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Abstract
The concept of a four-dimensional generalized difference matrix and its domain on
some double sequence spaces was recently introduced and studied by Tuğ and Başar
(AIP Conference Proceedings, vol. 1759, 2016) and Tuğ (J. Inequal. Appl. 2017(1):149,
2017). In this present paper, as a natural continuation of (J. Inequal. Appl. 2017(1):149,
2017), we introduce new almost null and almost convergent double sequence spaces
B(Cf ) and B(Cf0 ) as the four-dimensional generalized difference matrix B(r, s, t,u)
domain in the spaces Cf and Cf0 , respectively. Firstly, we prove that the spaces B(Cf )
and B(Cf0 ) of double sequences are Banach spaces under some certain conditions.
Then we give an inclusion relation of these new almost convergent double sequence
spaces. Moreover, we identify the α-dual, β(bp)-dual and γ -dual of the space B(Cf ).
Finally, we characterize some new matrix classes (B(Mu) : Cf ), (Mu : B(Cf )), and we
complete this work with some significant results.
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1 Preliminaries, background and notation
We denote the set of all complex valued double sequence by �, which is a vector space with
coordinatewise addition and scalar multiplication. Any subspace of � is called a double
sequence space. A double sequence x = (xmn) of complex numbers is called bounded if
‖x‖∞ = supm,n∈N |xmn| < ∞, where N = {0, 1, 2, . . .}. The space of all bounded double se-
quences is denoted by Mu, which is a Banach space with the norm ‖ · ‖∞. Consider the
double sequence x = (xmn) ∈ �. If for every ε > 0 there exist a natural number n0 = n0(ε)
and l ∈ C such that |xmn – l| < ε for all m, n > n0, then the double sequence x is said to
be convergent in Pringsheim’s sense to the limit point l says that p – limm,n→∞ xmn = l;
where C indicates the complex field. The space Cp denotes the set of all convergent double
sequences in Pringsheim’s sense. Although every convergent single sequence is bounded,
this is not hold for double sequences in general. That is, there are such double sequences
which are convergent in Pringsheim’s sense but not bounded. Actually, Boos [3, p. 16]
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defined the sequence x = (xmn) by

xmn =

⎧
⎨

⎩

n m = 0, n ∈N;

0 m ≥ 1, n ∈N.

Then it is clearly seen that p – limm,n→∞ xmn = 0 but ‖x‖∞ = supm,n∈N |xmn| = ∞, so
x ∈ Cp – Mu. Now, we may denote the space of all both convergent in Pringsheim’s sense
and bounded double sequences by the set Cbp, i.e., Cbp = Cp ∩ Mu. Hardy [4] showed
that a double sequence x = (xmn) is said to converge regularly to l if x ∈ Cp and the limits
xm := limn xmn, (m ∈ N) and xn := limm xmn, (n ∈ N) exist, and the limits limm limn xmn and
limn limm xmn exist and are equal to the p-limit of x. Moreover, by Cbp0 and Cr0, we may
denote the spaces of all null double sequences contained in the sequence spaces Cbp and
Cr , respectively. Móricz [5] proved that the double sequence spaces Cbp, Cbp0, Cr and Cr0

are Banach spaces with the norm ‖ ·‖∞. The space Lq of all absolutely q-summable double
sequences corresponding to the space �q of q-summable single sequences was defined by
Başar and Sever [6], that is,

Lq :=
{

x = (xkl) ∈ � :
∑

k,l

|xkl|q < ∞
}

(1 ≤ q < ∞),

which is a Banach space with the norm ‖ · ‖q. Then the space Lu, which is a special case
of the space Lq with q = 1, was introduced by Zeltser [7].

Let λ be a double sequence space and converging with respect to some linear conver-
gence rule is ϑ – lim : λ → C. Then the sum of a double series

∑
i,j xij relating to this rule

is defined by ϑ –
∑

i,j xij = ϑ – limm,n→∞
∑m,n

i,j=0 xij. Throughout, the summation from 0 to
∞ without limits, that is,

∑
i,j xij means that

∑∞
i,j=0 xij.

Here and below, unless stated otherwise we consider that ϑ denotes any of the symbols
p, bp or r.

The α-dual λα , the β(ϑ)-dual λβ(ϑ) with respect to the ϑ-convergence and the γ -dual
λγ of the double sequence space λ are, respectively, defined by

λα :=
{

a = (akl) ∈ � :
∑

k,l

|aklxkl| < ∞ for all x = (xkl) ∈ λ

}

,

λβ(ϑ) :=
{

a = (akl) ∈ � : ϑ –
∑

k,l

aklxkl exists for all x = (xkl) ∈ λ

}

,

λγ :=

{

a = (akl) ∈ � : sup
m,n∈N

∣
∣
∣
∣
∣

m,n∑

k,l=0

aklxkl

∣
∣
∣
∣
∣

< ∞ for all x = (xkl) ∈ λ

}

.

It is easy to see for any two spaces λ and μ of double sequences that μα ⊂ λα whenever
λ ⊂ μ and λα ⊂ λγ . Additionally, it is well known that the inclusion λα ⊂ λβ(ϑ) holds, while
the inclusion λβ(ϑ) ⊂ λγ does not hold, since the ϑ-convergence of the double sequence
of partial sum of a double series does not guarantee its boundedness.

Here, we shall be concerned with a four-dimensional matrix transformation from any
double sequence space λ to any double sequence space μ. Given any four-dimensional
infinite matrix A = (amnkl), where m, n, k, l ∈ N, any double sequence x = (xkl), we write
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Ax = {(Ax)mn}m,n∈N for the A-transform of x, exists for every sequence x = (xkl) ∈ λ and it
is in μ; here

(Ax)mn = ϑ –
∑

k,l

amnklxkl for each m, n ∈ N. (1.1)

The four-dimensional matrix domain has fundamental importance for this article. There-
fore, this concept is presented in this paragraph. The ϑ-summability domain λ

(ϑ)
A of A in

a space λ of double sequences is described as

λ
(ϑ)
A =

{

x = (xkl) ∈ � : Ax =
(

ϑ –
∑

k,l

amnklxkl

)

m,n∈N
exists and is in λ

}

.

The notation (1.1) says that A maps the space λ into the space μ if λ ⊂ μ
(ϑ)
A and we de-

note the set of all four-dimensional matrices, transforming the space λ into the space μ,
by (λ : μ). Thus, A = (amnkl) ∈ (λ : μ) if and only if the double series on the right side of
(1.1) converges in the sense of ϑ for each m, n ∈N, i.e., Amn ∈ λβ(ϑ) for all m, n ∈N and we
have Ax ∈ μ for all x ∈ λ; where Amn = (amnkl)k,l∈N for all m, n ∈ N. Moreover, the follow-
ing definitions are significant in order to classify the four-dimensional matrices. A four-
dimensional matrix A is called Cϑ -conservative if Cϑ ⊂ (Cϑ )A, and it is called Cϑ -regular if
it is Cϑ -conservative and

ϑ – lim Ax = ϑ – lim
m,n→∞(Ax)mn = ϑ – lim

m,n→∞ xmn, where x = (xmn) ∈ Cϑ .

By using the notations of Zelster [8] we may define the double sequences ekl = (ekl
mn), e1, ek

and e by

ekl
mn =

⎧
⎨

⎩

1 (k, l) = (m, n);

0 otherwise,

e1 =
∑

k

ekl, ek =
∑

l

ekl and e =
∑

kl

ekl

for all k, l, m, n ∈ N and we may write the set 
 by 
 = span{ekl : k, l ∈N}.
In order to establish a new sequence space, special triangular matrices were previously

used. These new spaces derived by the domain of matrices are expansions or contractions
of the original space, in general. Adams [9] called the four-dimensional infinite matrix
A = (amnkl) a triangular matrix if amnkl = 0 for k > m or l > n or both. We also see by [9]
that an infinite matrix A = (amnkl) is said to be a triangular if amnmn 
= 0 for all m, n ∈ N.
Moreover, Cooke [10] showed that every triangular matrix has a unique inverse which is
also a triangular matrix.

The four-dimensional generalized difference matrix B(r, s, t, u) = {bmnkl(r, s, t, u)} and
matrix domain of it on some double sequence spaces was recently defined and studied
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by Tuǧ and Başar [1], and Tuǧ [2]. The matrix B(r, s, t, u) = {bmnkl(r, s, t, u)} was defined by

bmnkl(r, s, t, u) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

su (k, l) = (m – 1, n – 1),

st (k, l) = (m – 1, n),

ru (k, l) = (m, n – 1),

rt (k, l) = (m, n)

0 otherwise,

for r, s, t, u ∈R\{0} and for all m, n, k, l ∈ N. Therefore, the B(r, s, t, u)-transform of a double
sequence x = (xmn) was defined by

ymn :=
{

B(r, s, t, u)x
}

mn =
∑

k,l

bmnkl(r, s, t, u)xkl

= suxm–1,n–1 + stxm–1,n + ruxm,n–1 + rtxmn (1.2)

for all m, n ∈ N. Moreover, the matrix B–1(r, s, t, u) = F(r, s, t, u) = {fmnkl(r, s, t, u)}, which is
the inverse of the matrix B(r, s, t, u), was calculated to be

fmnkl(r, s, t, u) :=

⎧
⎨

⎩

(–s/r)m–k (–u/t)n–l

rt 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 otherwise,

for all m, n, k, l ∈ N. Furthermore, Tuǧ and Başar [1] obtained the relation between x =
(xmn) and y = (ymn):

xmn =
1
rt

m,n∑

k,l=0

(
–s
r

)m–k(–u
t

)n–l

ykl for all m, n ∈N. (1.3)

In this paper, as natural continuation of [2] and [11], we introduce new almost null
and almost convergent double sequence spaces B(Cf ) and B(Cf0 ) as the domain of four-
dimensional generalized difference matrix B(r, s, t, u) in the spaces Cf and Cf0 , respectively.
Throughout the paper, we suppose that the terms of the double sequence x = (xmn) and
y = (ymn) are connected with equation (1.3) and the four-dimensional generalized differ-
ence matrix B(r, s, t, u) = (bmnkl(r, s, t, u)) will be presented with B = (bmnkl).

2 The sequence space Cf of almost convergent double sequences
Lorentz [12] introduced the concept of almost convergence for a single sequence and
Móricz and Rhoades [13] extended and studied this concept for a double sequence. A dou-
ble sequence x = (xkl) of complex numbers is said to be almost convergent to a generalized
limit L if

p – lim
q,q′→∞

sup
m,n>0

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

xkl – L

∣
∣
∣
∣
∣

= 0.
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In this case, L is called the f2-limit of the double sequence x. Throughout the paper, Cf

denotes the space of all almost convergent double sequences, i.e.,

Cf :=

{

x = (xkl) ∈ � : ∃L ∈C 


p – lim
q,q′→∞

sup
m,n>0

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

xkl – L

∣
∣
∣
∣
∣

= 0, uniformly in m, n

}

.

It is well known that a convergent double sequence need not be almost convergent. But it
is well known that every bounded convergent double sequence is also almost convergent
and every almost convergent double sequence is bounded. That is, the inclusion Cbp ⊂
Cf ⊂Mu holds, and each inclusion is proper. A double sequence x = (xkl) is called almost
Cauchy, which was introduced by Čunjalo [14], if for every ε > 0 there exists a positive
integer K such that

∣
∣
∣
∣
∣

1
(q1 + 1)(q′

1 + 1)

m1+q1∑

k=m1

n1+q′
1∑

l=n1

xkl –
1

(q2 + 1)(q′
2 + 1)

m2+q2∑

k=m2

n2+q′
2∑

l=n2

xkl

∣
∣
∣
∣
∣

< ε

for all q1, q′
1, q2, q′

2 > K and (m1, n1), (m2, n2) ∈ N × N. Mursaleen and Mohiuddine [15]
proved that every double sequence is almost convergent if and only if it is almost
Cauchy.

Móricz and Rhoades [13] considered that four-dimensional matrices transforming every
almost convergent double sequence into a bp-convergent double sequence with the same
limit. Almost conservative and almost regular matrices for single sequences were charac-
terized by King [16] and almost Cϑ -conservative and almost Cϑ -regular four-dimensional
matrices for double sequences were defined and characterized by Zeltser et al. [17].
Mursaleen [18] introduced the almost strongly regularity for double sequences. A four-
dimensional matrix A = (amnkl) is called almost strongly regular if it transforms every al-
most convergent double sequence into an almost convergent double sequence with the
same limit.

Definition 2.1 ([17]) A four-dimensional matrix A = (amnkl) is said to be almost Cϑ -
conservative matrix if it transforms every ϑ-convergent double sequence x = (xkl) into
an almost convergent double sequence space, that is, A = (amnkl) ∈ (Cϑ : Cf ).

Definition 2.2 ([17]) A four-dimensional matrix A = (amnkl) is said to be almost Cϑ -
regular if it is Cϑ -conservative and f2 – lim Ax = ϑ – lim x for all x ∈ Cϑ .

3 Spaces of almost B-summable double sequences
In this present section, we define new almost convergent double sequence spaces B(Cf )
and B(Cf0 ) derived by the domain of four-dimensional matrix B in the spaces of all almost
convergent and almost null double sequences Cf and Cf0 , respectively. Then we show that
B(Cf ) and B(Cf0 ) are Banach spaces with the norm ‖x‖B(Cf ), and we prove an inclusion
relation.
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Now we may define the spaces B(Cf ) and B(Cf0 ) by

B(Cf ) :=

{

x = (xkl) ∈ � : ∃L ∈C 


p – lim
q,q′→∞

sup
m,n>0

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl – L

∣
∣
∣
∣
∣

= 0, uniformly in m, n

}

,

B(Cf0 ) :=

{

x = (xkl) ∈ � :

p – lim
q,q′→∞

sup
m,n>0

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣

= 0, uniformly in m, n

}

.

Theorem 3.1 The sequence spaces B(Cf ) and B(Cf0 ) are Banach spaces and linearly norm
isomorphic to the spaces Cf and Cf0 , respectively, with the norm defined by

‖x‖B(Cf ) = sup
q,q′ ,m,n∈N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣
. (3.1)

Proof Since in other cases it can be similarly proved, we prove the theorem only for the
space B(Cf ). Let us consider a Cauchy sequence x(j) = {x(j)

kl }k,l∈N ∈ B(Cf ). Then, for a given
ε > 0, there exists a positive integer M(ε) ∈N such that

∥
∥x(j) – x(i)∥∥

B(Cf ) = sup
q,q′ ,m,n∈N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

[(
Bx(j))

kl –
(
Bx(i))

kl

]
∣
∣
∣
∣
∣

< ε (3.2)

for all i, j > M(ε). Then we can read from equation (3.2) that {(Bx(j))kl}j∈N is Cauchy in Cf

for each k, l ∈ N. Since Cf is complete with the norm ‖x‖Cf (see [19]), it is convergent. Then
we may say that there exists a double sequence x = (xkl) ∈ Cf such that

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(
Bx(j))

kl → 1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

as j → ∞. Now, by taking the limit as i → ∞ on the equality (3.2), for every ε > 0 we have
for all k, l ∈ N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(
Bx(j))

kl –
1

(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣

< ε.

Moreover, since {(Bx(j))kl} ∈ Cf and every almost convergent double sequence is bounded,
there exists a positive real number K such that

sup
m,n∈N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(
Bx(j))

kl

∣
∣
∣
∣
∣
≤ K .
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Therefore, we are enabled to write the following inequality:

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(
Bx(j))

kl

–
1

(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(
Bx(j))

kl

∣
∣
∣
∣
∣

< ε + K .

Now we can say by taking the supremum over m, n ∈N and the p-limit as q, q′ → ∞ from
the inequality acquired above that

(m+q∑

k=m

n+q′
∑

l=n

(Bx)kl/
[
(q + 1)

(
q′ + 1

)]
)

∈ Cf ,

that is, x ∈ B(Cf ). We see from this approach that the space B(Cf ) is a Banach space with
the norm ‖ · ‖B(Cf ) defined by (3.1).

Now, we should show here that B(Cf ) ∼= Cf . To show this, we should prove the existence
of a linear bijection between the spaces B(Cf ) and Cf . Let us consider the transformation T
from B(Cf ) to Cf by x �→ Tx = y = Bx, with the notation of (1.2). The linearity and injectivity
of T is clear. Let us take any y = (ykl) ∈ Cf and consider the sequence x = (xkl) with respect
to the sequence y by equation (1.3) for all k, l ∈N. Then we have the following equality:

(Bx)kl = suxk–1,l–1 + stxk–1,l + ruxk,l–1 + rtxkl

= su
k–1,l–1∑

i,j=0

(
–s
r

)k–i–1(–u
t

)l–j–1 yij

rt

+ st
k–1,l∑

i,j=0

(
–s
r

)k–i–1(–u
t

)l–j yij

rt

+ ru
k,l–1∑

i,j=0

(
–s
r

)k–i(–u
t

)l–j–1 yij

rt

+ rt
k,l∑

i,j=0

(
–s
r

)k–i(–u
t

)l–j yij

rt

= ykl

for all k, l ∈ N. Thus, we arrive at the consequence that

p – lim
q,q′→∞

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl/
[
(q + 1)

(
q′ + 1

)]
= p – lim

q,q′→∞

m+q∑

k=m

n+q′
∑

l=n

ykl/
[
(q + 1)

(
q′ + 1

)]
.
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This shows that x = (xkl) ∈ B(Cf ). Then we may say that T is surjective. Moreover, one can
obtain the following equality:

‖x‖B(Cf ) = sup
q,q′ ,m,n∈N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣

= sup
q,q′ ,m,n∈N

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

ykl

∣
∣
∣
∣
∣

= ‖y‖Cf < ∞.

That is, T is norm preserving. Hence, T is linear bijection and B(Cf ) and Cf are linearly
norm isomorphic. This is what we proposed. �

Theorem 3.2 Let s = –r, t = –u. The inclusions Cf ⊂ B(Cf ) and Cf0 ⊂ B(Cf0 ) strictly hold.

Proof Firstly, we should prove that the inclusions Cf ⊂ B(Cf ) and Cf0 ⊂ B(Cf0 ) hold. Since
s = –r, t = –u, the four-dimensional matrix B = (bmnkl) satisfy the conditions of Lemma 4.8.
Then we can say that, for all x ∈ Cf (or Cf0 ), Bx ∈ Cf (or Cf0 ) whenever x ∈ B(Cf ) (or B(Cf0 )),
which means that the inclusions Cf ⊂ B(Cf ) and Cf0 ⊂ B(Cf0 ) hold.

In order to show that the inclusions are strict, we should show that the sets B(Cf )\Cf and
B(Cf0 )\Cf0 are not empty, that is, there exists a double sequence x = (xmn) which belongs to
B(Cf ) but not in Cf . Let consider a double sequence x = (xmn) by xmn = mn

rt for all m, n ∈N.
Since it is not bounded, it is obvious that x /∈ Cf . But if s = –r, t = –u, then we obtain the
B-transform of x as

(Bx)mn =
{

B(r, –r, t, –t)x
}

mn = rtxm–1,n–1 – rtxm–1,n – rtxm,n–1 + rtxmn

= rt
(m – 1)(n – 1)

rt
– rt

(m – 1)n
rt

– rt
m(n – 1)

rt
+ rt

mn
rt

= 1.

Therefore, we have the following equality with the above result:

1
(q + 1)(q′ + 1)

∣
∣
∣
∣
∣

m+q∑

k=m

n+q′
∑

l=n

(Bx)kl

∣
∣
∣
∣
∣

= 1.

After taking the supremum over m, n ∈ N in the above equality and applying the p-limit
as q, q′ → ∞ we see that Bx ∈ Cf . It can easily be shown that the sequence xmn = m

rt for all
m, n ∈N is in B(Cf0 ) \ Cf0 by the same reasoning as above. So we omit the details. �

4 The α-, β(ϑ )- and γ -duals of the sequence space B(Cf )
In this section, firstly, we calculate the α-dual of the space B(Cf ). Then we give some known
definitions and lemmas which will be used in the proof of β(bp)-dual of the space B(Cf )
and in the fourth section of this paper. Moreover, we characterize a new four-dimensional
matrix class (Cf : Mu) in order to calculate the γ -dual of the space B(Cf ).
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Theorem 4.1 Let |s/r|, |u/t| < 1. The α-dual of the space B(Cf ) is the space Lu.

Proof We shall prove that the equality {B(Cf )}α = Lu and that the inclusions Lu ⊂ {B(Cf )}α
and {B(Cf )}α ⊂ Lu hold. For the first inclusion, let us take a sequence a = (akl) ∈ Lu and
x = (xkl) ∈ B(Cf ). Then there exists a double sequence y = (ykl) ∈ Cf with equation (1.2)
such that

p – lim
q,q′→∞

sup
m,n>0

∣
∣
∣
∣
∣

1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

ykl

∣
∣
∣
∣
∣

exists.

Moreover, the inclusion Cf ⊂ Mu holds, and there exists a positive real number K such
that supk,l |ykl| ≤ K . Since |s/r|, |u/t| < 1, we have the following inequality:

∑

k,l

|aklxkl| =
∑

k,l

|akl|
∣
∣
∣
∣
∣

k,l∑

i,j=0

(
–s
r

)k–i(–u
t

)l–j yij

rt

∣
∣
∣
∣
∣

≤ 1
|rt|

∑

k,l

|akl|
k,l∑

i,j=0

∣
∣
∣
∣

(
–s
r

)k–i(–u
t

)l–j∣∣
∣
∣|yij|

≤ K
|rt|

∑

k,l

|akl|
k,l∑

i,j=0

∣
∣
∣
∣
–s
r

∣
∣
∣
∣

k–i∣∣
∣
∣
–u
t

∣
∣
∣
∣

l–j

=
K
|rt|

∑

k,l

|akl|
(1 – | s

r |k+1

1 – | s
r |

)(1 – | u
t |l+1

1 – | u
t |

)

=
K
|rt|

(
1

1 – | s
r |

)(
1

1 – | u
t |

)∑

k,l

|akl|
(

1 –
∣
∣
∣
∣

s
r

∣
∣
∣
∣

k+1)(

1 –
∣
∣
∣
∣
u
t

∣
∣
∣
∣

l+1)

≤ K
|rt|

(
1

1 – | s
r |

)(
1

1 – | u
t |

)∑

k,l

|akl|

< ∞,

which says that a = (akl) ∈ {B(Cf )}α . Hence, the inclusion Lu ⊂ {B(Cf )}α holds.
Conversely, suppose that (akl) ∈ {B(Cf )}α \ Lu. Then we have

∑
k,l |aklxkl| < ∞ for all

x = (xkl) ∈ B(Cf ). When we define a double sequence x = (xkl) in the special case of x =
(xkl) = {(–1)k+l/(rt)} for r = αs, t = αu and α ∈ R – [–1, 1], it is trivial to see that x = (xkl) =
{(–1)k+l/(rt)} ∈ B(Cf ) but

∑

k,l

|aklxkl| =
1

|rt|
∑

k,l

|akl| = ∞.

This means that (akl) /∈ {B(Cf )}α , which is a contradiction. Therefore, (akl) must belong to
the space Lu. So, the inclusion {B(Cf )}α ⊂Lu holds. This completes the proof. �

Now we have the following significant lemmas, which will be used in this present section
and the fifth section of this work.

Lemma 4.2 ([17]) The following statements hold:
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(a) A four-dimensional matrix A = (amnkl) is almost Cbp-conservative, i.e., A ∈ (Cbp : Cf ),
iff the following conditions hold:

sup
m,n∈N

∑

k,l

|amnkl| < ∞, (4.1)

∃aij ∈C 
 bp – lim
q,q′→∞

a
(
i, j, q, q′, m, n

)
= aij,

uniformly in m, n ∈N for each i, j ∈N, (4.2)

∃u ∈C 
 bp – lim
q,q′→∞

∑

i,j

a
(
i, j, q, q′, m, n

)
= u,

uniformly in m, n ∈N, (4.3)

∃aij ∈C 
 bp – lim
q,q′→∞

∑

i

∣
∣a

(
i, j, q, q′, m, n

)
– aij

∣
∣ = 0,

uniformly in m, n ∈N for each j ∈N, (4.4)

∃aij ∈C 
 bp – lim
q,q′→∞

∑

j

∣
∣a

(
i, j, q, q′, m, n

)
– aij

∣
∣ = 0,

uniformly in m, n ∈N for each i ∈N, (4.5)

where a(i, j, q, q′, m, n) =
∑m+q

k=m
∑n+q′

l=n aklij/[(q + 1)(q′ + 1)]. In this case, a = (aij) ∈Lu and

f2 – lim Ax =
∑

i,j

aijxij +
(

u –
∑

i,j

aij

)

bp – lim
i,j→∞ xij,

that is,

bp – lim
q,q′→∞

∑

i,j

a
(
i, j, q, q′, m, n

)
xij =

∑

i,j

aijxij +
(

u –
∑

i,j

aij

)

bp – lim
i,j→∞ xij,

uniformly in m, n ∈N.

(b) A four-dimensional matrix A = (amnkl) is almost Cbp-regular, i.e., A ∈ (Cbp : Cf )reg, iff
the conditions (4.1)-(4.5) hold with aij = 0 for all i, j ∈N and u = 1

Lemma 4.3 ([17]) The following statements hold:
(a) A four-dimensional matrix A = (amnkl) is almost Cr-conservative, i.e., A ∈ (Cr : Cf ) iff

(4.1)-(4.3) and the following conditions hold:

∃j0 ∈N 
 bp – lim
q,q′→∞

∑

i

a
(
i, j0, q, q′, m, n

)
= uj0 ,

uniformly in m, n ∈N, (4.6)

∃i0 ∈ N 
 bp – lim
q,q′→∞

∑

j

a
(
i0, j, q, q′, m, n

)
= vi0 ,

uniformly in m, n ∈N, (4.7)
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where a(i, j, q, q′, m, n) is defined as in Lemma 4.2. In this case, a = (aij) ∈Lu;
(uj), (vi) ∈ �1 and

f2 – lim Ax =
∑

ij

aijxij +
∑

i

(

vi –
∑

j

aij

)

xi +
∑

j

(

uj –
∑

i

aij

)

xj

+
(

u +
∑

i,j

aij –
∑

i

vi –
∑

j

uj

)

r – lim
i,j→∞ xij.

(b) A four-dimensional matrix A = (amnkl) is almost Cr-regular, i.e., A ∈ (Cr : Cf )reg, iff the
conditions (4.1)-(4.7) hold with aij = uj = vi = 0 for all i, j ∈N and u = 1.

Lemma 4.4 ([17]) The following statements hold:
(a) A four-dimensional matrix A = (amnkl) is almost Cp-conservative, i.e., A ∈ (Cp : Cf ), iff

(4.1)-(4.3) hold. In this case a = (aij) ∈Lu, (aij0 )i∈N, (ai0j)j∈N ∈ ϕ where ϕ denotes the
space of all finitely non-zero sequences and

f2 – lim Ax =
∑

i,j

aijxij +
(

u –
∑

i,j

aij

)

p – lim
i,j→∞ xij.

(b) A four-dimensional matrix A = (amnkl) is almost Cp-regular, i.e., A ∈ (Cr : Cf )reg, iff
the conditions (4.1)-(4.3) hold with aij = 0 for all i, j ∈N and u = 1.

Lemma 4.5 ([13]) The following statements hold:
(a) A four-dimensional matrix A = (amnkl) ∈ (Cf : Cbp) iff the condition (4.1) and the

following conditions hold:

∃akl ∈C 
, bp – lim
m,n→∞ amnkl = akl for all k, l ∈N, (4.8)

∃u ∈C 
, bp – lim
m,n→∞

∑

k,l

amnkl = u, (4.9)

∃k0 ∈N 
, bp – lim
m,n→∞

∑

l

|amn,k0,l – ak0,l| = 0 for all l ∈N, (4.10)

∃l0 ∈N 
, bp – lim
m,n→∞

∑

k

|amnk,l0 – ak,l0 | = 0 for all k ∈N, (4.11)

bp – lim
m,n→∞

∑

k

∑

l

|�01amnkl| = 0, (4.12)

bp – lim
m,n→∞

∑

k

∑

l

|�10amnkl| = 0. (4.13)

(b) A four-dimensional matrix A = (amnkl) is strongly regular, i.e., A ∈ (Cf : Cbp)reg, iff the
conditions (4.1) and (4.8)-(4.13) hold with akl = 0 for all k, l ∈N and u = 1, where
�10amnkl = amnkl – am,n,k+1,l and �01amnkl = amnkl – am,n,k,l+1, (m, n, k, l = 0, 1, 2, . . .).

Lemma 4.6 ([20]) The four-dimensional matrix A = (amnkl) ∈ (Mu : Cf ) iff the condition
(4.1) and the following conditions hold:

∃βkl ∈C 
 f2 – lim
m,n→∞ amnkl = βkl for all k, l ∈N, (4.14)
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for every m, n, j ∈N,∃K ∈N 
 1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

aklij = 0,

for all q, q′, i > K , (4.15)

for every m, n, i ∈N,∃L ∈N 
 1
(q + 1)(q′ + 1)

m+q∑

k=m

n+q′
∑

l=n

aklij = 0,

for all q, q′, j > L. (4.16)

Lemma 4.7 ([21]) A four-dimensional matrix A = (amnkl) is almost regular, i.e., A ∈ (Cbp :
Cf )reg, iff the condition (4.1) and the following conditions hold:

lim
q,q′→∞

a
(
i, j, q, q′, m, n

)
= 0,

uniformly in m, n ∈N for each i, j ∈N, (4.17)

lim
q,q′→∞

∑

i,j

a
(
i, j, q, q′, m, n

)
= 1,

uniformly in m, n ∈N, (4.18)

lim
q,q′→∞

∑

i

∣
∣a

(
i, j, q, q′, m, n

)∣
∣ = 0,

uniformly in m, n ∈N for each j ∈N, (4.19)

lim
q,q′→∞

∑

j

∣
∣a

(
i, j, q, q′, m, n

)∣
∣ = 0,

uniformly in m, n ∈N for each i ∈N, (4.20)

where a(i, j, q, q′, m, n) is defined as in Lemma 4.2.

Lemma 4.8 ([18]) A four-dimensional matrix A = (amnkl) is almost strongly regular, i.e.,
A ∈ (Cf : Cf )reg, iff A is almost regular and the following two conditions hold:

lim
q,q′→∞

∑

i

∑

j

∣
∣�10a

(
i, j, q, q′, m, n

)∣
∣ = 0 uniformly in m, n ∈N, (4.21)

lim
q,q′→∞

∑

j

∑

i

∣
∣�01a

(
i, j, q, q′, m, n

)∣
∣ = 0 uniformly in m, n ∈N, (4.22)

where

�10a
(
i, j, q, q′, m, n

)
= a

(
i, j, q, q′, m, n

)
– a

(
i + 1, j, q, q′, m, n

)
,

�01a
(
i, j, q, q′, m, n

)
= a

(
i, j, q, q′, m, n

)
– a

(
i, j + 1, q, q′, m, n

)
.

Now let us define the sets dk with k ∈ {1, 2, . . . , 7}, for the compressing of the following
theorems and their proofs, as follows:

d1 =

{

a = (akl) ∈ � : sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

< ∞
}

,
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d2 =

{

a = (akl) ∈ � :

∃βkl ∈ C 
,ϑ – lim
m,n→∞

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l

aji = βkl

}

,

d3 =

{

a = (akl) ∈ � :

∃u ∈C 
,ϑ – lim
m,n→∞

∑

k,l

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
= u

}

,

d4 =

{

a = (akl) ∈ � : ∃l0 ∈N 
,

ϑ – lim
m,n→∞

∑

k

∣
∣
∣
∣
∣

m,n∑

j,i=k,l0

(
–s
r

)j–k(–u
t

)i–l0
aji – βk,l0

∣
∣
∣
∣
∣

= 0 for all k ∈N

}

,

d5 =

{

a = (akl) ∈ � : ∃k0 ∈N 
,

ϑ – lim
m,n→∞

∑

l

∣
∣
∣
∣
∣

m,n∑

j,i=k0,l

(
–s
r

)j–k0(–u
t

)i–l

aji – βk0,l

∣
∣
∣
∣
∣

= 0 for all l ∈N

}

,

d6 =

{

a = (akl) ∈ � :

ϑ – lim
m,n→∞

∑

k

∑

l

∣
∣
∣
∣
∣
�01

{ m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

}∣
∣
∣
∣
∣

= 0

}

,

d7 =

{

a = (akl) ∈ � :

ϑ – lim
m,n→∞

∑

k

∑

l

∣
∣
∣
∣
∣
�10

{ m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

}∣
∣
∣
∣
∣

= 0

}

.

Theorem 4.9 The β(bp)-dual of the space B(Cf ) is the set
⋂7

i=1 di

Proof Suppose that a = (amn) ∈ � and x = (xmn) ∈ B(Cf ). Then we have y = Bx ∈ Cf . There-
fore, we have the equality (3.16), which is in [2, Theorem 3.11, p.14] with the m, nth partial
sum of

∑
k,l aklxkl with

∑m,n
k,l=0 aklxkl = (Dy)mn. By taking the limit as m, n → ∞ from this

equality, we have the four-dimensional matrix D = (dmnkl), which was also defined by Tuǧ
[2, p. 14] as

dmnkl =

⎧
⎨

⎩

∑m,n
j,i=k,l(

–s
r )j–k( –u

t )i–l aji
rt 0 ≤ k ≤ m, 0 ≤ l ≤ n;

0 otherwise,
(4.23)

for all k, l, m, n ∈ N. Then one can obtain from the above consequences ax ∈ CSbp when-
ever x = (xmn) ∈ B(Cf ) iff Dy ∈ Cbp whenever y = (ymn) ∈ Cf . This says that a = (amn) ∈
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{B(Cf )}β(ϑ) iff D ∈ (Cf : Cbp). Thus, we can say that the conditions of Lemma 4.5(a) hold
with dmnkl instead of amnkl , i.e.,

sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

< ∞,

∃βkl ∈C 
, bp – lim
m,n→∞

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l

aji = βkl,

∃u ∈C 
, bp – lim
m,n→∞

∑

k,l

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
= u,

∃l0 ∈N 
, bp – lim
m,n→∞

∑

k

∣
∣
∣
∣
∣

m,n∑

j,i=k,l0

(
–s
r

)j–k(–u
t

)i–l0
aji – βk,l0

∣
∣
∣
∣
∣

= 0,

for all k ∈N,

∃k0 ∈N 
, bp – lim
m,n→∞

∑

l

∣
∣
∣
∣
∣

m,n∑

j,i=k0,l

(
–s
r

)j–k0(–u
t

)i–l

aji – βk0,l

∣
∣
∣
∣
∣

= 0,

for all l ∈N,

bp – lim
m,n→∞

∑

k

∑

l

∣
∣
∣
∣
∣
�01

{ m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

}∣
∣
∣
∣
∣

= 0,

bp – lim
m,n→∞

∑

k

∑

l

∣
∣
∣
∣
∣
�10

{ m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

}∣
∣
∣
∣
∣

= 0,

which is the set
⋂7

i=1 di. This is the result we desired. �

Now we characterize a new four-dimensional matrix class (Cf : Mu), which will be used
in the proof of γ -dual of Cf and in some corollaries of the fifth section of this work.

Theorem 4.10 A four-dimensional matrix A = (amnkl) ∈ (Cf : Mu) if and only if Amn ∈
Cβ(ϑ)

f and condition (4.1) hold.

Proof Suppose that A = (amnkl) ∈ (Cf : Mu). Then Ax exists and is in Mu for all x ∈ Cf .
Then Amn ∈ Cβ(ϑ)

f for all m, n ∈ N. Moreover, it is well known from [15] that the inclusion
Cf ⊂Mu holds. So, we can say that the inclusion (Cf : Mu) ⊂ (Mu : Mu) holds and it gives
us the result that the condition (4.1) is necessary.

Conversely, suppose that the condition (4.1) holds and Amn ∈ Cβ(ϑ)
f . Let us take any se-

quence x = (xkl) ∈ Cf ⊂ Mu, so there exists an M ∈ R
+ such that supk,l∈N |xkl| < M. Since

Amn ∈ Cβ(ϑ)
f for each m, n ∈N, then Ax exists. Since the inequality

∣
∣
∣
∣

∑

k,l

amnklxkl

∣
∣
∣
∣ ≤

∑

k,l

|amnklxkl|
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holds for each fixed m, n ∈N, one can obtain by taking the supremum over m, n ∈ N

sup
m,n∈N

∣
∣
∣
∣

∑

k,l

amnklxkl

∣
∣
∣
∣ ≤ sup

m,n∈N

∑

k,l

|amnkl||xkl|

≤ M sup
m,n∈N

∑

k,l

|amnkl| < ∞.

This shows the fact that Ax ∈Mu, which completes the proof. �

Theorem 4.11 The γ -dual of the space B(Cf ) is the set d1 ∩ CSϑ .

Proof Let us suppose that a = (amn) ∈ � and x = (xmn) ∈ B(Cf ). Then we have y = Bx ∈ Cf .
Therefore, by following a similar way to that used in the proof of Theorem 4.9, we may say
that ax ∈ BS whenever x = (xmn) ∈ B(Cf ) if and only if Dy ∈ Mu whenever y = (ymn) ∈ Cf ,
where the matrix D = (dmnkl) was defined by (4.23). This means that a = (amn) ∈ {B(Cf )}γ
if and only if D ∈ (Cf : Mu). Thus, one can be seen that the conditions of Theorem 4.10
hold for the matrix D = (dmnkl). That is, Dmn ∈ Cβ(ϑ)

f for each fixed m, n ∈ N and

sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

< ∞.

This means that the γ -dual of the space B(Cf ) is the set d1 ∪ CSϑ as mentioned. �

5 Matrix transformations related to the sequence space B(Cf )
In this section, we characterize some new four-dimensional matrix classes (B(Mu) :
Cf ), (Mu : B(Cf )). Then we complete this section with some significant results of four-
dimensional matrix mapping via the dual summability methods for double sequences
which have been introduced and studied by Başar [22] and Yeşilkayagil and Başar [23],
and which have recently been applied in [2].

Theorem 5.1 A four-dimensional matrix A = (amnkl) ∈ (B(Cf ) : Mu) if and only if Amn ∈
{B(Cf )}β(ϑ) and the following condition holds:

sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt

∣
∣
∣
∣
∣

< ∞. (5.1)

Proof Suppose that A = (amnkl) ∈ (B(Cf ) : Mu). Then Ax exists and is in Mu for all x =
(xmn) ∈ B(Cf ), which implies that Amn ∈ {B(Cf )}β(ϑ) for all m, n ∈N. Thus, we may have the
following equality derived from the partial sum of the series

∑
k,l amnklxkl :

m,n∑

k,l=0

amnklxkl =
m,n∑

k,l=0

amnkl

k,l∑

j,i=0

(
–s
r

)k–j(–u
t

)l–i yji

rt

=
m,n∑

k,l=0

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l amnji

rt
ykl

= (Ey)mn, (5.2)
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where the four-dimensional matrix E = (emnkl) is defined by

emnkl =

⎧
⎨

⎩

∑m,n
j,i=k,l(

–s
r )j–k( –u

t )i–l amnji
rt 0 ≤ k ≤ m, 0 ≤ l ≤ n;

0 otherwise,

for all m, n ∈N. Then, by taking the ϑ-limit on (5.2) as m, n → ∞, we may say that Ax = Ey.
Hence, Ey ∈ Mu whenever y ∈ Cf , that is, E ∈ (Cf : Mu). In this instance, the condi-
tions of Theorem 4.10 hold with E = (emnkl) instead of A = (amnkl), i.e., Emn ∈ {Cf }β(ϑ) and
supm,n∈N

∑
k,l |emnkl| < ∞. This completes the proof. �

Theorem 5.2 A four-dimensional matrix A = (amnkl) ∈ (Cf : B(Mu)) if and only if Amn ∈
{Cf }β(ϑ) and the following condition hold:

sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

i,j=0

bmnij(r, s, t, u)aijkl

∣
∣
∣
∣
∣

< ∞. (5.3)

Proof The proof can be shown by the same method as is followed in Theorem 5.1 by using
equation (4.6) [24, Theorem 4.7] between the elements of the four-dimensional matrices
A = (amnkl) and G = (gmnkl). So we omit the details. �

Tuǧ [2] has recently applied the dual summability methods for double sequences which
has been introduced and studied by Başar [22], and Yeşilkayagil and Başar [23]. In this
work, we use the relation between the four-dimensional matrices E = (emnkl), e(m, n),
G = (gmnkl) and H = (hmnkl) with A = (amnkl), which has been proved and studied in [2,
Lemma 4.2, Theorem 4.5].

Now, we may give the relation between the four-dimensional matrices E = (emnkl),
e(m, n), G = (gmnkl) and H = (hmnkl) by

emnkl =
m,n∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt
,

e(m, n) =
m,n∑

k,l=0

∞∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt
,

gmnkl =
m,n∑

i,j=0

bmnijaijkl, and

hmnkl =
m,n∑

i,j=k,l

bmnijeijkl

for all m, n, k, l ∈ N.
Now we may give the following new significant results for the four-dimensional infinite

matrix A = (amnkl).

Corollary 5.3 The following statements hold.
(i) A ∈ (B(Cbp) : Cf ) iff (4.1)-(4.5) hold with emnkl instead of amnkl .

(ii) A ∈ (B(Cr) : Cf ) iff (4.1)-(4.3) and (4.6)-(4.7) hold with emnkl instead of amnkl .
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(iii) A ∈ (B(Cp) : Cf ) iff (4.1)-(4.3) hold with emnkl instead of amnkl .
(iv) A ∈ (B(Mu) : Cf ) iff (4.1) and (4.14)-(4.16) hold with emnkl instead of amnkl .
(v) A ∈ (B(Cf ) : Cbp) iff (4.1) and (4.8)-(4.13) hold with emnkl instead of amnkl .

Corollary 5.4 The following statements hold.
(i) A ∈ (Cp : B(Cf )) iff (4.1)-(4.3) hold with gmnkl instead of amnkl .

(ii) A ∈ (Cbp : B(Cf )) iff (4.1)-(4.5) hold with gmnkl instead of amnkl .
(iii) A ∈ (Cr : B(Cf )) iff (4.1)-(4.3) and (4.6)-(4.7) hold with gmnkl instead of amnkl .
(iv) A ∈ (Mu : B(Cf )) iff (4.1) and (4.14)-(4.16) hold with gmnkl instead of amnkl .
(v) A ∈ (Cf : B(Cbp)) iff (4.1) and (4.8)-(4.13) hold with gmnkl instead of amnkl .

Corollary 5.5 The following statements hold.
(i) A ∈ (B(Cp) : B(Cf )) iff (4.1)-(4.3) hold with hmnkl instead of amnkl .

(ii) A ∈ (B(Cbp) : B(Cf )) iff (4.1)-(4.5) hold with hmnkl instead of amnkl .
(iii) A ∈ (B(Cr) : B(Cf )) iff 4.1)-(4.3) and (4.6)-(4.7) hold with hmnkl instead of amnkl .
(iv) A ∈ (B(Mu) : B(Cf )) iff (4.1) and (4.14)-(4.16) hold with hmnkl instead of amnkl .
(v) A ∈ (B(Cf ) : B(Cbp)) iff (4.1) and (4.8)-(4.13) hold with hmnkl instead of amnkl .

(vi) A ∈ (B(Cf ) : B(Mu)) iff (4.1) hold with hmnkl instead of amnkl .

Corollary 5.6 The following statements hold.
(i) A ∈ (B(Cf ) : CSbp) iff (4.1) and (4.8)-(4.13) hold with e(m, n) instead of amnkl .

(ii) A ∈ (B(Cf ) : BS) iff (4.1) hold with e(m, n) instead of amnkl .

Corollary 5.7 The following statements hold.
(i) A ∈ (B(Cf ) : Cf ; p) iff (4.1), (4.17)-(4.22) hold with emnkl instead of amnkl .

(ii) A ∈ (Cf : B(Cf ); p) iff (4.1), (4.17)-(4.22) hold with gmnkl instead of amnkl .
(iii) A ∈ (B(Cf ) : B(Cf ); p) iff (4.1), (4.17)-(4.22) hold with hmnkl instead of amnkl .

6 Conclusion
The concept of almost convergence of single sequence was introduced by Lorentz [12]. In
2010, Mursaleen [25] investigated the certain properties of the space of almost convergent
sequences denoted by f . Then many mathematicians have studied the matrix domain on
almost null and almost convergent sequences spaces (see [26–29]).

The almost convergence for double sequence was introduced by Moricz and Rhoades
[13] and studied by many researchers (see [15, 21, 30–38]). Yeşilkayagil and Başar [19]
recently studied the topological properties of the spaces of almost null and almost conver-
gent double sequences.

In this work, we studied the domain of the four-dimensional generalized difference ma-
trix B = (bmnkl) in the spaces of almost null and almost convergent double sequences and
examined some topological properties. Moreover, we determined the α-, β(bp)- and γ -
duals of the space B(Cf ) and characterized some new classes of four-dimensional matrix
mappings related with the sequence space B(Cf ). The characterization of the matrix classes
(Cf : Cp), (Cf : Cr), (B(Cf ) : Cp) and (B(Cf ) : Cr), and (Ls′ : Cf ), (B(Ls′ ) : Cf ), (Ls′ : B(Cf )) in the
two cases 0 < s′ < 1 and 1 < s′ < ∞, and the β(p)-dual and β(r)-dual of the space B(Cf ) are
still open problems.
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the revised version of this paper, which improved the presentation and readability. I also would like to thank the audience
of ICAAM-2016 for their valuable suggestions to improve the quality of this study. This work was supported by the
Research Center of Ishik University, Erbil-Iraq.

Competing interests
The author declares that there are no competing interests.

Authors’ contributions
The author defined new almost convergent and almost null double sequence spaces which were derived as the domain
of four-dimensional generalized difference matrix B = (bmnkl) and proved some topological related theorems. Moreover,
the author computed the α-, β(bp)- and γ -duals of this new almost convergent double sequence spaces and lastly,
characterized some new matrix classes. In the last section, some studies were summarized and some open problems
were given by the author. The author read and approved the final manuscript.

Article information
The extended abstract of this article has been published in the special issue of the collection of articles from Springer
book series ‘Proceedings in Mathematics and Statistics’ with the materials of the conference ‘Functional analysis in
interdisciplinary applications’ which is organized in the framework of the VI Congress of the Turkic World Mathematical
Society (Astana, Kazakhstan, October 2-5, 2017).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 October 2017 Accepted: 28 December 2017

References
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