-018-1626-x

R E S E A R C H Open Access

Degenerate Cauchy numbers of the third
kind
Sung-Soo Pyo1, Taekyun Kim2 and Seog-Hoon Rim3*

*Correspondence: shrim@knu.ac.kr
3Department of Mathematics
Education, Kyungpook National
University, Daegu, Republic of Korea
Full list of author information is
available at the end of the article

Abstract
Since Cauchy numbers were introduced, various types of Cauchy numbers have been
presented. In this paper, we define degenerate Cauchy numbers of the third kind and
give some identities for the degenerate Cauchy numbers of the third kind. In addition,
we give some relations between four kinds of the degenerate Cauchy numbers, the
Daehee numbers and the degenerate Bernoulli numbers.

MSC: Primary 05A19; 11B75; secondary 11B73

Keywords: Cauchy numbers; Degenerate Cauchy numbers; Degenerate Cauchy
numbers of the third kind

1 Introduction
It is well known that the Cauchy numbers (or the Bernoulli numbers of the second kind),
denoted by Cn, are derived from the integral as follows:

∫ 1

0
(1 + t)x dx =

t
log(1 + t)

=
∞∑

n=0

Cn
tn

n!
. (1)

The Cauchy numbers play a very important role in the study of mathematical physics
(see [1] and [2]). Various characteristics of the Cauchy numbers can be found in [3–7].
For other definitions and properties of the Cauchy numbers, the reader can consult [8,
pp. 293–294], [9] and [10, p. 114].

In [11], Kim introduced a new class of numbers which are called the degenerate Cauchy
numbers, denoted by Cn,λ, as follows:

∫ 1

0

(
1 + log(1 + λt)

1
λ
)x dx =

1
λ

log(1 + λt)
log(1 + 1

λ
log(1 + λt))

=
∞∑

n=0

Cn,λ
tn

n!
(λ > 0). (2)
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From (2), we note that

lim
λ→0

1
λ

log(1 + λt)
log(1 + 1

λ
log(1 + λt))

=
t

log(1 + t)
. (3)

The degenerate Cauchy numbers of the second kind, denoted by Cn,λ,2, are introduced
in [12] as follows:

t
log(1 + 1

λ
log(1 + λt))

=
∞∑

n=0

Cn,λ,2
tn

n!
. (4)

As with equation (3), we know that

lim
λ→0

t
log(1 + 1

λ
log(1 + λt))

=
t

log(1 + t)
. (5)

The degenerate Cauchy numbers have a lot of interesting properties. One of them is a
relation between the Cauchy numbers and the degenerate Cauchy numbers:

Cn,λ =
∞∑
l=0

λn–lS1(n, l)Cl,

where S1(n, k) is the Stirling numbers of the first kind.
In [12], Kim proved that the following identity holds:

Cn,λ =
n∑

m=0

(
n
m

)
λn–mDn–mCm,λ,2,

where Dn are the Daehee numbers which are defined by the generating function to be

log(1 + t)
t

=
∞∑

n=0

Dn
tn

n!
(see [13–17]). (6)

Let us take note of the following:

∫ 1

0

(
1 + λ log(1 + t)

) x
λ dx =

λ((1 + λ log(1 + t))
1
λ – 1)

log(1 + λ log(1 + t))
(λ > 0). (7)

In equation (7), we know that

lim
λ→0

λ((1 + λ log(1 + t))
1
λ – 1)

log(1 + λ log(1 + t))
=

t
log(1 + t)

. (8)

From (8), equation (7) must be related to the Cauchy numbers. We define the degenerate
Cauchy numbers of the third kind, denoted by Cn,λ,3, by the generating function

λ((1 + λ log(1 + t)) 1
λ – 1)

log(1 + λ log(1 + t))
=

∞∑
n=0

Cn,λ,3
tn

n!
. (9)
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Figure 1 Four kinds of degenerate Cauchy numbers

As the definition of the degenerate Cauchy numbers of the second kind comes from the
definition of those of the first kind, we define the degenerate Cauchy numbers of the forth
kind by the generating function as follows:

λt
log(1 + λ log(1 + t))

=
∞∑

n=0

Cn,λ,4
tn

n!
. (10)

As λ goes to zero in equation (10), the generating function of the degenerate Cauchy
numbers of the forth kind goes to the generating function of the Cauchy numbers, that is,

lim
λ→0

λt
log(1 + λ log(1 + t))

=
t

log(1 + t)
. (11)

Very recently, a study on the degenerate Cauchy polynomials and numbers of the fourth
kind was conducted by Pyo [18].

Equations (3), (5), (8) and (11) give us

lim
λ→0

Cn,λ = lim
λ→0

Cn,λ,2 = lim
λ→0

Cn,λ,3 = lim
λ→0

Cn,λ,4 = Cn. (12)

When n = 0, we know that

C0 = C0,λ = C0,λ,2 = C0,λ,3 = C0,λ,4 = 1. (13)

Figure 1 shows the four kinds of degenerate Cauchy numbers.
Throughout this article, we develop research in the scope of real numbers. It is necessary

to check the range of λ. From (2) and (9), depending on the range of the logarithm function,
λ must be greater than 0. The limits (3) and (8) indicate that λ does not matter if it is zero.

When λ goes to infinity, the generating functions of both the degenerate Cauchy num-
bers and those of the third kind, (2) and (9), converge to 1, but those of the second kind
and the fourth kind, (4) and (10), are divergent.

From the argument of the range of λ, we know that λ could be any non-zero positive real
number. From now on, we consider λ to be a certain positive real number.

In this paper, we give some identities for the degenerate Cauchy numbers of the third
kind, and give some relations between the degenerate Cauchy numbers of the third kind
and the degenerate Cauchy numbers of other kinds.
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2 The degenerate Cauchy numbers of the third kind
From the definition of the degenerate Cauchy numbers of the third kind, (7) and (9), we
have

∞∑
n=0

Cn,λ,3
tn

n!
=

∫ 1

0

(
1 + λ log(1 + t)

) x
λ dx

=
∫ 1

0
e

x
λ

log(1+λ log(1+t)) dx

=
∞∑

m=0

λ–m
∫ 1

0
xm dx

1
m!

(
log

(
1 + λ log(1 + t)

))m

=
∞∑

m=0

λ–m

m + 1

∞∑
l=m

S1(l, m)λl (log(1 + t))l

l!

=
∞∑
l=0

l∑
m=0

λl–m

m + 1
S1(l, m)λl (log(1 + t))l

l!

=
∞∑
l=0

( l∑
m=0

λl–m

m + 1
S1(l, m)λl

) ∞∑
n=l

S1(n, l)
tn

n!

=
∞∑

n=0

n∑
l=0

l∑
m=0

λl–m

m + 1
S1(l, m)S1(n, l)

tn

n!
. (14)

From (14), we have the following theorem.

Theorem 1 For any integer n ≥ 0 and real λ > 0,

Cn,λ,3 =
∑

0≤l≤n

∑
0≤m≤l

λl–m

m + 1
S1(l, m)S1(n, l). (15)

When λ goes to zero in equation (15), the right-hand side of equation (15) remains only
if m = l. Thus we have

lim
λ→0

Cn,λ,3 =
n∑

l=0

S1(n, l)
l + 1

= Cn.

The nth falling factorial of x, denoted by (x)n, is given by

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1). (16)

In [19], Carlitz introduced λ-analogue of falling factorials, and in [20], Kim presented
several results regarding it. The λ-analogue of falling factorials is defined as follows:

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)
. (17)

Note that limλ→1(x)n,λ = (x)n, and limλ→0(x)n,λ = xn.
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The Stirling numbers of the first kind are defined as

(x)n =
n∑

l=0

S1(n, l)xl, (18)

where S1(n, l), (n, l ≥ 0) are called the Stirling numbers of the first kind.
From (17) and (18), Kim defined the λ-analogue of the Stirling numbers of the first kind

as follows:

(x)n,λ =
n∑

l=0

S1,λ(n, l)xl, (n ≥ 0). (19)

The coefficients S1,λ(n, l) on the right-hand side of (19) are called the λ-analogue of the
Stirling numbers of the first kind.

We note that
(

1
λ

)
l

=
1
λ

(
1
λ

– 1
)(

1
λ

– 2
)

· · ·
(

1
λ

– l + 1
)

=
1

λl+1 (1 – λ)(1 – 2λ) · · · (1 – (l – 1)λ
)

= λ–l(1)l,λ, (20)

and

(1 + t)
1
λ = 1 + λ–1(1)1,λ

t
1!

+ λ–2(1)2,λ
t2

2!
+ · · · . (21)

By replacing t by e
t
λ – 1 in the first line of equation (14), we get

∞∑
n=0

Cn,λ,3
1
n!

(
e

t
λ – 1

)n =
∫ 1

0

(
1 + λ log

(
1 + e

t
λ – 1

)) x
λ dx

=
∫ 1

0
(1 + t)

x
λ dx

=
λ

log(1 + t)
(
(1 + t)

1
λ – 1

)
. (22)

From (20) and (21), we obtain

λ

log(1 + t)
(
(1 + t)

1
λ – 1

)
=

λ

log(1 + t)

∞∑
l=1

(
1
λ

)
l

tl

l!

= λ
t

log(1 + t)

∞∑
l=0

(
1
λ

)
l+1

tl

(l + 1)!

=
∞∑

m=0

Cm
tm

m!

∞∑
l=0

(1)l+1,λ

λl(l + 1)
tl

l!

=
∞∑

n=0

n∑
l=0

(
n
l

)
Cn–l

(1)l+1,λ

λl(l + 1)
tn

n!
. (23)
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From (22) and (23), we have

∫ 1

0

(
1 + λ log

(
1 + e

t
λ – 1

)) x
λ dx =

∞∑
n=0

n∑
l=0

(
n
l

)
Cn–l

(1)l+1,λ

λl(l + 1)
tn

n!
. (24)

The left-hand side in equation (22) becomes

∞∑
l=0

Cl,λ,3
1
l!
(
e

t
λ – 1

)l =
∞∑
l=0

Cn,λ,3
1
l!

∞∑
n=l

S2(n, l)λ–n tn

n!

=
∞∑

n=0

n∑
l=0

Cn,λ,3S2(n, l)λ–n tn

n!
, (25)

where S2(n, l) denotes the Stirling number of the second kind.
We note that

(
x
λ

)
l

= λ–l(x)l,λ. (26)

Applying (26), let us consider the left-hand side of equation (24) in different way
with (22):

∫ 1

0

(
1 + λ log

(
1 + e

t
λ – 1

)) x
λ dx =

∫ 1

0
(1 + t)

x
λ dx

=
∫ 1

0

∞∑
n=0

(
x
λ

)
n

tn

n!
dx

=
∫ 1

0

∞∑
n=0

λ–n(x)n,λ
tn

n!
dx

=
∞∑

n=0

λ–n
∞∑

k=n

S1,λ(k, n)
∫ 1

0
xk dx

tn

n!

=
∞∑

n=0

λ–n
∞∑

k=n

S1,λ(k, n)
∫ 1

0
xk dx

tn

n!

=
∞∑

n=0

λ–n
∞∑

k=n

S1,λ(k, n)
k + 1

tn

n!
. (27)

From (24), (25) and (27), we have the following theorem.

Theorem 2 For any integer n ≥ 0 and real λ > 0,

∑
0≤l≤n

Cn,λ,3S2(n, l) =
∑

0≤l≤n

(
n
l

)
Cn–l

λn–l(1)l+1,λ

l + 1
=

∑
n≤k≤∞

S1,λ(k, n)
k + 1

. (28)

If λ goes to 0 in both sides of the first equality in equation (28), then the second term of
equation (28) remains only if l = n. And (1)l+1,λ goes to 1 if λ goes to 0. From (12), Cn,λ,3

goes to Cn if λ goes to 0. Therefore we get the following identity.
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Corollary 3 For any integer n ≥ 0,

1
n + 1

=
∑

0≤l≤n

CnS2(n, l).

We note that limλ→0 S1,λ(n, k) = δn,k , where δn,k denotes the Kronecker symbol [20]. Both
sides of the second equation in (28) go to 1

n+1 as λ goes to 0.
When λ = 1 in the first line of equation (22), the right-hand side becomes

∫ 1

0
(1 + t)x dx =

t
log(1 + t)

=
∞∑

n=0

Cn
tn

n!
, (29)

and the left-hand side of equation (22) becomes

∞∑
l=0

Cl,1,3
1
l!
(
et – 1

)l =
∞∑
l=0

Cl,1,3

∞∑
n=l

S2(n, l)
tn

n!

=
∞∑

n=0

n∑
l=0

Cl,1,3S2(n, l)
tn

n!
. (30)

From (29) and (30), we have the following theorem.

Theorem 4 For any integer n ≥ 0 and real λ > 0,

Cn =
∑

0≤l≤n

Cl,1,3S2(n, l).

3 Comparison between four kinds of the degenerate Cauchy numbers, the
Daehee numbers and the degenerate Bernoulli numbers

It is well known that the degenerate Bernoulli numbers are defined by the generating func-
tion

t

(1 + λt)
1
λ – 1

=
∞∑

n=0

βn,λ
tn

n!
. (31)

We note that equation (31) is defined for all real-valued λ. So, in equation (31), there is
no problem to switch λ into 1

λ
as follows:

t
(1 + 1

λ
t)λ – 1

=
∞∑

n=0

βn, 1
λ

tn

n!
. (32)

In equation (31), the left-hand side equation is divergent as λ goes to infinity. So, the
left-hand side in equation (32) is divergent as λ goes to 0. We need to point out that if λ

does not equal 0, equation (32) is meaningful.
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By replacing t with log(1 + t), equation (31) becomes

log(1 + t)
(1 + λ log(1 + t))

1
λ – 1

=
∞∑

k=0

βk,λ
log(1 + t)k

k!

=
∞∑

k=0

βk,λ

∞∑
n=k

S1(n, k)
tn

n!

=
∞∑

n=0

n∑
k=0

βk,λS1(n, k)
tn

n!
. (33)

Using similar process to (33) in equation (32), we get

log(1 + t)
(1 + 1

λ
log(1 + t))λ – 1

=
∞∑

n=0

n∑
k=0

βk, 1
λ

S1(n, k)
tn

n!
. (34)

We derive the following (35) by using (33):

λ log(1 + t)
log(1 + λ log(1 + t))

=
λ((1 + λ log(1 + t))

1
λ – 1)

log(1 + λ log(1 + t))
· log(1 + t)

(1 + λ log(1 + t))
1
λ – 1

=
∞∑
l=0

Cl,λ,3
tl

l!

∞∑
m=0

m∑
k=0

βk,λS1(m, k)
tm

m!

=
∞∑

n=0

n∑
l=0

l∑
k=0

(
n
l

)
Cn–l,λ,3βk,λS1(l, k)

tn

n!
. (35)

In equation (2), the definition of the degenerate Cauchy numbers of the first kind, by
converting λ to 1

λ
, we have

λ log(1 + t
λ

)
log(1 + λ log(1 + t

λ
))

=
∞∑

n=0

Cn,λ–1
tn

n!
(λ > 0). (36)

We know that equation (36) goes to the generating function of the Cauchy numbers as
λ goes to infinity. Although λ is a constant real, it is necessary to check the new inspection
by substituting the reciprocal of λ. It is not difficult to show that

lim
λ→0

λ log(1 + t
λ

)
log(1 + λ log(1 + t

λ
))

= 1. (37)

Equation (37) shows that Cn, 1
λ

converges to 1 as λ goes to 0 only if n = 0, and converge to
0 when n ≥ 1. Equation (36) is meaningful for nonnegative real λ. The following equation
(38) can be obtained by substituting λt instead of t in equation (36):

λ log(1 + t)
log(1 + λ log(1 + t))

=
∞∑

n=0

Cn,λ–1λn tn

n!
. (38)
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Using (35) and (38), we get the following theorem.

Theorem 5 For any integer n ≥ 0 and real λ > 0,

Cn, 1
λ

=
∑

0≤l≤n

∑
0≤k≤l

(
n
l

)
Cn–l,λ,3βk,λS1(l, k)

λn .

Let G = G(t) = (1+λt)
1
λ –1

t , then

G =
(1 + λt)

1
λ – 1

t

=
1
t

∞∑
k=1

(
1
λ

)
k
λk tk

k!

=
∞∑

k=1

(1)k,λ
tk–1

k!

=
∞∑

k=0

(1)k+1,λ

k + 1
tk

k!
. (39)

By replacing t with log(1 + t) in (39),

(1 + λ log(1 + t))
1
λ – 1

log(1 + t)
=

∞∑
k=0

(1)k+1,λ

k + 1
(log(1 + t))k

k!

=
∞∑

k=0

(1)k+1,λ

k + 1

∞∑
n=k

S1(n, k)
tn

n!

=
∞∑

n=0

n∑
k=0

(1)k+1,λ

k + 1
S1(n, k)

tn

n!
. (40)

We note that

λ(log(1 + λ log(1 + t))
1
λ – 1)

log(1 + λ log(1 + t))

=
λ log(1 + t)

log(1 + λ log(1 + t))
· (1 + λ log(1 + t))

1
λ – 1

log(1 + t)

=
∞∑
l=0

Cl, 1
λ
λl tl

l!

∞∑
n=0

n∑
k=0

(1)k+1,λ

k + 1
S1(n, k)

tn

n!

=
∞∑

n=0

n∑
l=0

l∑
k=0

(
n
l

)Cn–l, 1
λ
λn–l(1)k+1,λ

k + 1
S1(l, k)

tn

n!
. (41)

From (40) and (41), we have the following theorem.
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Theorem 6 For any integer n ≥ 0 and real λ > 0,

Cn,λ,3 =
∑

0≤l≤n

∑
0≤k≤l

(
n
l

)Cn–l, 1
λ
λn–l(1)k+1,λ

k + 1
S1(l, k).

Consider the following equation (42) which is obtained from the definition of the de-
generate Cauchy numbers of the third kind, equation (9), by replacing λ with 1

λ
.

1
λ

((1 + 1
λ

log(1 + t))λ) – 1
log(1 + 1

λ
log(1 + t))

=
∞∑

n=0

Cn, 1
λ

,3
tn

n!
. (42)

As shown in equation (36), it is not difficult to know that

lim
λ→0

1
λ

((1 + 1
λ

log(1 + t))λ) – 1
log(1 + 1

λ
log(1 + t))

= 1. (43)

Just like Cn, 1
λ

, we can see that Cn, 1
λ

,3 converges to 1 as λ goes to 0 only if n = 0, and it
converges to 0 when n ≥ 1 from equation (43).

We note that

t
log(1 + 1

λ
log(1 + λt))

=
1
λ

((1 + 1
λ

log(1 + λt))λ) – 1
log(1 + 1

λ
log(1 + λt))

log(1 + λt)
((1 + 1

λ
log(1 + λt))λ) – 1

× λt
log(1 + λt)

. (44)

Applying (42), (34) and (1) respectively in equation (44), we have the following:

∞∑
n=0

Cn,λ,2
tn

n!

=

( ∞∑
k=0

Ck, 1
λ

,3λ
k tk

n!

)( ∞∑
l=0

l∑
p=0

βp, 1
λ

S1(l, p)λl tl

l!

)( ∞∑
m=0

Cmλm tm

m!

)

=

( ∞∑
k=0

Ck, 1
λ

,3λ
k tk

n!

)( ∞∑
m=0

m∑
l=0

m–l∑
p=0

(
m
l

)
βp, 1

λ
S1(l, p)Cm–lλ

m tm

m!

)

=
∞∑

n=0

( n∑
m=0

m∑
l=0

m–l∑
p=0

(
n
m

)(
m
l

)
λnCn–m, 1

λ
,3βp, 1

λ
S1(m – l, p)Cm–l

)
tn

n!
. (45)

From (45), we get the following identity.

Theorem 7 For any integer n ≥ 0 and real λ > 0,

Cn,λ,2 =
∑

0≤m≤n

∑
0≤l≤m

∑
0≤p≤m–1

(
n
m

)(
m
l

)
λnCn–m, 1

λ
,3βp, 1

λ
S1(m – l, p)Cm–l.
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The generating function of the degenerate Cauchy numbers of the third kind substitut-
ing t

λ
instead of values t can be developed as follows:

λ((1 + λ log(1 + t
λ

))
1
λ – 1)

log(1 + λ log(1 + t
λ

))

=
t

log(1 + λ log(1 + t
λ

))
((1 + λ log(1 + t

λ
))

1
λ – 1)

log(1 + t
λ

)

× log(1 + t
λ

)
t
λ

. (46)

By a similar process to (45), applying (4), (40) and (6) respectively in this case, we have

∞∑
n=0

Cn,λ,3
tn

λnn!

=

( ∞∑
k=0

Ck, 1
λ

,2
tk

k!

)( ∞∑
l=0

l∑
p=0

(1)p+1,λ

p + 1
S1(l, p)

λl
tl

l!

)( ∞∑
m=0

Dm

λm
tm

m!

)

=

( ∞∑
k=0

Ck, 1
λ

,2
tk

k!

)( ∞∑
m=0

∞∑
l=m

m–l∑
p=0

(1)p+1,λ

p + 1
DlS1(m – l, p)

λm
tm

m!

)

=
∞∑

n=0

( n∑
k=0

∞∑
l=n–k

n–k–l∑
p=0

Ck, 1
λ

,2
(1)p+1,λ

p + 1
DlS1(n – k – l, p)

λn–k

)
tn

n!
. (47)

The coefficients of both sides in equation (47) give the following identity.

Theorem 8 For any integer n ≥ 0 and real λ > 0,

Cn,λ,3 =
∑

0≤k≤n

∑
n–k≤l≤∞

∑
0≤p≤n–k–1

Ck, 1
λ

,2
(1)p+1,λ

p + 1
DlS1(n – k – l, p)λk .

4 Results and discussion
In this paper, we define the degenerate Cauchy numbers of the third kind Cn,λ,3 which are

obtained by the generating function λ((1+λ log(1+t))
1
λ –1)

log(1+λ log(1+t)) . The degenerate Cauchy numbers
of the third kind Cn,λ,3 are explicitly determined by the Stirling numbers of the first kind
(Theorem 1). We obtain the three identities about the Stirling numbers of the first kind and
the Cauchy numbers by using Cn,λ,3, Theorem 2, Corollary 3 and Theorem 4. In addition,
four relations between the degenerate Cauchy numbers of the third kind and other kinds
of the degenerate Cauchy numbers (Theorems 5 and 6) as well as the degenerate Cauchy
numbers of the second kind (Theorems 7 and 8) are presented.

5 Conclusion
For real λ > 0, the degenerate Cauchy numbers of the third kind Cn,λ,3 are obtained by

the generating function λ((1+λ log(1+t))
1
λ –1)

log(1+λ log(1+t)) . If λ > 0 goes to 0, then the generating function
of the degenerate Cauchy numbers of the third kind converges to the generating function
of the Cauchy numbers t

log(1+t) . The Cauchy numbers can be said to be defined from the
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generating function of the degenerate Cauchy numbers of the third kind when λ = 0. In this
paper, we have shown that there are many interesting characteristics in the combinatorial
number theory realm, even though λ > 0. Just as the Cauchy numbers play a very important
role in the study of mathematical physics, we would like to see some applications to the
study of mathematical physics of the degenerate Cauchy numbers of the third kind in the
near future.

Acknowledgements
Authors would like to express their sincere gratitude for referees’ valuable comments and suggestions.

Funding
This research was done without any support.

Availability of data and materials
The dataset supporting the conclusions of this article is included within the article.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors conceived of the study, participated in its design and read and approved the final manuscript.

Author details
1Department of mathematics Education, Silla University, Busan, Republic of Korea. 2Department of Mathematics,
Kwangwoon University, Seoul, Republic of Korea. 3Department of Mathematics Education, Kyungpook National
University, Daegu, Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 November 2017 Accepted: 28 January 2018

References
1. Kim, D., Kim, T.: A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russ. J. Math. Phys. 22(1),

26–33 (2015)
2. Kim, T., Mansour, T.: Umbral calculus associated with Frobenius-type Eulerian polynomials. Russ. J. Math. Phys. 21(4),

484–493 (2014)
3. Dolgy, D.V., Kim, D.S., Kim, T., Mansour, T.: Degenerate poly-Cauchy polynomials. Appl. Math. Comput. 269, 637–646

(2015)
4. Jeong, J., Rim, S.H., Kim, B.M.: On finite-times degenerate Cauchy numbers and polynomials. Adv. Differ. Equ. (2015).

https://doi.org/10.1186/s13662-015-0663-8
5. Kim, D.S., Kim, T., Dolgy, D.V.: Degenerate poly-Cauchy polynomials with a q parameter. J. Inequal. Appl. 2015, 264

(2015). https://doi.org/10.1186/s13660-015-0891-1
6. Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math.

(Kyungshang) 27(2), 199–212 (2017)
7. Todorov, P.C.: On the Cauchy numbers. Facta Univ., Ser. Math. Inform. 8, 1–10 (1993)
8. Comtet, L., Advanced Combinatorics. Reidel, Dordrecht (1974)
9. Merlini, D., Sprugnoli, R., Verri, M.C.: The Cauchy numbers. Discrete Math. 306, 1906–1920 (2006)
10. Roman, S.: The Umbral Calculus. Pure and Applied Mathematics. Academic Press, New York (1984)
11. Kim, T.: On degenerate Cauchy numbers and polynomials. Proc. Jangjeon Math. Soc. 18(3), 307–312 (2015)
12. Kim, T.: Degenerate Cauchy numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. 27, 441–449

(2017)
13. Kim, D.S., Kim, T.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24, 241–248

(2017)
14. Kim, T.: An invariant p-adic integral associated with Daehee numbers. Integral Transforms Spec. Funct. 13(1), 65–69

(2002)
15. El-Desouky, B.S., Mustafa, A.: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv.

Differ. Equ. (2016). https://doi.org/10.1186/s13662-016-0764-z
16. Jang, G.W., Kim, D.S., Kim, T.: Degenerate Changhee numbers and polynomials of the second kind. Adv. Stud.

Contemp. Math. 27(4), 609–624 (2017)
17. Jang, G.W., Kwon, J., Lee, J.G.: Some identities of degenerate Daehee numbers arising from nonlinear differential

equation. Adv. Differ. Equ. (2017). https://doi.org/10.1186/s13662-017-1265-4
18. Pyo, S.-S.: Degenerate Cauchy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. 28(1) (2018, in

press)
19. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)
20. Kim, T.: λ-analogue of Stirling numbers of the first kind. Adv. Stud. Contemp. Math. 27(3), 423–429 (2017)

https://doi.org/10.1186/s13662-015-0663-8
https://doi.org/10.1186/s13660-015-0891-1
https://doi.org/10.1186/s13662-016-0764-z
https://doi.org/10.1186/s13662-017-1265-4

	Degenerate Cauchy numbers of the third kind
	Abstract
	MSC
	Keywords

	Introduction
	The degenerate Cauchy numbers of the third kind
	Comparison between four kinds of the degenerate Cauchy numbers, the Daehee numbers and the degenerate Bernoulli numbers
	Results and discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


