
Altangerel Journal of Inequalities and Applications  (2018) 2018:13 
https://doi.org/10.1186/s13660-017-1603-9

R E S E A R C H Open Access

Gap functions for quasi-variational
inequalities via duality
L Altangerel*

*Correspondence:
altangerel@gmit.edu.mn
German-Mongolian Institute for
Resources and Technology, Nalaikh,
Mongolia

Abstract
This paper deals with an application of duality theory in optimization to the
construction of gap functions for quasi-variational inequalities. The same approach
was investigated for variational inequalities and equilibrium problems in (Pac. J.
Optim. 2(3): 667-678, 2006; Asia-Pac. J. Oper. Res. 24(3): 353-371, 2007), and the study
shows that we can obtain some previous results for variational inequalities as special
cases. Moreover, some applications dealing with the generalized Nash equilibrium
problems and mixed variational inequalities are presented.

1 Introduction
The quasi-variational inequality which is a generalization of the variational inequality
problem was introduced first by Bensoussan et al. in [3] in the context of impulse control
problems. The quasi-variational inequalities have many applications in economics, game
theory, optimization and other applied sciences. It is well known that the generalized Nash
equilibrium problem can be reduced to the quasi-variational inequality problem (see [4]).

A gap function approach is one of the main tools for solving variational inequalities.
Different approaches on gap functions for quasi-variational inequalities have been inves-
tigated by various authors [5–9]. On the other hand, by using different dual problems in
convex optimization (see [10, 11]), gap functions for variational inequalities and equilib-
rium problems have been investigated in [1, 2]. Specially, in [2], based on the conjugate du-
ality for optimization problem, some gap functions for mixed variational inequalities, also
dual gap functions for the variational inequality and the relation between these functions
have been investigated. However, it still remains an open question how the same approach
can be extended to quasi-variational inequalities. This paper aims to answer this question
by applying duality results from [12] which deals with minimization of a convex function
over the solution set of a range inclusion problem determined by a set-valued mapping.

The paper is organized as follows. Section 2 deals with some preliminary results from
[12]. In Section 3 we consider the duality based approach on gap functions for quasi-
variational inequalities. Section 4 is devoted to the investigation of gap functions for mixed
quasi-variational inequalities. Finally, some applications dealing with mixed variational
inequalities and the generalized Nash equilibrium problems are presented in Section 5.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-017-1603-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1603-9&domain=pdf
http://orcid.org/0000-0001-5521-2439
mailto:altangerel@gmit.edu.mn


Altangerel Journal of Inequalities and Applications  (2018) 2018:13 Page 2 of 8

2 Preliminaries
We consider the following optimization problem:

(P) inf
0∈F(x)

f (x),

where f : Rn → R is a given function and F : Rn ⇒ R
n is a set-valued mapping such that

dom f ∩ F–1(0) �= ∅.
Then the corresponding dual problem becomes

(D) sup
p∈Rn

inf
x∈Rn

[
f (x) + sF (x, p)

]
,

where sF : Rn ×R
n →R is the lower support function associated with F defined by

sF (x, p) = inf
y∈F(x)

〈p, y〉,

and 〈·, ·〉 is the Euclidean inner product.

Proposition 1 ([12]) Let f : Rn →R be a proper and convex function and F : Rn ⇒R
n be

a convex set-valued mapping. If the constraint qualification

(CQ) ∃x̄ ∈ ri(dom f ) ∩ ri(dom F) and 0 ∈ ri
(
F(x̄)

)

is fulfilled, then for (P) and (D) strong duality holds, i.e., ∃p̄ ∈R
n such that

inf
0∈F(x)

f (x) = sup
p∈Rn

inf
x∈Rn

[
f (x) + sF (x, p)

]

= inf
x∈Rn

[
f (x) + sF (x, p̄)

]
,

where dom h is the effective domain of a given function h : Rn →R and ri(C) is the relative
interior of a given set C ⊆R

n.

3 Gap function for quasi-variational inequalities
Let T : Rn →R

n be a continuous vector-valued function and K : Rn ⇒R
n be a set-valued

mapping such that K(x) is nonempty, closed and convex for each x ∈R
n. Then the quasi-

variational inequality problem consists in finding a vector x ∈ K(x) such that

(QVI)
〈
T(x), y – x

〉 ≥ 0, ∀y ∈ K(x).

For a fixed x ∈R
n, (QVI) can be rewritten as an optimization problem

(
PQVI ; x

)
inf

y∈K (x)

〈
T(x), y – x

〉
.

Let us define a function γ QVI(x) : Rn →R for x ∈R
n (cf. [2])

γ QVI(x) := –v
(
DQVI ; x

)
,
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where v(DQVI ; x) denotes the optimal objective value of the dual problem for (PQVI ; x).
Since (PQVI ; x) can be reformulated as

inf
0∈K (x)–y

〈
T(x), y – x

〉
,

the dual problem for (PQVI ; x) turns out to be

(
DQVI ; x

)
sup
p∈Rn

inf
y∈Rn

[〈
T(x), y – x

〉
+ sK (x)–id(y, p)

]

= sup
p∈Rn

inf
y∈Rn

[〈
T(x), y

〉
+ sK (x)–id(y, p)

]
–

〈
T(x), x

〉
.

Consequently, we have

γ QVI(x) =
〈
T(x), x

〉
– sup

p∈Rn
inf

y∈Rn

[〈
T(x), y

〉
+ sK (x)–id(y, p)

]
.

Let us recall now the definition of a gap function for quasi-variational inequalities and give
an auxiliary result.

Definition 1 A function γ : Rn →R is said to be a gap function for the problem (QVI) if
it satisfies the following properties:

(i) γ (y) ≥ 0, ∀y ∈ K(x);
(ii) γ (x) = 0 if and only if x solves the problem (QVI).

Lemma 1 Let K : Rn ⇒ R
n be a set-valued mapping and p ∈ R

n be fixed. Then, for any
x ∈R

n, it holds

sK (x)–id(y, p) = sK (x, p) – 〈p, y〉.

Proof Let x ∈R
n and p ∈R

n be fixed. Then, by definition, we have

sK (x)–id(y, p) = inf
z∈K (x)–y

〈p, z〉

(z + y := t) = inf
t∈K (x)

〈p, t – y〉 = inf
t∈K (x)

〈p, t〉 – 〈p, y〉 = sK (x, p) – 〈p, y〉. �

Proposition 2 For the problem (QVI), we have

γ QVI(x) =

⎧
⎨

⎩
– infy∈F(x)〈T(x), y – x〉, p = T(x),

+∞, otherwise.

Proof By using Lemma 1, one obtains that

γ QVI(x) =
〈
T(x), x

〉
– sup

p∈Rn
inf

y∈Rn

[〈
T(x), y

〉
+ sK (x)–id(y, p)

]

=
〈
T(x), x

〉
– sup

p∈Rn

[
sK (x, p) + inf

y∈Rn

〈
T(x) – p, y

〉]
.
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From

inf
y∈Rn

〈
T(x) – p, y

〉
=

⎧
⎨

⎩
0, T(x) – p = 0,

–∞, otherwise,

it follows that

γ QVI(x) =

⎧
⎨

⎩
〈T(x), x〉 – supp∈Rn sK (x, T(x)), p = T(x),

+∞, otherwise

=

⎧
⎨

⎩
〈T(x), x〉 – infy∈F(x)〈T(x), y〉, p = T(x),

+∞, otherwise

=

⎧
⎨

⎩
– infy∈F(x)〈T(x), y – x〉, p = T(x),

+∞, otherwise. �

Remark 1 A gap function γ (x) = – infy∈F(x)〈T(x), y – x〉 was investigated in [7] (see also
[6]).

4 Gap functions for mixed quasi-variational inequalities
Let T : Rn →R

n be a continuous vector-valued function and K : Rn ⇒R
n be a set-valued

mapping such that K(x) is nonempty, closed and convex for each x ∈ R
n. Let ϕ : Rn →R be

a given function. Then the mixed quasi-variational inequality problem consists in finding
a vector x ∈ K(x) such that (cf. [13])

(MQVI)
〈
T(x), y – x

〉
+ ϕ(y) – ϕ(x) ≥ 0, ∀y ∈ K(x).

Rewriting (MQVI) as an optimization problem

(
PMQVI ; x

)
inf

y∈K (x)

[〈
T(x), y – x

〉
+ ϕ(y) – ϕ(x)

]

and repeating the same techniques in Section 3, we can define the following function:

γ MQVI(x) = – sup
p∈Rn

inf
y∈Rn

[〈
T(x), y – x

〉
+ ϕ(y) – ϕ(x) + sK (x)–id(y, p)

]
.

It can be rewritten as

γ MQVI(x) =
〈
T(x), x

〉
+ ϕ(x) – sup

p∈Rn
inf

y∈Rn

[〈
T(x), y

〉
+ ϕ(y) + sK (x, p) – 〈p, y〉]

=
〈
T(x), x

〉
+ ϕ(x) + inf

p∈Rn
[–sK (x, p) – inf

y∈Rn

[〈
T(x) – p, y

〉
– ϕ(y)

]

=
〈
T(x), x

〉
+ ϕ(x) + inf

p∈Rn

[
–sK (x, p) + ϕ∗(p – T(x)

)]
,

where h∗ : Rn → R is the conjugate function of a given function h : Rn → R defined by
h∗(p) = supx∈Rn [〈p, x〉 – h(x)].
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Theorem 1 Let K : Rn ⇒ R
n be a set-valued mapping such that K(x) is nonempty, closed

and convex for each x ∈ R
n and ϕ be convex. If, for each x ∈ R

n, the constraint qualifica-
tion

(CQ; x) ∃x̄ ∈ ri(domϕ) and 0 ∈ ri
(
K(x) – x̄

)

is fulfilled, then γ MQVI is a gap function for (MQVI).

Proof
(i) Let x ∈ R

n be fixed. By weak duality, one gets

v
(
DMQVI , x

) ≤ v
(
PMQVI , x

) ≤ 0,

where (DMQVI ; x) is a dual problem for (PMQVI ; x). Consequently, we have
γ MQVI(x) = –v(DMQVI , x) ≥ 0.

(ii) If γ MQVI(x) = 0, then

0 = v
(
DMQVI , x

) ≤ v
(
PMQVI , x

) ≤ 0.

In other words, v(PMQVI , x) = 0, which means that x is a solution of (MQVI).
Conversely, if x is a solution to the problem (MQVI), then v(PMQVI , x) = 0. By
Proposition 1, we obtain that

γ MQVI(x) = –v
(
DMQVI , x

)
= –v

(
PMQVI , x

)
= 0. �

Remark 2 Let us assume that T : Rn → R
n is affine and K : R ⇒ R

n is a set-valued
mapping. It is easy to check that sK (x, p) is concave with respect to p. By assumption,
ϕ∗(p – T(x)) is convex, and therefore, the last term in γ MQVI is a convex optimization
problem for fixed x ∈R

n:

inf
p∈Rn

[
–sK (x, p) + ϕ∗(p – T(x)

)]
.

Remark 3 Let K(x) ≡ K . Then we have the mixed variational inequality which consists in
finding a vector x ∈ K such that

(MVI)
〈
T(x), y – x

〉
+ ϕ(y) – ϕ(x) ≥ 0, ∀y ∈ K .

In this case, we have sK (x, p) = –δ∗
K (–p), where δK : Rn →R

δK (y) =

⎧
⎨

⎩
0, if y ∈ K ,

+∞, otherwise,

denotes the indicator function of the set K . Consequently, one obtains

γ MVI(x) =
〈
T(x), x

〉
+ ϕ(x) + inf

p∈Rn

[
δK (–p) + ϕ∗(p – T(x)

)]
,

which is nothing else than the one investigated in [2].
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5 Special cases
5.1 The generalized Nash equilibrium problems
The generalized Nash equilibrium problem (GNEP for short) is an extension of the clas-
sical Nash equilibrium problem, in which each player’s strategy set depends on the ri-
val player’s strategies. We refer to [14] for the excellent comprehensive surveys on the-
ories and algorithms for GNEP. We consider N player’s game. Each player k controls
his decision variable xk ∈ R

nk , nk ∈ N, such that the vector x = (x1, . . . , xN ) ∈ R
n with

n = n1 + n2 + · · · + nN describes the decision vector of all players. We oft use the nota-
tion x = (xk , x–k), where x–k = (x1, x2, . . . , xk–1, xk+1, . . . , xN ). Furthermore, each player k has
a cost function θk : Rn → R and a strategy set Xk(x–k) ⊆ R

nk defined by the set-valued
mapping Xk : Rn–nk ⇒R

nk . Let

�(x) := X1
(
x–1) × · · · × XN

(
x–N)

.

Then (GNEP) consists in finding a vector x̄ = (x̄1, . . . , x̄N ) such that, for each k = 1, N , the
vector x̄k solves

Pk
(
x̄–k) inf

xk∈Xk (x̄–k )
θ
(
xk , x̄–k).

We assume that Xk ⊆R
nk , k = 1, . . . , N , are nonempty, closed and convex sets and, for each

fixed x–k ∈R
n–nk , the functions θk(·, x–k) are convex and differentiable.

Let us define the vector-valued function F : Rn →R
n by

F(x) =
(∇xk θk

(
xk , x–k))N

k=1.

Then it is well known that (see [4]) (GNEP) is reduced to the problem of finding a vector
x̄ ∈ �(x̄) such that

〈
F(x̄), y – x̄

〉 ≥ 0, ∀y ∈ �(x̄). (1)

Proposition 3 (cf. [12]) Assume that ∃x̄ ∈ K(x̄) and p̄ ∈R
n satisfying the following condi-

tions:
(i)

∑N
k=1〈∇xk θk(x̄k , x̄–k), x̄k〉 = infy∈Rn [

∑N
k=1〈∇xk θk(x̄k , x̄–k), yk〉 + s�(x̄)–id(y, p̄)];

(ii) s�(x̄)–id(x̄, p̄) = 0.
Then x̄ is a solution of (GNEP).

Proof Let x ∈ K(x), p ∈ R
n be fixed and conditions (i)-(ii) in Proposition 2 be fulfilled.

Then, according to Lemma 1, condition (i) can be rewritten as

N∑

k=1

〈∇xk θk
(
xk , x–k), xk 〉 + s�(x)–id(x, p)

= inf
y∈Rn

[ N∑

k=1

〈∇xk θk
(
xk , x–k), yk 〉 + s�(x)–id(y, p)

]

⇔
N∑

k=1

〈∇xk θk
(
xk , x–k), xk 〉 + s�(x, p) – 〈p, x〉
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= inf
y∈Rn

[ N∑

k=1

〈∇xk θk
(
xk , x–k), yk 〉 + s�(x, p) – 〈p, y〉

]

⇔
N∑

k=1

〈∇xk θk
(
xk , x–k) – pk , xk 〉 =

N∑

k=1

inf
yk∈Rnk

〈∇xk θk
(
xk , x–k) – pk , yk 〉

⇔ 〈∇xk θk
(
xk , x–k) – pk , xk 〉 = inf

yk∈Rnk

〈∇xk θk
(
xk , x–k) – pk , yk 〉, k = 1, N .

From

inf
yk∈Rnk

〈∇xk θk
(
xk , x–k) – pk , yk 〉 =

⎧
⎨

⎩
0, ∇xk θk(xk , x–k) – pk = 0,

–∞, otherwise,

it follows that

pk = ∇xk θk
(
xk , x–k), k = 1, N ,

or, equivalently,

p = F(x). (2)

Setting (2) in condition (ii), we obtain that

inf
z∈�(x)–x

〈
F(x), z

〉
= 0,

which is nothing else than (1). �

5.2 Linear mixed variational inequality
Recently, the following type of mixed variational inequality has been investigated inten-
sively with particular interest in studying electrical circuits involving transistors (see [15]
and [16]): to find a vector x ∈ R

n such that

(LMVI) 〈Mx + q, y – x〉 + ϕ(y) – ϕ(x) ≥ 0, ∀y ∈R
n,

where M ∈R
m×n is a real P-matrix and q ∈ R

n. Since

δRn (–p) = sup
y∈Rn

〈–p, y〉 =

⎧
⎨

⎩
0, p = 0,

+∞, otherwise,

we get

γ LMVI(x) = 〈Mx + q, x〉 + ϕ(x) + ϕ∗(–Mx – q)].

By definition of a gap function,

γ LMVI(x) = 0 ⇔ Mx + q ∈ ∂ϕ(x) ⇔ 0 ∈ –Mx – q – ∂ϕ(x).
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