
Wang et al. Journal of Inequalities and Applications  (2017) 2017:311 
https://doi.org/10.1186/s13660-017-1586-6

R E S E A R C H Open Access

k-fractional integral trapezium-like
inequalities through (h, m)-convex and
(α, m)-convex mappings
Hao Wang, Tingsong Du* and Yao Zhang

*Correspondence:
tingsongdu@ctgu.edu.cn
Department of Mathematics,
College of Science, China Three
Gorges University, Yichang, 443002,
China

Abstract
In this paper, a new general identity for differentiable mappings via k-fractional
integrals is derived. By using the concept of (h,m)-convexity, (α,m)-convexity and the
obtained equation, some new trapezium-like integral inequalities are established. The
results presented provide extensions of those given in earlier works.
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1 Introduction
Let f : I ⊆R→ R be a convex mapping and a, b ∈ I along with a < b. The inequality

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
, (1.1)

named Hermite-Hadamard’s inequality, is one of the most famous results for convex map-
pings. This inequality (1.1) is also known as trapezium inequality.

The trapezium-type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. Many researchers generalized and ex-
tended it via mappings of different classes. For recent results, for example, see [1–7] and
the references mentioned in these papers.

In 2013, Sarikaya et al. [8] established the following theorem by utilizing Riemann-
Liouville fractional integrals.

Theorem 1.1 Let f : [a, b] → R be a positive function along with 0 ≤ a < b, and let f ∈
L1[a, b]. Suppose that f is a convex function on [a, b], then the following inequalities for
fractional integrals hold:

f
(

a + b
2

)
≤ �(μ + 1)

2(b – a)μ
[
Jμ

a+ f (b) + Jμ

b– f (a)
] ≤ f (a) + f (b)

2
, (1.2)
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where the symbols Jμ

a+ f and Jμ

b– f denote respectively the left-sided and right-sided Riemann-
Liouville fractional integrals of order μ > 0 defined by

Jμ

a+ f (x) =
1

�(μ)

∫ x

a
(x – t)μ–1f (t) dt, a < x

and

Jμ

b– f (x) =
1

�(μ)

∫ b

x
(t – x)μ–1f (t) dt, x < b.

Here, �(μ) is the gamma function and its definition is �(μ) =
∫ ∞

0 e–ttμ–1 dt. It is to be noted
that J0

a+ f (x) = J0
b– f (x) = f (x).

In the case of μ = 1, the fractional integral recaptures the classical integral.
Because of the extensive application of Riemann-Liouville fractional integrals, some

authors extended their studies to fractional trapezium-type inequalities via mappings of
different classes. For example, refer to [9–12] for convex mappings, to [13] for s-convex
mappings, to [14] for (s, m)-convex mappings, to [15] for r-convex mappings, to [16] for
harmonically convex mappings, to [17] for s-Godunova-Levin mappings, to [18, 19] for
preinvex mappings, to [20] for MTm-preinvex mappings, to [21] for h-convex mappings
and to references cited therein.

In [22], Mubeen and Habibullah introduced the following class of fractional derivatives.

Definition 1.1 ([22]) Let f ∈ L1[a, b], then k-Riemann-Liouville fractional derivatives
kJμ

a+ f (x) and kJμ

b– f (x) of order μ > 0 are given as

kJμ

a+ f (x) =
1

k�k(μ)

∫ x

a
(x – t)

μ
k –1f (t) dt (0 ≤ a < x < b)

and

kJμ

b– f (x) =
1

k�k(μ)

∫ b

x
(t – x)

μ
k –1f (t) dt (0 ≤ a < x < b),

respectively, where k > 0 and �k(μ) is the k-gamma function defined by �k(μ) =
∫ ∞

0 tμ–1 ×
e– tk

k dt. Furthermore, �k(μ + k) = μ�k(μ) and kJ0
a+ f (x) = kJ0

b– f (x) = f (x).

The concept of k-Riemann-Liouville fractional integral is an important extension of
Riemann-Liouville fractional integrals. We want to stress here that for k �= 1 the proper-
ties of k-Riemann-Liouville fractional integrals are quite dissimilar from those of general
Riemann-Liouville fractional integrals. For this, the k-Riemann-Liouville fractional inte-
grals have aroused the interest of many researchers. Properties concerning this operator
can be sought out [23–26], and for the bounds for integral inequality related to this oper-
ator, the reader can refer to [27–29] and the references mentioned in these papers.

Motivated and inspired by the recent research in this field, we obtain some k-Riemann-
Liouville fractional integral of trapezium-type inequalities for (h, m)-convex mappings and
(α, m)-convex mappings. The results presented in this paper provide extensions of those
given in earlier works.

To end this section, we restate some special functions and definitions.
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(1) The beta function:

β(x, y) =
∫ 1

0
tx–1(1 – t)y–1 dt =

�(x)�(y)
�(x + y)

, ∀x, y > 0.

(2) The incomplete beta function:

β(a, x, y) =
∫ a

0
tx–1(1 – t)y–1 dt, 0 < a < 1, x, y > 0.

Definition 1.2 ([30]) The function f : [0, b] →R is named (α, m)-convex if, for every x, y ∈
[0, b] and t ∈ [0, 1], the following inequality holds:

f
(
tx + m(1 – t)y

) ≤ tαf (x) + m
(
1 – tα

)
f (y),

where (α, m) ∈ (0, 1] × (0, 1].

Definition 1.3 ([31]) The function f : [0, b] → R is called m-MT-convex if f is non-
negative and, for all x, y ∈ [0, b] and t ∈ (0, 1), with m ∈ (0, 1], it satisfies the following
inequality:

f
(
tx + m(1 – t)y

) ≤
√

t
2
√

1 – t
f (x) +

m
√

1 – t
2
√

t
f (y).

Definition 1.4 ([32]) Let h : (0, 1) ⊆ J →R be a non-negative function. A function f : I →
R is said to be h-convex if f is non-negative and

f
(
tx + (1 – t)y

) ≤ h(t)f (x) + h(1 – t)f (y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 1.5 ([33]) Let f : I ⊆ R → R be a non-negative function. A function f : I → R

is said to be tgs-convex if the inequality

f
(
tx + (1 – t)y

) ≤ t(1 – t)
[
f (x) + f (y)

]

holds for all x, y ∈ I and t ∈ (0, 1).

Definition 1.6 ([34]) Let h : (0, 1) ⊆ J → R be a non-negative function. A function f :
[0, b] →R is named (h, m)-convex if f is non-negative and

f
(
tx + m(1 – t)y

) ≤ h(t)f (x) + mh(1 – t)f (y)

holds for all x, y ∈ [0, b], t ∈ (0, 1) and some fixed m ∈ (0, 1].

Clearly, when putting h(t) = t(1 – t) in Definition 1.6, f becomes an (m, tgs)-convex func-
tion on [0, b] as follows.
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Definition 1.7 The function f : [0, b] → R is named (m, tgs)-convex if f is non-negative
and

f
(
tx + m(1 – t)y

) ≤ t(1 – t)
[
f (x) + mf (y)

]

holds for all x, y ∈ [0, b], t ∈ (0, 1) and some fixed m ∈ (0, 1].

Note that, if we choose m = 1 in Definition 1.7, f reduces to a tgs-convex function in
Definition 1.5.

2 A lemma
To prove our main results, we consider the following new lemma.

Lemma 2.1 Let f : I ⊆ R → R be a differentiable mapping on Io (the interior of I) with
0 ≤ a < mr, a, r ∈ I , for some fixed m ∈ (0, 1]. If f ′ ∈ L1[a, mr], then the following equality
for k-fractional integral along with λ ∈ (0, 1]\ 1

2 , k > 0 and μ > 0 exists:

Tk,μ(m,λ, r)

=
∫ 1

0

(
(1 – t)

μ
k – t

μ
k
)
f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt, (2.1)

where

Tk,μ(m,λ, r)

:= –
f (mλr + (1 – λ)a) + f (λa + m(1 – λ)r)

(1 – 2λ)(mr – a)
+

�k(μ + k)
(1 – 2λ)

μ
k +1(mr – a)

μ
k +1

× [
kJμ

(mλr+(1–λ)a)+ f
(
λa + m(1 – λ)r

)
+ kJμ

(λa+m(1–λ)r)– f
(
mλr + (1 – λ)a

)]
. (2.2)

Proof It suffices to note that

I∗ =
∫ 1

0

(
(1 – t)

μ
k – t

μ
k
)
f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

=
[∫ 1

0
(1 – t)

μ
k f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

]

+
[

–
∫ 1

0
t

μ
k f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

]

:= I1 + I2. (2.3)

Integrating by parts, we get

I1 =
[∫ 1

0
(1 – t)

μ
k f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

]

=
f (t(λa + m(1 – λ)r) + m(1 – t)(λr + (1 – λ) a

m ))(1 – t)
μ
k

(1 – 2λ)(mr – a)

∣∣∣1

0

+
μ

k
(1 – 2λ)(mr – a)

[∫ 1

0
(1 – t)

μ
k –1f

(
t
(
λa + m(1 – λ)r

)
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+ m(1 – t)
(

λr + (1 – λ)
a
m

))
dt

]

= –
f (mλr + (1 – λ)a)
(1 – 2λ)(mr – a)

+
μ

k
(1 – 2λ)(mr – a)

×
[∫ 1

0
(1 – t)

μ
k –1f

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

]
. (2.4)

Let x = t(λa + m(1 – λ)r) + m(1 – t)(λr + (1 – λ) a
m ), t ∈ [0, 1], equality (2.4) can be written

as

I1 = –
f (mλr + (1 – λ)a)
(1 – 2λ)(mr – a)

+
μ

k

(1 – 2λ)
μ
k (mr – a)

μ
k +1

∫ λa+m(1–λ)r

mλr+(1–λ)a

(
λa + m(1 – λ)r – x

)μ
k –1f (x) dx

= –
f (mλr + (1 – λ)a)
(1 – 2λ)(mr – a)

+
�k(μ + k)

(1 – 2λ)
μ
k +1(mr – a)

μ
k +1 kJμ

(mλr+(1–λ)a)+ f
(
λa + m(1 – λ)r

)
, (2.5)

and similarly we get

I2 =
∫ 1

0
t

μ
k f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

= –
t

μ
k f (t(λa + m(1 – λ)r) + m(1 – t)(λr + (1 – λ) a

m ))
(1 – 2λ)(mr – a)

∣∣∣1

0

+
μ

k
(1 – 2λ)(mr – a)

×
∫ 1

0
t

μ
k –1f

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

= –
f (λa + m(1 – λ)r)
(1 – 2λ)(mr – a)

+
�k(μ + k)

(1 – 2λ)
μ
k +1(mr – a)

μ
k +1 kJμ

(λa+m(1–λ)r)– f
(
mλr + (1 – λ)a

)
. (2.6)

Hence, using (2.5) and (2.6) in (2.3), we can obtain the desired result. �

Corollary 2.1 In Lemma 2.1, for k = 1, we can get the result for Riemann-Liouville frac-
tional integral.

Corollary 2.2 In Lemma 2.1, if we put λ = 0, we get

–
f (a) + f (mr)

mr – a
+

�k(μ + k)
(mr – a)

μ
k +1

[
kJμ

a+ f (mr) + kJμ
mr– f (a)

]

=
∫ 1

0

(
(1 – t)

μ
k – t

μ
k
)
f ′(tmr + (1 – t)a

)
dt. (2.7)
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Similarly, taking λ = 1 in Lemma 2.1, we obtain

f (a) + f (mr)
mr – a

+
�k(μ + k)

(–1)
μ
k +1(mr – a)

μ
k +1

[
kJμ

mr+ f (a) + kJμ
a– f (mr)

]

=
∫ 1

0

(
(1 – t)

μ
k – t

μ
k
)
f ′(ta + (1 – t)mr

)
dt. (2.8)

Note that kJμ

mr+ f (a) + kJμ
a– f (mr) = (–1)

μ
k [kJμ

a+ f (mr) + kJμ
mr– f (a)], it is easy to see that identity

(2.8) is equal to identity (2.7).

Remark 2.1
(i) In Corollary 2.1, if we put r = b, then one can obtain Lemma 3.1 which is proved in

[35]. Further, if we take m = 1, then we obtain Lemma 2.1 in [12].
(ii) In Corollary 2.2,

(a) if we put k = 1 = m, then we obtain Lemma 3 in [11],
(b) if we put k = 1 = m and r = b, then we obtain Lemma 2 in [8],
(c) if we put k = m = μ = 1 and r = b, then we obtain Lemma 2.1 in [36].

3 k-fractional integral inequalities for (h, m)-convex functions
In what follows, we establish some k-fractional integral inequalities for (h, m)-convex
functions by using Lemma 2.1.

Theorem 3.1 Let h : J ⊆R →R ([0, 1] ⊆ J) be a non-negative function, and let f : I ⊆R →
R be a differentiable mapping on Io along with a, r ∈ I , 0 ≤ a < mr, for some fixed m ∈ (0, 1].
If f ′ ∈ L1[a, mr] and |f ′|q for q ≥ 1 is (h, m)-convex on [a, mr], then the following inequality
exists:

∣∣Tk,μ(m,λ, r)
∣∣ ≤

[
2k

μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)(

h(t) + h(1 – t)
)

dt
] 1

q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
, (3.1)

where λ ∈ (0, 1]\ 1
2 , k > 0 and μ > 0.

Proof Case 1: q = 1. Applying Lemma 2.1 and the (h, m)-convexity of |f ′|, we have

∣∣Tk,μ(m,λ, r)
∣∣

=
∣∣∣∣
∫ 1

0

(
(1 – t)

μ
k – t

μ
k
)
f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))
dt

∣∣∣∣
≤

∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣

×
[

h(t)
∣∣f ′(λa + m(1 – λ)r

)∣∣ + mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
]

dt
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=
∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)

×
[

h(t)
∣∣f ′(λa + m(1 – λ)r

)∣∣ + mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
]

dt

+
∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)

×
[

h(t)
∣∣f ′(λa + m(1 – λ)r

)∣∣ + mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
]

dt,

where we use the fact that

∫ 1

1
2

t
μ
k h(t) dt =

∫ 1
2

0
(1 – t)

μ
k h(1 – t) dt,

∫ 1

1
2

t
μ
k h(1 – t) dt =

∫ 1
2

0
(1 – t)

μ
k h(t) dt,

∫ 1

1
2

(1 – t)
μ
k h(t) dt =

∫ 1
2

0
t

μ
k h(1 – t) dt

and

∫ 1

1
2

(1 – t)
μ
k h(1 – t) dt =

∫ 1
2

0
t

μ
k h(t) dt.

By calculation,

∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣[h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣ + mh(t)

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
]

dt

≤
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)(

h(t) + h(1 – t)
)

dt
]

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣ + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
]

.

Case 2: q > 1. Employing Lemma 2.1, the power mean inequality and the (h, m)-convexity
of |f ′|q leads to

∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣dt

]1– 1
q

×
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

≤
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)

dt
]1– 1

q

×
{∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣[h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣q
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+ mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q]

dt
} 1

q

=
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)(

h(t) + h(1 – t)
)

dt
] 1

q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

This completes the proof. �

Now, we point out some special cases of Theorem 3.1.

Corollary 3.1 In Theorem 3.1, if we choose h(t) = t and r = b, then we derive the following
inequality for m-convex functions:

∣∣Tk,μ(m,λ, b)
∣∣

≤ 2k
μ + k

[
1 –

1
2

μ
k

][ |f ′(λa + m(1 – λ)b)|q + m|f ′(λb + (1 – λ) a
m )|q

2

] 1
q

. (3.2)

Especially if we put k = 1, we obtain Theorem 3.2 in [35].

Corollary 3.2 In Theorem 3.1, if we choose h(t) = t, m = 1 and λ = 0 or λ = 1, then we
derive the following inequality for convex functions:

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤ 2k
μ + k

[
1 –

1
2

μ
k

][ |f ′(r)|q + |f ′(a)|q
2

] 1
q

.

Remark 3.1 In Corollary 3.2,
(a) if we put k = 1, we can obtain Theorem 2.3 in [12],
(b) if we put k = 1 and r = b, we can obtain Corollary 2.4 in [12],
(c) if we put k = 1 = μ and r = b, we can obtain Theorem 1 in [37],
(d) if we put μ = q = k = 1 and r = b, we can obtain Theorem 2.2 in [36].

Corollary 3.3 In Theorem 3.1, if we choose h(t) = ts, s ∈ (0, 1], then we have the following
inequality for (s, m)-Breckner convex functions:

∣∣Tk,μ(m,λ, r)
∣∣ ≤

[
2k

μ + k

(
1 –

1
2

μ
k

)]1– 1
q

×
[
β

(
1
2

, s + 1,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1, s + 1

)

+
k

k(s + 1) + μ
–

k
k(s + 1) + μ

(
1
2

) sk+μ
k

] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
. (3.3)

Especially if we choose m = 1 = k and λ = 0 or λ = 1, we can get Theorem 7 in [38].
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Corollary 3.4 In Theorem 3.1, if we put h(t) = 1, then we obtain the following inequality
for (m, P)-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤ 2k
μ + k

[
1 –

1
2

μ
k

][∣∣f ′(λa + m(1 – λ)r
)∣∣q + m

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q] 1

q
.

Especially if we choose m = 1 and λ = 1 or λ = 0, we have

∣∣∣∣– f (a) + f (r)
2

+
�k(μ + k)
2(r – a)

μ
k

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣
≤ k(r – a)

μ + k

[
1 –

1
2

μ
k

][∣∣f ′(r)
∣∣q +

∣∣f ′(a)
∣∣q] 1

q .

Corollary 3.5 In Theorem 3.1, if we take h(t) = t–s, s ∈ (0, 1), then we get the following
inequality for (m, s)-Godunova-Liven-Dragomir convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q

×
[
β

(
1
2

, 1 – s,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1, 1 – s

)
+

k
μ + (1 – s)k

(
1 – 2

sk–μ
k

)] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 1 or λ = 0, we get

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q

×
[
β

(
1
2

, 1 – s,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1, 1 – s

)
+

k
μ + (1 – s)k

(
1 – 2

sk–μ
k

)] 1
q

× [∣∣f ′(a)
∣∣q +

∣∣f ′(r)
∣∣q] 1

q .

Corollary 3.6 In Theorem 3.1, if we choose h(t) = t(1 – t), then we obtain the following
inequality for (m, tgs)-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣ ≤

[
2k

μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[

4k2 – 2– μ
k (kμ + 4k2)

2(μ + 2k)(μ + 3k)

] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.
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Especially if we put m = 1 and λ = 1 or λ = 0, we get

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[

4k2 – 2– μ
k (kμ + 4k2)

(μ + 2k)(μ + 3k)

] 1
q
[ |f ′(a)|q + |f ′(r)|

2

q] 1
q

.

Corollary 3.7 In Theorem 3.1, if we choose h(t) =
√

1–t
2
√

t , then we obtain the following in-
equality for m-MT-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣ ≤

[
2k

μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[

1
2

(
β

(
1
2

,
1
2

,
μ

k
+

1
2

)
– β

(
1
2

,
μ

k
+

1
2

,
1
2

))] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 1 or λ = 0, we get

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q
[
β

(
1
2

,
1
2

,
μ

k
+

1
2

)
– β

(
1
2

,
μ

k
+

1
2

,
1
2

)] 1
q

×
[ |f ′(a)|q + |f ′(r)|q

2

] 1
q

.

Now, we prepare to introduce the second theorem as follows.

Theorem 3.2 Under the assumptions of Theorem 3.1, the resulting expression exists:

∣∣Tk,μ(m,λ, r)
∣∣ ≤

[∫ 1
2

0

(
(1 – t)

μ
k q – t

μ
k q)(h(t) + h(1 – t)

)
dt

] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
, (3.4)

where λ ∈ [0, 1] \ 1
2 , k > 0 and μ > 0.

Proof Using Lemma 2.1, Hölder’s inequality and the (h, m)-convexity of |f ′|q, we have

∣∣Tk,μ(m,λ, r)
∣∣

≤
∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
(∫ 1

0
1p dt

) 1
p
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣q

×
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q
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=
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)q

×
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt

+
∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)q

×
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

≤
{∫ 1

2

0

(
(1 – t)

μ
k q – t

μ
k q)

×
[

h(t)
∣∣f ′(λa + m(1 – λ)r

)∣∣q + mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q

dt
]

+
∫ 1

1
2

(
t

μ
k q – (1 – t)

μ
k q)

×
[

h(t)
∣∣f ′(λa + m(1 – λ)r

)∣∣q + mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q]

dt
} 1

q

=
[∫ 1

2

0

(
(1 – t)

μ
k q – t

μ
k q)(h(t) + h(1 – t)

)
dt

] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Here, we use (A – B)q ≤ Aq – Bq for any A ≥ B ≥ 0 and q ≥ 1.
Let us point out some special cases of Theorem 3.2.

Corollary 3.8 In Theorem 3.2, if we put h(t) = ts, s ∈ (0, 1], then we get the following in-
equality for (s, m)-Breckner convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[
β

(
1
2

, s + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1, s + 1

)
+

k
μq + (s + 1)k

(
1 – 2– μq+sk

k
)] 1

q

×
[∣∣f ′(λa + (1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 0 or λ = 1, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[
β

(
1
2

, s + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1, s + 1

)
+

k
μq + (s + 1)k

(
1 – 2– μq+sk

k
)] 1

q

× [∣∣f ′(r)
∣∣q +

∣∣f ′(a)
∣∣q] 1

q .
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Corollary 3.9 In Theorem 3.2, if we take h(t) = t–s, s ∈ (0, 1], then we get the following
inequality for (m, s)-Godunova-Levin-Dragomir convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[
β

(
1
2

, 1 – s,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1, 1 – s

)
+

k
k(1 – s) + μ

(
1 – 2

sk–μ
k

)] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we take m = 1 and λ = 0 or λ = 1, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[
β

(
1
2

, 1 – s,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1, 1 – s

)
+

k
k(1 – s) + μ

(
1 – 2

sk–μ
k

)] 1
q

× [∣∣f ′(r)
∣∣q +

∣∣f ′(a)
∣∣q] 1

q .

Corollary 3.10 In Theorem 3.2, if we put h(t) = t(1– t), then we get the following inequality
for (m, tgs)-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[2k2 – ( 1

2 )
μq+k

k (4k2 + kuq)
(μq + 2k)(μq + 3k)

] 1
q

×
[∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 0 or λ = 1, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[2k2 – ( 1

2 )
μq+k

k (4k2 + kuq)
(μq + 2k)(μq + 3k)

] 1
q [∣∣f ′(r)

∣∣q +
∣∣f ′(a)

∣∣q] 1
q .

Corollary 3.11 In Theorem 3.2, if we put h(t) =
√

1–t
2
√

t , then we get the following inequality
for m-MT-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[
β

(
1
2

,
1
2

,
μ

k
q +

1
2

)
– β

(
1
2

,
μ

k
q +

1
2

,
1
2

)] 1
q

×
[ |f ′(λa + m(1 – λ)r)|q + m|f ′(λr + (1 – λ) a

m )|q
2

] 1
q

.
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Especially if we put m = 1 and λ = 0 or λ = 1, we have
∣∣∣∣– f (a) + f (r)

r – a
+

�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[
β

(
1
2

,
1
2

,
μ

k
q +

1
2

)
– β

(
1
2

,
μ

k
q +

1
2

,
1
2

)] 1
q
[ |f ′(r)|q + |f ′(a)|q

2

] 1
q

.

Now, we are ready to state the third theorem in this section.

Theorem 3.3 Let h : J ⊆R →R ([0, 1] ⊆ J) be a non-negative function, and let f : I ⊆R →
R be a differentiable mapping on Io along with a, r ∈ I , 0 ≤ a < mr, for some fixed m ∈ (0, 1].
If f ′ ∈ L[a, mr] and |f ′|q for q > 1 is (h, m)-convex on [a, mr], then the following inequality
holds:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p

×
{∫ 1

0

[
h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣q

+ mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q]

dt
} 1

q
, (3.5)

where 1
p + 1

q = 1, μ > 0, k > 0 and λ ∈ [0, 1] \ 1
2 .

Proof Applying Lemma 2.1, Hölder’s inequality and the (h, m)-convexity of |f ′|q, we have

∣∣Tk,μ(m,λ, r)
∣∣

≤
∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣p

] 1
p

×
[∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

=
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)p dt +

∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)p dt

] 1
p

×
{∫ 1

0

[
h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣q

+ mh(1 – t)
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q]

dt
} 1

q

≤
[∫ 1

2

0

(
(1 – t)

μ
k p – t

μ
k p)dt +

∫ 1

1
2

(
t

μ
k p – (1 – t)

μ
k p)dt

] 1
p

×
{∫ 1

0

[
h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣q + mh(1 – t)

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q
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=
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p

×
{∫ 1

0

[
h(t)

∣∣f ′(λa + m(1 – λ)r
)∣∣q + mh(1 – t)

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q
.

Here, we use the fact that (A – B)q ≤ Aq – Bq for any A ≥ B ≥ 0 and q ≥ 1, which completes
the proof. �

Now, we point out some special cases of Theorem 3.3.

Corollary 3.12 In Theorem 3.3, if we choose h(t) = t and r = b, then we obtain the following
inequality for m-convex functions:

∣∣Tk,μ(m,λ, b)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(λa + (1 – λ)b)|q + m|f ′(λb + (1 – λ) a

m )|q
2

] 1
q

.

Especially if we put k = 1, we obtain Theorem 3.3 in [35]. Further, if we put m = 1, we obtain
Theorem 2.6 in [12].

Corollary 3.13 In Theorem 3.3, if we choose h(t) = t, m = 1 and λ = 0 or λ = 1, then we
obtain the following inequality for convex functions:

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(r)|q + |f ′(a)|q

2

] 1
q

.

Remark 3.2 In Corollary 3.13,
(a) if we take k = 1 and r = b, we can get Corollary 2.7 in [12],
(b) if we take k = 1 = μ and r = b, we can get Corollary 2.8 in [12].

Corollary 3.14 In Theorem 3.3, if we choose h(t) = ts, s ∈ (0, 1], then we obtain the following
inequality for (s, m)-Breckner convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(λa + (1 – λ)r)|q + m|f ′(λr + (1 – λ) a

m )|q
s + 1

] 1
q

.

Especially if we put m = 1 and λ = 0 or λ = 1, then we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(a)|q + |f ′(r)|q

s + 1

] 1
q

.
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Corollary 3.15 In Theorem 3.3, if we put h(t) = 1, then we obtain the following inequality
for (m, P)-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[∣∣f ′(λa + (1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 1 or λ = 0, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p [∣∣f ′(r)

∣∣q +
∣∣f ′(a)

∣∣q] 1
q .

Corollary 3.16 In Theorem 3.3, if we take h(t) = t–s, s ∈ (0, 1), then we obtain the following
inequality for (s, m)-Godunova-Levin-Dragomir convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(λa + (1 – λ)r)|q + m|f ′(λr + (1 – λ) a

m )|q
1 – s

] 1
q

.

Especially if we take m = 1 and λ = 1 or λ = 0, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[ |f ′(r)|q + |f ′(a)|q

1 – s

] 1
q

.

Corollary 3.17 In Theorem 3.3, if we put h(t) =
√

1–t
2
√

t , then we obtain the following inequal-
ity for m-MT-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
(

π

4

) 1
q
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p

×
[∣∣f ′(λa + (1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we put m = 1 and λ = 0 or λ = 1, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
(

π

4

) 1
q
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p [∣∣f ′(r)

∣∣ +
∣∣f ′(a)

∣∣] 1
q .
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Corollary 3.18 In Theorem 3.3, if we choose h(t) = t(1 – t), then we obtain the following
inequality for (m, tgs)-convex functions:

∣∣Tk,μ(m,λ, r)
∣∣

≤
(

1
6

) 1
q
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p
[∣∣f ′(λa + (1 – λ)r

)∣∣q + m
∣∣∣∣f ′

(
λr + (1 – λ)

a
m

)∣∣∣∣
q] 1

q
.

Especially if we choose m = 1 and λ = 0 or λ = 1, we have

∣∣∣∣– f (a) + f (r)
r – a

+
�k(μ + k)
(r – a)

μ
k +1

[
kJμ

a+ f (r) + kJμ
r– f (a)

]∣∣∣∣

≤
(

1
6

) 1
q
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p [∣∣f ′(r)

∣∣q +
∣∣f ′(a)

∣∣q] 1
q .

4 k-fractional inequalities for (α, m)-convex functions
Using Lemma 2.1 again, we state the following theorems.

Theorem 4.1 Let f : I ⊆ R → R be a differentiable mapping on Io along with a, r ∈ I and
0 ≤ a < mr. If |f ′|q for q ≥ 1 is (α, m)-convex on [a, mr] and f ′ ∈ L1[a, mr]. Then the follow-
ing inequality for k-fractional integrals holds:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q
{[

β

(
1
2

,α + 1,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1,α + 1

)

+
k

μ + (α + 1)k
–

k
μ + (α + 1)k

(
1
2

)μ+αk
k

]∣∣f ′(λa + m(1 – λ)r
)∣∣q

–
[
β

(
1
2

,α + 1,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1,α + 1

)
+

k
μ + (α + 1)k

–
k

μ + (α + 1)k

(
1
2

)μ+αk
k

+
2k

μ + k

(
1
2

)μ
k

–
2k

μ + k

]
m

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q} 1

q
, (4.1)

where λ ∈ (0, 1]\ 1
2 , k > 0 and μ > 0.

Proof Using Lemma 2.1, the power mean inequality and the (α, m)-convexity of |f ′|q, we
have

∣∣Tk,μ(m,λ, r)
∣∣

≤
∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣dt

]1– 1
q
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×
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

≤
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)

dt +
∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)

dt
]1– 1

q

×
{∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣

×
[

tα
∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
(
1 – tα

)∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q

=
[

2k
μ + k

(
1 –

1
2

μ
k

)]1– 1
q
{[

β

(
1
2

,α + 1,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1,α + 1

)

+
k

μ + (α + 1)k
–

k
μ + (α + 1)k

(
1
2

)μ+αk
k

]∣∣f ′(λa + m(1 – λ)r
)∣∣q

–
[
β

(
1
2

,α + 1,
μ

k
+ 1

)
– β

(
1
2

,
μ

k
+ 1,α + 1

)
+

k
μ + (α + 1)k

–
k

μ + (α + 1)k

(
1
2

)μ+αk
k

+
2k

μ + k

(
1
2

)μ
k

–
2k

μ + k

]
m

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q} 1

q
,

which completes the proof. �

Theorem 4.2 Under the assumptions of Theorem 4.1, the following inequality for k-
fractional integrals holds:

∣∣Tk,μ(m,λ, r)
∣∣

≤
{[

β

(
1
2

,α + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1,α + 1

)

+
k

μq + (α + 1)k
–

k
μq + (α + 1)k

(
1
2

)μq+αk
k

]∣∣f ′(λa + m(1 – λ)r
)∣∣q

–
[
β

(
1
2

,α + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1,α + 1

)
–

k
μq + (α + 1)k

(
1
2

)μq+αk
k

+
k

μq + (α + 1)k
–

2k
μq + k

+
2k

μq + k

(
1
2

)μq
k

]
m

∣∣∣∣f ′
(

λr + m(1 – λ)
a
m

)∣∣∣∣
q} 1

q
, (4.2)

where λ ∈ (0, 1]\ 1
2 , k > 0 and μ > 0.

Proof By making use of Lemma 2.1, Hölder’s inequality and the (α, m)-convexity of |f ′|q,
we get

∣∣Tk,μ(m,λ, r)
∣∣

≤
∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣dt

≤
(∫ 1

0
1p dt

) 1
p
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣q
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×
∣∣∣∣f ′

(
t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

=
[∫ 1

2

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣q

∣∣∣∣f ′
(

t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt

+
∫ 1

1
2

∣∣t μ
k – (1 – t)

μ
k
∣∣q

∣∣∣∣f ′
(

t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

≤
{∫ 1

2

0

(
(1 – t)

μ
k q – t

μ
k q)

×
[

tα
∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
(
1 – tα

)∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q

dt
]

+
∫ 1

1
2

(
t

μ
k q – (1 – t)

μ
k q)

×
[

tα
∣∣f ′(λa + m(1 – λ)r

)∣∣q + m
(
1 – tα

)∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q

=
{[

β

(
1
2

,α + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1,α + 1

)

+
k

μq + (α + 1)k
–

k
μq + (α + 1)k

(
1
2

)μq+αk
k

]∣∣f ′(λa + m(1 – λ)r
)∣∣q

–
[
β

(
1
2

,α + 1,
μ

k
q + 1

)
– β

(
1
2

,
μ

k
q + 1,α + 1

)
–

k
μq + (α + 1)k

(
1
2

)μq+αk
k

+
k

μq + (α + 1)k
–

2k
μq + k

+
2k

μq + k

(
1
2

)μq
k

]
m

∣∣∣∣f ′
(

λr + m(1 – λ)
a
m

)∣∣∣∣
q} 1

q
.

Here, we use (A – B)q ≤ Aq – Bq for any A ≥ B ≥ 0 and q ≥ 1. This ends the proof. �

Theorem 4.3 Let f : I ⊆ R → R be a differentiable mapping on Io along with a, r ∈ I and
0 ≤ a < mr. If |f ′|q for q > 1 is (α, m)-convex on [a, mr] and f ′ ∈ L1[a, mr], then the following
inequality for k-Riemann-Liouville fractional integral holds:

∣∣Tk,μ(m,λ, r)
∣∣

≤
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p

×
[

1
α + 1

∣∣f ′(λa + m(1 – λ)r
)∣∣q +

αm
α + 1

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q] 1

q
, (4.3)

where λ ∈ (0, 1]\ 1
2 , k > 0, μ > 0 and 1

p + 1
q = 1.

Proof Employing Lemma 2.1, Hölder’s inequality and the (α, m)-convexity of |f ′|q, we have

∣∣Tk,μ(m,λ, r)
∣∣

≤
[∫ 1

0

∣∣(1 – t)
μ
k – t

μ
k
∣∣p

] 1
p
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×
[∫ 1

0

∣∣∣∣f ′
(

t
(
λa + m(1 – λ)r

)
+ m(1 – t)

(
λr + (1 – λ)

a
m

))∣∣∣∣
q

dt
] 1

q

≤
[∫ 1

2

0

(
(1 – t)

μ
k – t

μ
k
)p dt +

∫ 1

1
2

(
t

μ
k – (1 – t)

μ
k
)p dt

] 1
p

×
{∫ 1

0

[
tα

∣∣f ′(λa + m(1 – λ)r
)∣∣q + m

(
1 – tα

)∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q

≤
[∫ 1

2

0

(
(1 – t)

μ
k p – t

μ
k p)dt +

∫ 1

1
2

(
t

μ
k p – (1 – t)

μ
k p)dt

] 1
p

×
{∫ 1

0

[
tα

∣∣f ′(λa + m(1 – λ)r
)∣∣q + m

(
1 – tα

)∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q]

dt
} 1

q

=
[

2k
μp + k

(
1 –

1
2

μ
k p

)] 1
p

×
[

1
α + 1

∣∣f ′(λa + m(1 – λ)r
)∣∣q +

αm
α + 1

∣∣∣∣f ′
(

λr + (1 – λ)
a
m

)∣∣∣∣
q] 1

q
,

where we use the fact that (A – B)q ≤ Aq – Bq for any A ≥ B ≥ 0 and q ≥ 1. This completes
the proof. �

Remark 4.1 If we take λ = 0 or λ = 1, we can deduce some new k-fractional integral
trapezium-like inequalities from the results of Theorems 4.1, 4.2 and 4.3 and their related
inequalities.
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