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Abstract
In this paper, symmetries and symmetry reduction of two higher-dimensional
nonlinear evolution equations (NLEEs) are obtained by Lie group method. These
NLEEs play an important role in nonlinear sciences. We derive exact solutions to these
NLEEs via the exp(–φ(z))-expansion method and complex method. Five types of
explicit function solutions are constructed, which are rational, exponential,
trigonometric, hyperbolic and elliptic function solutions of the variables in the
considered equations.
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1 Introduction
In 1998, Yu et al. [1] extended the Bogoyavlenskii Schiff equation

ut + Φ(u)us = 0, Φ(u) = ∂2
x + 4u + 2ux∂

–1
x , (1)

to the (3 + 1)-dimensional NLEE

(
–4ut + Φ(u)us

)
x + 3uyy = 0, Φ(u) = ∂2

x + 4u + 2ux∂
–1
x . (2)

Setting u := ux, equation (2) is changed into the (3 + 1)-dimensional potential Yu-Toda-
Sasa-Fukuyama (YTSF) equation

uxxxs – 4uxt + 4uxuxs + 2uxxus + 3uyy = 0. (3)

The generalized (3 + 1)-dimensional Zakharov-Kuznetsov (gZK) equation is given by

a1u2ux + a2uxxx + a3uxyy + a4uxss + a5uux + a6uxxt + ut = 0. (4)

Here ai (i = 1, 2, . . . , 6) are arbitrary constants.
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We note that equation (4) includes many famous NLEEs as its special cases. For instance,
if a1 = a3 = a4 = a6 = 0, then equation (4) is the Korteweg-de Vries equation [2, 3]. If a2 =
a4 = a5 = 0, then equation (4) is the (2 + 1) dimensional ZK-MEW equation [4]. If a3 = a4 =
a6 = 0, then equation (4) is the Gardner equation [5]. If a4 = a5 = a6 = 0, then equation (4)
is the modified Zakharov-Kuznetsov equation [6].

In recent years, it has aroused widespread interest in the study of NLEEs [7–13]. Equa-
tions (3) and (4) are very meaningful higher-dimensional NLEEs which can describe many
dynamic processes and important phenomena in engineering and physics. The YTSF
equation is a mostly used model for investigating the dynamics of solitons and nonlin-
ear waves in fluid dynamics, plasma physics and weakly dispersive media [13]. Zakharov
and Kuznetsov [14] proposed the ZK equation to describe nonlinear ion-acoustic waves in
a plasma comprised of cold ions and hot isothermal electrons in the presence of a uniform
magnetic field. Many physical phenomena, in the purely dispersive limit, are governed by
this type of equation, such as the long waves on a thin liquid film [15], the Rossby waves in
a rotating atmosphere [16], and the isolated vortex of drift waves in a three-dimensional
plasma [17]. The gZK equation is of a generalized setting of ZK equation. Seeking exact
solutions of NLEEs is an interesting and significant subject. Over the past few years, many
powerful methods for constructing the solutions of NLEEs have been used, for instance,
the Bäcklund transform method [18], direct algebraic method [19], modified simple equa-
tion method [20], Lie group method [21, 22], exp(–φ(z))-expansion method [8, 9, 23, 24],
and so on. Recently, Yuan et al. [25–27] introduced the complex method to find the exact
solutions of NLEEs in mathematical physics. In this paper, we study symmetries, sym-
metry reduction of the two higher-dimensional NLEEs, and then we obtain their exact
solutions via the exp(–φ(z))-expansion method and complex method.

2 Description of the methods
2.1 Description of the exp(–φ(z))-expansion method
Suppose that a nonlinear partial differential equation (PDE) is given by

P(u, ux, uy, ut , uxx, uyy, utt , . . .) = 0, (5)

where P is a polynomial of an unknown function u(x, y, t) and its derivatives in which
nonlinear terms and highest order derivatives are involved. The main steps of this method
are given in the following.

Step 1. Substituting the traveling wave transform

u(x, y, t) = w(z), z = kx + ly + rt

into equation (5) converts it to the following ordinary differential equation (ODE):

F
(
w, w′, w′′, w′′′, . . .

)
= 0, (6)

in which F is a polynomial of w(z) and its derivatives, while ′ := d
dz .

Step 2. Assume that equation (6) has the following traveling wave solution:

w(z) =
n∑

j=0

Cj
(
exp

(
–φ(z)

))j, (7)
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where Cj (0 ≤ j ≤ n) are constants to be determined, such that Cj �= 0 and φ = φ(z) satisfies
the ODE as follows:

φ′(z) = exp
(
–φ(z)

)
+ μ exp

(
φ(z)

)
+ δ. (8)

Equation (8) has the following solutions.
When δ2 – 4μ > 0, μ �= 0,

φ(z) = ln

(–
√

(δ2 – 4μ) tanh(
√

δ2–4μ

2 (z + c) – δ)
2μ

)
, (9)

φ(z) = ln

(–
√

(δ2 – 4μ) coth(
√

δ2–4μ

2 (z + c) – δ)
2μ

)
. (10)

When δ2 – 4μ < 0, μ �= 0,

φ(z) = ln

(√
(4μ – δ2) tan(

√
(4μ–δ2)

2 (z + c) – δ)
2μ

)
, (11)

φ(z) = ln

(√
(4μ – δ2) cot(

√
(4μ–δ2)

2 (z + c) – δ)
2μ

)
. (12)

When δ2 – 4μ > 0, μ = 0, δ �= 0,

φ(z) = – ln

(
δ

exp(δ(z + c)) – 1

)
. (13)

When δ2 – 4μ = 0, μ �= 0, δ �= 0,

φ(z) = ln

(
–

2(δ(z + c) + 2)
δ2(z + c)

)
. (14)

When δ2 – 4μ = 0, μ = 0, δ = 0,

φ(z) = ln(z + c). (15)

Here Cn �= 0, δ, μ are constants that will be determined later and c is an arbitrary constant.
We take the homogeneous balance between nonlinear terms and highest order derivatives
of equation (6) to determine the positive integer n.

Step 3. Substituting equation (7) into equation (6) and accounting the function
exp(–φ(z)), we obtain a polynomial of exp(–φ(z)). Equating all the coefficients of the same
power of exp(–φ(z)) to zero yields a set of algebraic equations. By solving the algebraic
equations, we get the values of Cn �= 0, δ, μ, and then we substitute them into equation
(7) along with equations (9)-(15) to complete the determination of the solutions of equa-
tion (5).
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2.2 Description of the complex method
Let m ∈N

∗ := {1, 2, 3, . . .}, rj ∈ N = N
∗ ∪ {0}, j = 0, 1, . . . , m, r = (r0, r1, . . . , rm), and

Kr[w](z) :=
m∏

j=0

[
w(j)(z)

]rj ,

then d(r) :=
∑m

j=0 rj is the degree of Kr[w]. Let the differential polynomial be defined by

F
(
w, w′, . . . , w(m)) :=

∑

r∈J

arKr[w],

where J is a finite index set, and ar are constants, then deg F(w, w′, . . . , w(m)) := maxr∈J{d(r)}
is the degree of F(w, w′, . . . , w(m)).

Consider the following differential equation:

F
(
w, w′, . . . , w(m)) = cwn + d, (16)

where n ∈N
∗, c �= 0, d are constants.

Set p, q ∈ N
∗, and the meromorphic solutions w of equation (16) have at least one pole.

If equation (16) has exactly p distinct meromorphic solutions, and their multiplicity of the
pole at z = 0 is q, then equation (16) is said to satisfy the 〈p, q〉 condition. It might not be
easy to show that the 〈p, q〉 condition of equation (16) holds, so we need the weak 〈p, q〉
condition as follows.

Inserting the Laurent series

w(z) =
∞∑

λ=–q

βλzλ, β–q �= 0, q > 0, (17)

into equation (16), we can determine exactly p different Laurent singular parts:

–1∑

λ=–q

βλzλ,

then equation (16) is said to satisfy the weak 〈p, q〉 condition.
Given two complex numbers ν1, ν2 such that Im ν1

ν2
> 0, and let L be the discrete subset

L[2ν1, 2ν2] := {ν | ν = 2a1ν1 + 2a2ν2, a1, a2 ∈ Z}, and L is isomorphic to Z × Z. Let the
discriminant Δ = Δ(b1, b2) := b3

1 – 27b2
2 and

ln = ln(L) :=
∑

ν∈L\{0}

1
νn .

A meromorphic function ℘(z) := ℘(z, g2, g3) with double periods 2ν1, 2ν2, which satisfies
the following equation:

(
℘ ′(z)

)2 = 4℘(z)3 – g2℘(z) – g3,
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in which g2 = 60l4, g3 = 140l6, and Δ(g2, g3) �= 0, is called the Weierstrass elliptic function
and satisfies an addition formula [28] as follows:

℘(z – z0) =
1
4

[
℘ ′(z) + ℘ ′(z0)
℘(z) – ℘(z0)

]2

– ℘(z) – ℘(z0).

If a meromorphic function g is a rational function of z, or a rational function of eαz ,
α ∈ C, or an elliptic function, then we say that g belongs to the class W .

In 2009, Eremenko et al. [29] studied the mth-order Briot-Bouquet equation (BBEq)

F
(
w, w(m)) =

n∑

j=0

Fj(w)
(
w(m))j = 0,

where Fj(w) are constant coefficients polynomials, m ∈ N
∗. For the mth-order BBEq, we

have the following lemma.

Lemma 2.1 ([28, 30, 31]) Let m, n, p, h ∈N
∗, deg F(w, w(m)) < n, and a mth-order BBEq

F
(
w, w(m)) = cwn + d

satisfies the weak 〈p, q〉 condition, then the meromorphic solutions w ∈ W . Supposing for
some values of the parameters the solution w exists, then any other meromorphic solutions
will be one parameter family w(z + z0), z0 ∈ C. In addition, every elliptic solution w with a
pole at z = 0 is expressed as

w(z) =
h–1∑

i=1

q∑

j=2

(–1)jβ–ij

(j – 1)!
dj–2

dzj–2

(
1
4

[
℘ ′(z) + Di

℘(z) – Bi

]2

– ℘(z)
)

+
h–1∑

i=1

β–i1

2
℘ ′(z) + Di

℘(z) – Bi
+

q∑

j=2

(–1)jβ–hj

(j – 1)!
dj–2

dzj–2 ℘(z) + β0, (18)

where β–ij are determined by (17),
∑h

i=1 β–i1 = 0 and D2
i = 4B3

i – g2Bi – g3.
Every rational function solution w := R(z) is expressed as

R(z) =
h∑

i=1

q∑

j=1

βij

(z – zi)j + β0, (19)

which has h (≤ p) distinct poles of multiplicity q.
Every simply periodic solution w := R(ϑ) is a rational function of ϑ = eαz (α ∈ C), and is

expressed as

R(ϑ) =
h∑

i=1

q∑

j=1

βij

(ϑ – ϑi)j + β0, (20)

which has h (≤ p) distinct poles of multiplicity q.
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By the above definitions and lemma, we now present the complex method.
Step 1. Insert the transformation T : u(x, y, t) → w(z) defined by (x, y, t) → z into a given

PDE to yield a nonlinear ODE.
Step 2. Insert (17) into the ODE to determine whether the weak 〈p, q〉 condition holds.
Step 3. Insert the indeterminate solutions introduced in Lemma 2.1 into the ODE, and

then get meromorphic solutions of the ODE with a pole at z = 0.
Step 4. Obtain meromorphic solutions w(z – z0) by Lemma 2.1 and the addition formula.
Step 5. Inserting the inverse transformation T–1 into the meromorphic solutions, we get

the exact solutions for the original PDE.

3 Symmetries and symmetry reduction
3.1 Symmetries
In order to find the symmetry σ = σ (x, y, s, t, u) of equation (4), we set

σ = aux + buy + cus + dut + eu + f , (21)

where u is the solution of equation (4), a, b, c, d, e, f are unknown functions of real variables
x, y, s, t. According to Lie group analysis [21, 22], σ satisfies

σt + a1σ
2ux + a1u2σx + a2σxxx + a3σxyy + a4σxss + a5σux + a5uσx + a6σxxt = 0. (22)

Substituting equation (21) into equation (22), we have a new differential equation, where

a2uxxx = –a1u2ux – a3uxyy – a4uxss – a5uux – a6uxxt – ut . (23)

By equation (21), equation (22) and equation (23), we have

a = c5, b = (c2s + c3), c =
(

c4 –
a4

a3
c2y

)
,

d = c1, e = 0, f = 0,
(24)

where ci (i = 2, 3, 4, 5) are real constants. Substituting equations (24) into equation (21),
we achieve the symmetry of the gZK equation,

σ = c5ux + (c2s + c3)uy +
(

c4 –
a4

a3
c2y

)
us + c1ut . (25)

In order to find the symmetry σ = σ (x, y, s, t, u) of equation (3), we set

σ = aux + buy + cus + dut + eu + f . (26)

Here u is the solution of equation (3), a, b, c, d, e, f are unknown functions of real variables
x, y, s, t. According to Lie group analysis, σ satisfies

σxxxs – 4σxt + 4uxσxs + 4uxsσx + 2uxxσs + 2usσxx + 3σyy = 0. (27)
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Substituting equation (26) into equation (27), we have a new differential equation, where

uxxxs = 4uxt – 4uxuxs – 2uxxus – 3uyy. (28)

By equation (26), equation (27) and equation (28), we have

a = c1x + c2, b = c3y + c4, c = (2c3 – 3c1)s + ρ(t),

d = (2c3 – c1)t + c5, e = c1, f = ρ ′(t)x +
2
3
ρ ′′(t)y2 + τ (t)y + ψ(t),

(29)

where ci (i = 1, 2, . . . , 5) are real constants, ρ(t), τ (t), ψ(t) are arbitrary real functions of t.
Substituting equations (29) into equation (26), we achieved the symmetry of YTSF equa-
tion

σ = (c1x + c2)ux + (c3y + c4)uy +
(
(2c3 – 3c1)s + ρ(t)

)
us

+
(
(2c3 – c1)t + c5

)
ut + c1u + ρ ′(t)x +

2
3
ρ ′′(t)y2 + τ (t)y + ψ(t). (30)

3.2 Symmetry reduction
By solving the characteristic equation (25) of σ

dx
c5

=
dy

c2s + c3
=

ds
c4 – a4

a3
c2y

=
dt
c1

=
du
0

, (31)

we find different symmetry reduced equations. Without loss of generality, we have two
reduced equations as follows.

Setting c1 = c3 = c4 = c5 = 0, c2 = 1, we have the first similarity solution of equation (4)

u = ϕ(ξ ,η), (32)

where ξ = x + t, η = y2

2a3
+ s2

2a4
. Substituting equation (32) into equation (4), we have the first

symmetry reduced equation of equation (4)

ϕξ + a1ϕ
2ϕξ + (a2 + a3)ϕξξξ + 2ϕξηη + a5ϕϕξ = 0. (33)

Setting c1 = c2 = 0, c3 = c4 = c5 = 1, solving σ = 0, we have the second similarity solution
of equation (4)

u = ϕ(ξ ,η), (34)

where ξ = x + y, η = s. Substituting equation (34) into equation (4), we have the second
symmetry reduced equation of equation (4)

a1ϕ
2ϕξ + (a2 + a3)ϕξξξ + a4ϕξηη + a5ϕϕξ = 0.
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By solving the characteristic equation (30) of σ

dx
c1x + c2

=
dy

c3y + c4
=

ds
(2c3 – 3c1)s + ρ(t)

=
dt

(2c3 – c1)t + c5
=

du
c1u + ρ ′(t)x + 2

3ρ ′′(t)y2 + τ (t)y + ψ(t)
, (35)

we obtain symmetry reduction of equation (3). Without loss of generality, we have two
reduced equations as follows.

Setting c1 = c3 = c4 = 0, c2 = c5 = 1, ρ(t) = 1, solving σ = 0, we have the first similarity
solution of equation (3)

u = ϕ(ξ ,η, y) –
∫ (

τ (t)y + ψ(t)
)

dt, (36)

where ξ = x – t, η = s – t. Substituting equation (36) into equation (3), we have the first
symmetry reduced equation of equation (3)

ϕξξξη + 4ϕξξ + 4ϕξη + 4ϕξϕξη + 2ϕξξϕη + 3ϕyy = 0. (37)

Setting c1 = c2 = c3 = c5 = 0, c4 = 1, ρ(t) = τ (t) = 0, solving σ = 0, we have the second
similarity solution of equation (3)

u = ϕ(x, s, t) – ψ(t)y. (38)

Substituting equation (38) into equation (3), we have the second symmetry reduced equa-
tion of equation (3)

ϕxxxs + 4ϕxϕxs + 2ϕxxϕs – 4ϕxt = 0.

4 Exact solutions
4.1 Exact solutions of gZK equation via the exp(–φ(z))-expansion method
Substituting the traveling wave transform

ϕ(ξ ,η) = w(z), z = kξ + lη,

into equation (33), then integrating it with respect to z, we obtain

(
(a2 + a3)k2 + 2l2)w′′ + w +

a5

2
w2 +

a1

3
w3 – γ = 0, (39)

where γ is the integration constant which can be determined later.
Taking the homogeneous balance between w′′ and w3 in equation (39) yields

w(z) = C0 + C1 exp
(
–φ(z)

)
, (40)

where C1 �= 0, C0 are constants to be determined, whereas δ and μ are arbitrary constants.



Gu and Qi Journal of Inequalities and Applications  (2017) 2017:314 Page 9 of 19

Substitute w, w2, w3, w′′ into equation (39) and equate the coefficients of exp(–φ(z)) to
zero, then

1
3

a1C0
3 +

1
2

a5C0
2 + C0 + 2C1l2δμ + C1k2a2δμ + C1k2a3δμ – γ = 0,

C1a2k2δ2 + C1a3k2δ2 + 2C1l2δ2 + 2C1a2k2μ + 2C1a3k2μ

+ C0
2C1a1 + 4C1l2μ + C0C1a5 + C1 = 0,

1
2

a5C1
2 + a1C0C1

2 + 6C1l2δ + 3C1k2a2δ + 3C1k2a3δ = 0,

4C1l2 +
1
3

a1C1
3 + 2C1k2a2 + 2C1k2a3 = 0.

Solving the above algebraic equations, we obtain

γ = –
√

–2a1((δ2 – 4μ)(a2k2 + a3k2 + 2l2) – 2)((δ2 – 4μ)(a2k2 + a3k2 + 2l2) + 1)
6a1

,

C1 =

√
–6(a2k2 + a3k2 + 2l2)

a1
,

C0 =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

,

(41)

where μ and δ are arbitrary constants.
Substituting equations (41) into equation (40) yields

w(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

+

√
–6(a2k2 + a3k2 + 2l2)

a1
exp

(
–φ(z)

)
. (42)

We apply equation (9) to equation (15) into equation (42), respectively, to get traveling
wave solutions of the gZK equation as follows.

When δ2 – 4μ > 0, μ �= 0,

w11(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

–

√
–6(a2k2 + a3k2 + 2l2)

a1

2μ
√

(δ2 – 4μ) tanh(
√

δ2–4μ

2 (z + c) + δ)
,

w12(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

–

√
–6(a2k2 + a3k2 + 2l2)

a1

2μ
√

(δ2 – 4μ) coth(
√

δ2–4μ

2 (z + c) + δ)
.
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When δ2 – 4μ < 0, μ �= 0,

w13(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

+

√
–6(a2k2 + a3k2 + 2l2)

a1

2μ
√

(4μ – δ2) tan(
√

4μ–δ2

2 (z + c) – δ)
,

w14(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – (δ2 – 4μ)(a2k2 + a3k2 + 2l2))
2a1

+

√
–6(a2k2 + a3k2 + 2l2)

a1

2μ
√

(4μ – δ2) cot(
√

4μ–δ2

2 (z + c) – δ)
.

When δ2 – 4μ > 0, μ = 0, δ �= 0,

w15(z) =
√

–6a1(a2k2 + a3k2 + 2l2)δ –
√

2a1(2 – δ2(a2k2 + a3k2 + 2l2))
2a1

+

√
–6(a2k2 + a3k2 + 2l2)

a1

δ

exp(δ(z + c)) – 1
.

When δ2 – 4μ = 0, μ �= 0, δ �= 0,

w16(z) =

√
–3(a2k2 + a3k2 + 2l2)

2a1
δ –

1√a1
–

√
–6(a2k2 + a3k2 + 2l2)

a1

δ2(z + c)
2(δ(z + c) + 2)

.

When δ2 – 4μ = 0, μ = 0, δ = 0,

w17(z) = –
1√a1

+

√
–6(a2k2 + a3k2 + 2l2)

a1

1
z + c

.

4.2 Exact solutions of gZK equation via the complex method
Inserting (17) into equation (39) we have p = 2, q = 1, β–1 = ±

√
–6(a2k2+a3k2+2l2)

a1
, β0 = – a5

2a1
,

β1 = – a2
5

24a2
1

√
–6a1

a2k2+a3k2+2l2 , β2 = – 12a2
1γ –a3

5+6a1a5
48a2

1(a2k2+a3k2+2l2) and β3 is an arbitrary constant.
Therefore, equation (39) is a second order BBEq and satisfies the weak 〈2, 1〉 condition.

Hence, by Lemma 2.1, we see that meromorphic solutions of equation (39) belong to W .
We will show meromorphic solutions of equation (39) in the following.

By (19), we infer that the indeterminate rational solutions of equation (39) are

R1(z) =
β11

z
+

β12

z – z1
+ β10,

with a pole at z = 0.
Substituting R1(z) into equation (39), we have

R1,1(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

1
z

–
a5

2a1
,
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where a2
5 = 4a1 and 9a1γ

2 = 1;

R1,2(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

(
1
z

–
1

z – z1
–

1
z1

)
–

a5

2a1
,

where k =
√

4a1z2
1–a2

5z2
1–48l2a1

24a1(a2+a3) and γ = (a3
5 – 6a1a5 + (a2

5 – 4a1) 3
3 )z3

1.
So the rational solutions of equation (39) are

wr,1(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

1
z – z0

–
a5

2a1

and

wr,2(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

(
1

z – z0
–

1
z – z0 – z1

–
1
z1

)
–

a5

2a1
,

where z0 ∈ C, z1 �= 0. a2
5 = 4a1, 9a1γ

2 = 1 in the former case, or k =
√

4a1z2
1–a2

5z2
1–48l2a1

24a1(a2+a3) , γ =
(a3

5 – 6a1a5 + (a2
5 – 4a1) 3

3 )z3
1 in the latter case.

To obtain simply periodic solutions, let ϑ = eαz , and substitute w = R(ϑ) into equation
(39), then

(
(a2 + a3)k2 + 2l2)α2(ϑR′ + ϑ2R′′) + R +

a5

2
R2 +

a1

3
R3 – γ = 0. (43)

Substituting

R2(z) =
β21

ϑ – 1
+

β22

(ϑ – ϑ1)
+ β20

into equation (43), we obtain

R2,1(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

α

(
1

ϑ – 1
+

1
2

)
–

a5

2a1
(44)

and

R2,2(z) = ±
√

–6(a2k2 + a3k2 + 2l2)
a1

α

(
1

ϑ – 1
–

ϑ1

ϑ – ϑ1
–

ϑ1 + 1
2(ϑ1 – 1)

)
–

a5

2a1
, (45)

whereγ = a5(a2
5–6a1)

12a2
1

, l = 1
2α

√
4a1–a2

5–2a1k2α2(a2+a3)
a1

in the former case, or γ =
√

3z1(z1+1)(4a1–a2
5)

3
2

(z2
1+10z1+1)

3
2 a2

1

+

a5(a2
5–6a1)

12a2
1

, k = –
√

(4a1–a2
5–4a1l2α2)(z2

1+1)+2(a2
5–4a1–20a1l2α2)z1

2a1(z2
1+10z1+1)(a2+a3)α2 in the latter case.

Inserting ϑ = eαz into equation (44) and equation (45), we can get simply periodic solu-
tions to equation (39) with a pole at z = 0,

ws0,1(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

α coth
α

2
z –

a5

2a1
,
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ws0,2(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

α

(
coth

α

2
z – coth

α

2
(z – z1) – coth

α

2
z1

)
–

a5

2a1
,

where γ = a5(a2
5–6a1)

12a2
1

, l = 1
2α

√
4a1–a2

5–2a1k2α2(a2+a3)
a1

in the former case, or γ =
√

3z1(z1+1)(4a1–a2
5)

3
2

(z2
1+10z1+1)

3
2 a2

1

+

a5(a2
5–6a1)

12a2
1

, k = –
√

(4a1–a2
5–4a1l2α2)(z2

1+1)+2(a2
5–4a1–20a1l2α2)z1

2a1(z2
1+10z1+1)(a2+a3)α2 in the latter case.

So simply periodic solutions of equation (39) are

ws,1(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

α coth
α

2
(z – z0) –

a5

2a1

and

ws,2(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

· α
(

coth
α

2
(z – z0) – coth

α

2
(z – z0 – z1) – coth

α

2
z1

)
–

a5

2a1
,

where z0 ∈ C, z1 �= 0. l = 1
2α

√
4a1–a2

5–2a1k2α2(a2+a3)
a1

, γ = a5(a2
5–6a1)

12a2
1

in the former case, or k =

–
√

(4a1–a2
5–4a1l2α2)(z2

1+1)+2(a2
5–4a1–20a1l2α2)z1

2a1(z2
1+10z1+1)(a2+a3)α2 , γ =

√
3z1(z1+1)(4a1–a2

5)
3
2

(z2
1+10z1+1)

3
2 a2

1

+ a5(a2
5–6a1)

12a2
1

in the latter case.

From (18), we have the indeterminate relations for the elliptic solutions of equation (39)
with a pole at z = 0,

wd1(z) =
β–1

2
℘ ′(z) + D1

℘(z) – B1
+ β0,

where D2
1 = 4B3

1 –g2B1 –g3. Considering the results obtained above, we infer that β0 = – a5
2a1

,
g3 = 0, D1 = B1 = 0. So we obtain

wd1(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

℘ ′(z)
℘(z)

–
a5

2a1
,

where g3 = 0.
Thus, the elliptic function solutions of equation (39) are

wd(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

℘ ′(z – z0, g2, 0)
℘(z – z0, g2, 0)

–
a5

2a1
,

where z0 ∈C, g3 = 0, g2 is arbitrary. Applying the addition formula, we can rewrite it as

wd(z) = ±
√

–3(a2k2 + a3k2 + 2l2)
2a1

· (–℘ + E)(4E℘2 + (4E2 – g2)℘ + 2F℘ ′ – Eg2)
((12E2 – g2)℘ + 4E3 – 3Eg2)℘ ′ + (4℘3 + 12E℘2 – 3g2℘ – Eg2)F

–
a5

2a1
,

where g3 = 0, F2 = 4E3 – g2E, E and g2 are arbitrary.
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4.3 Exact solutions of YTSF equation via the exp(–φ(z))-expansion method
Substituting the traveling wave transform

ϕ(ξ ,η, y) = v(z), z = kξ + lη + ry,

into equation (37), then integrating it with respect to z, we obtain

k3lv′′′ +
(
4k2 + 4kl + 3r2)v′ + 3k2l

(
v′)2 + γ = 0, (46)

where γ is the integration constant which can be determine later.
Setting w = v′, equation (46) becomes

k3lw′′ +
(
4k2 + 4kl + 3r2)w + 3k2lw2 + γ = 0. (47)

Taking the homogeneous balance between w′′ and w2 in equation (47) yields

w(z) = C0 + C1 exp
(
–φ(z)

)
+ C2

(
exp

(
φ(z)

))2, (48)

where C2 �= 0, Ci (i = 0, 1, 2) are constants to be determined, whereas δ and μ are arbitrary
constants.

Substitute w, w2, w′′ into equation (47) and equate the coefficients of exp(–φ(z)) to zero,
then

k3lC1δμ + 2k3lC2μ
2 + 3k2lC0

2 + 4C0k2 + 4C0kl + 3C0r2 + γ = 0,

C1lk3δ2 + 6C2lk3δμ + 2C1lk3μ + 6C0C1lk2 + 4C1k2 + 4C1lk + 3C1r2 = 0,

4C2lk3δ2 + 3C1lk3δ + 8C2lk3μ + 6C0C2lk2 + 3C1
2lk2 + 4C2k2 + 4C2lk + 3C2r2 = 0,

10C2lk3δ + 6C1C2lk2 + 2C1lk3 = 0,

3C2
2lk2 + 6C2lk3 = 0.

Solving the above algebraic equations, we obtain

γ = –
(δ2 – 4μ)2l2k6 – (4lk + 4k2 + 3r2)2

12k2l
, C2 = –2k,

C1 = –2kδ, C0 = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
,

(49)

where μ and δ are arbitrary constants.
Substituting equations (49) into equation (48), yields

w(z) = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
– 2kδ exp

(
–φ(z)

)
– 2k

(
exp

(
φ(z)

))2. (50)

We apply equation (9) to equation (15) into equation (50), respectively, to get traveling
wave solutions of the YTSF equation as follows.
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When δ2 – 4μ > 0, μ �= 0,

w21(z) = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
+

4kδμ
√

(δ2 – 4μ) tanh(
√

δ2–4μ

2 (z + c) + δ)

–
8kμ2

(
√

(δ2 – 4μ) tanh(
√

δ2–4μ

2 (z + c) + δ))2
,

w22(z) = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
+

4kδμ
√

(δ2 – 4μ) coth(
√

δ2–4μ

2 (z + c) + δ)

–
8kμ2

(
√

(δ2 – 4μ) coth(
√

δ2–4μ

2 (z + c) + δ))2
.

When δ2 – 4μ < 0, μ �= 0,

w23(z) = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
–

4kδμ
√

(δ2 – 4μ) tan(
√

δ2–4μ

2 (z + c) – δ)

–
8kμ2

(
√

(δ2 – 4μ) tan(
√

δ2–4μ

2 (z + c) – δ))2
,

w24(z) = –
lk3δ2 + 8lk3μ + 4lk + 4k2 + 3r2

6k2l
–

4kδμ
√

(δ2 – 4μ) cot(
√

δ2–4μ

2 (z + c) – δ)

–
8kμ2

(
√

(δ2 – 4μ) cot(
√

δ2–4μ

2 (z + c) – δ))2
.

When δ2 – 4μ > 0, μ = 0, δ �= 0,

w25(z) = –
lk3δ2 + 4lk + 4k2 + 3r2

6k2l
–

2kδ2

exp(δ(z + c)) – 1
–

2kδ2

(exp(δ(z + c)) – 1)2 .

When δ2 – 4μ = 0, μ �= 0, δ �= 0,

w26(z) = –
12lk3μ + 4lk + 4k2 + 3r2

6k2l
+

kδ3(z + c)
(δ(z + c) + 2)

–
kδ4(z + c)2

2((δ(z + c) + 2))2 .

When δ2 – 4μ = 0, μ = 0, δ = 0,

w27(z) = –
4lk + 4k2 + 3r2

6k2l
–

2k
(z + c)2 .

4.4 Exact solutions of YTSF equation via the complex method
Inserting (17) into equation (47) we have p = 1, q = 2, β–2 = –2k, β–1 = 0, β0 = – 4lk+4k2+3r2

6k2l ,
β1 = 0, β2 = – 16k4+32lk3+(16l2–12lγ +24r2)k2+24lkr2+9r4

120k5l2 , and β3 is an arbitrary constant.
Therefore, equation (47) is a second order BBEq and satisfies the weak 〈1, 2〉 condition.

Hence, by Lemma 2.1, we see that meromorphic solutions of equation (47) belong to W .
We will show meromorphic solutions of equation (47) in the following.
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By (19), we deduce the indeterminacy rational solutions of equation (47) are

R1(z) =
β32

z2 +
β31

z
+ β30,

with a pole at z = 0.
Substituting R1(z) into equation (47), we get the following form:

R1(z) = –
2k
z2 –

4lk + 4k2 + 3r2

6k2l
,

where γ = 16k4+32lk3+(16l2+24r2)k2+24lkr2+9r4

12k2l .
So the rational solutions of equation (47) are

wr(z) = –
2k

(z – z0)2 –
4lk + 4k2 + 3r2

6k2l
,

where γ = 16k4+32lk3+(16l2+24r2)k2+24lkr2+9r4

12k2l , z0 ∈C.
To obtain simply periodic solutions, let ϑ = eαz , and substitute w = R(ϑ) into equation

(47), then we get

k3lα2(ϑR′ + ϑ2R′′) +
(
4k2 + 4kl + 3r2)R + 3k2lR2 + γ = 0. (51)

Substituting

R2(z) =
β42

(ϑ – 1)2 +
β41

(ϑ – 1)
+ β40,

into equation (51), we obtain

R2(z) = –
2kα2

(ϑ – 1)2 –
2kα2

(ϑ – 1)
–

kα2

6
–

4lk + 4k2 + 3r2

6k2l
, (52)

where γ = (4lk+4k2+3r2)2–(lα2k3)2

12k2l . Substituting ϑ = eαz into equation (52), we can obtain sim-
ply periodic solutions of equation (47),

ws0(z) = –
2kα2

(eαz – 1)2 –
2kα2

(eαz – 1)
–

kα2

6
–

4lk + 4k2 + 3r2

6k2l

= –
2kα2eαz

(eαz – 1)2 –
kα2

6
–

4lk + 4k2 + 3r2

6k2l

= –
kα2

2
coth2 αz

2
+

kα2

3
–

4lk + 4k2 + 3r2

6k2l
,

with a pole at z = 0.
Therefore the simply periodic solutions of equation (47) are

ws(z) = –
kα2

2
coth2 α(z – z0)

2
+

kα2

3
–

4lk + 4k2 + 3r2

6k2l
,

where γ = (4lk+4k2+3r2)2–(lα2k3)2

12k2l , z0 ∈C.
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Figure 1 The solution of the gZK equation corresponding to Ws,2(z). (a) z0 = –8, (b) z0 = 0, (c) z0 = 8.

From (18), we can express the elliptic solutions of equation (47) as

wd0(z) = β–2℘(z) + β0,

with a pole at z = 0.
Substituting wd0(z) into equation (47), we obtain

wd0(z) = –2k℘(z) –
4lk + 4k2 + 3r2

6k2l
,

where g2 = 16k4+32lk3+(16l2–12lγ +24r2)k2+24lkr2+9r4

12k6l2 , g3 is arbitrary.
Therefore, the elliptic solutions of equation (47) are

wd(z) = –2k℘(z – z0) –
4lk + 4k2 + 3r2

6k2l
,

in which z0 ∈ C. Applying the addition formula, we can rewrite it as

wd(z) = –2k
(

–℘(z) +
1
4

(
℘ ′(z) + C
℘(z) – D

)2)
+ 2kD –

4lk + 4k2 + 3r2

6k2l
,

where g2 = 16k4+32lk3+(16l2–12lγ +24r2)k2+24lkr2+9r4

12k6l2 , C2 = 4D3 – g2D – g3, g3 is arbitrary.
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Figure 2 The solution of the YSTF equation corresponding to Ws(z). (a) z0 = –8, (b) z0 = 0, (c) z0 = 8.

4.5 Comparison
Implementing the exp(–φ(z))-expansion method, we found seven solutions for the gZK
and YSFT equation, respectively. Using the complex method, we found five solutions for
the gZK equation and three solutions for the YSFT equation. Rational solutions w17(z)
and w27(z) are obtained via the exp(–φ(z))-expansion method, and Wr,1(z) and Wr(z) are
obtained via the complex method. If we let c = –z0, then w17(z) is equivalent to Wr,1(z), and
w27(z) is equivalent to Wr(z). For getting rational solutions, these two methods are in good
agreement. Rational solutions Wr,2(z) and simply periodic solutions Ws,2(z) and Ws(z) are
new and cannot be degenerated successively through elliptic function solutions. From the
results, we can find more solutions by the exp(–φ(z))-expansion method, whereas we can
obtain elliptic function solutions just by the complex method. These two methods are very
useful tools in finding the exact solutions of NLEEs.

5 Computer simulations
In this section, we illustrate some results by the computer simulations. We carry out fur-
ther analysis to the properties of simply periodic solutions Ws,2(z) and Ws(z) as in Figures 1
and 2.

(1) By employing the complex method, we are capable to obtain simply periodic
solutions Ws,1(z) and Ws,2(z) of the gZK equation. The solutions Ws,1(z) and Ws,2(z)
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come from hyperbolic function. Figure 1 shows the shape of solutions Ws,2(z) for
k = 1, l = 1, α = 1, a1 = –6, a2 = 1, a3 = 1, a5 = –24, and z1 = 1 within the interval
–2π ≤ ξ ,η ≤ 2π . Note that they have two distinct generation poles which are
showed by Figure 1.

(2) By using the complex method, we achieve to obtain simply periodic solutions Ws(z)
of the YSTF equation. The solutions Ws(z) are in terms of the hyperbolic function
solution. The solutions Ws(z) in Figure 2 of the YSTF equation are represented the
singular soliton solution for the parameters k = 1, l = 1, r = 1, α = 1 and y = 0 within
the interval –2π ≤ ξ ,η ≤ 2π .

6 Conclusions
In this article, we utilize Lie group analysis to obtain symmetries and symmetry reduc-
tion for two higher-dimensional NLEEs. In this way, we can reduce the dimension of the
NLEEs, which is relevant in the fields of mathematical physics and engineering. Five types
of explicit function solutions are constructed by the exp(–φ(z))-expansion method and
complex method. It demonstrates these methods are very efficient and powerful to seek
the exact solutions of NLEEs. We can apply the idea of this study to other NLEEs.
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