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Abstract
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1 Notation and preliminaries
The setting for this paper is an n-dimensional Euclidean space R

n. We reserve the letter
u for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The
surface of B is Sn–1. The volume of the unit n-ball is denoted by ωn. We use V (K) for the
n-dimensional volume of a body K . Associated with a compact subset K of Rn, which is
star-shaped with respect to the origin, is its radial function ρ(K , ·) : Sn–1 → R defined for
u ∈ Sn–1 by

ρ(K , u) = max{λ ≥ 0 : λu ∈ K}.

If ρ(K , ·) is positive and continuous, K will be called a star body. Let Sn denote the set
of star bodies in R

n. Let δ̃ denote the radial Hausdorff metric, i.e., if K , L ∈ Sn, then
δ̃(K , L) = |ρ(K , u)–ρ(L, u)|∞, where | · |∞ denotes the sup-norm on the space of continuous
functions C(Sn–1).

1.1 Dual mixed volumes
The radial Minkowski linear combination, λ1K1+̃ · · · +̃λrKr is defined by

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki, i = 1, . . . , r} (1.1)

for K1, . . . , Kr ∈ Sn and λ1, . . . ,λr ∈R. It has the following important property (see [1]):

ρ(λK +̃μL, ·) = λρ(K , ·) + μρ(L, ·) (1.2)
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for K , L ∈ Sn and λ,μ ≥ 0. For K1, . . . , Kr ∈ Sn and λ1, . . . ,λr ≥ 0, the volume of the radial
Minkowski linear combination λ1K1+̃ · · · +̃λrKr is a homogeneous polynomial of degree n
in the λi,

V (λ1K1+̃ · · · +̃λrKr) =
r

∑

i1,...,in=1

˜V (Ki1 , . . . , Kin )λi1 · · ·λin . (1.3)

If we require the coefficients of the polynomial in (1.3) to be symmetric in their arguments,
then they are uniquely determined. The coefficient ˜V (Ki1 , . . . , Kin ) is nonnegative and de-
pends only on the bodies Ki1 , . . . , Kin . It is called the dual mixed volume of Ki1 , . . . , Kin .

If K1, . . . , Kn ∈ Sn, then the dual mixed volume ˜V (K1, . . . , Kn) can be represented in the
form (see [2])

˜V (K1, . . . , Kn) =
1
n

∫

Sn–1
ρ(K1, u) · · ·ρ(Kn, u) dS(u). (1.4)

If K1 = · · · = Kn–i = K , Kn–i+1 = · · · = Kn = L, then the dual mixed volume is written as
˜Vi(K , L). If L = B, then the dual mixed volume ˜Vi(K , L) = ˜Vi(K , B) is written as ˜Wi(K). For
K , L ∈ Sn, the ith dual mixed volume of K and L, ˜Vi(K , L) can be extended to all i ∈ R by

˜Vi(K , L) =
1
n

∫

Sn–1
ρ(K , u)n–iρ(L, u)i dS(u), (1.5)

where i ∈R. Thus, if K ∈ Sn, then

˜Wi(K) =
1
n

∫

Sn–1
ρ(K , u)n–i dS(u). (1.6)

1.2 Mixed intersection bodies
For K ∈ Sn, there is a unique star body IK whose radial function satisfies, for u ∈ Sn–1,

ρ(IK , u) = v(K ∩ Eu),

where v is (n – 1)-dimensional dual volume. It is called the intersection body of K . The
volume of the intersection body of K is given by (see [1])

V (IK) =
1
n

∫

Sn–1
v(K ∩ Eu)n dS(u).

The mixed intersection body of K1, . . . , Kn–1 ∈ Sn, denoted by I(K1, . . . , Kn–1), is defined by

ρ
(

I(K1, . . . , Kn–1), u
)

= ṽ(K1 ∩ Eu, . . . , Kn–1 ∩ Eu),

where ṽ is the (n – 1)-dimensional dual mixed volume. If K1 = · · · = Kn–i–1 = K , Kn–i = · · · =
Kn–1 = L, then I(K1, . . . , Kn–1) is written as Ii(K , L). If L = B, then Ii(K , L) is written as IiK
and called the ith intersection body of K . For I0K , we simply write IK .
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2 Improvement of the radial Blaschke addition
Let us recall the concept of radial Blaschke addition defined by Lutwak [1]. Suppose that
K and L are star bodies in R

n, the radial Blaschke addition denoted by K +̂L is a star body
whose radial function is

ρ(K +̂L, ·)n–1 = ρ(K , ·)n–1 + ρ(L, ·)n–1. (2.1)

The dual Knesser-Süss inequality for the radial Blaschke addition was established by Lut-
wak [1]. If K , L ∈ Sn, then

V (K +̂L)(n–1)/n ≤ V (K)(n–1)/n + V (L)(n–1)/n, (2.2)

with equality if and only if K and L are dilates.
In the section, we give a generalized concept of the radial Blaschke addition.

Definition 2.1 If K , L ∈ Sn, 0 ≤ p < n–1 and λ,μ > 0 (not both zero), the p-radial Blaschke
linear combination of K and L denoted by λ�K +̂pμ�L is a star body whose radial function
is defined by

ρ(λ � K +̂pμ � L, ·)n–p–1 = λρ(K , ·)n–p–1 + μρ(L, ·)n–p–1. (2.3)

From (2.3), it is easy to see that

λ � K = λ1/(n–p–1)K .

When λ = μ = 1, the p-radial Blaschke combination becomes the p-radial Blaschke addi-
tion K +̂pL and

ρ(K +̂pL, ·)n–p–1 = ρ(K , ·)n–p–1 + ρ(L, ·)n–p–1. (2.4)

Obviously, when p = 0, (2.4) becomes (2.1).

In the following, we define the dual mixed quermassintegral with respect to the p-radial
Blaschke addition. First, we show two propositions. The following proposition follows im-
mediately from (2.3) with L’Hôpital’s rule.

Proposition 2.2 Let 0 ≤ p < n – 1, 0 ≤ i < n and ε > 0. If K , L ∈ Sn, then

lim
ε→0+

ρ(K +̂pε � L, u)n–i – ρ(K , u)n–i

ε
=

n – i
n – p – 1

ρ(K , u)p–i+1ρ(L, u)n–p–1. (2.5)

The following proposition follows immediately from Proposition 2.2 and (1.6).

Proposition 2.3 Let 0 ≤ p < n – 1, 0 ≤ i < n and ε > 0. If K , L ∈ Sn, then

n – p – 1
n – i

lim
ε→0+

˜Wi(K +̂pε � L, u) – ˜Wi(K)
ε

=
1
n

∫

Sn–1
ρ(K , u)p–i+1ρ(L, u)n–p–1 dS(u). (2.6)
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Definition 2.4 For 0 ≤ p < n – 1, 0 ≤ i < n and K , L ∈ Sn, the p-dual mixed quermassin-
tegral of star bodies K and L, denoted by ˜Wp,i(K , L), is defined by

˜Wp,i(K , L) =
1
n

∫

Sn–1
ρ(K , u)p–i+1ρ(L, u)n–p–1 dS(u). (2.7)

Obviously, when K = L, ˜Wp,i(K , L) becomes the dual quermassintegral of star body K , i.e.,
˜Wp,i(K , K) = ˜Wi(K). Taking i = 0 in (2.7), ˜Wp,i(K , L) becomes the p-dual mixed volume
˜Vp(K , L) and

˜Vp(K , L) =
1
n

∫

Sn–1
ρ(K , u)p+1ρ(L, u)n–p–1 dS(u). (2.8)

From (2.7), combining Hölder’s integral inequality (see [3]) gives the following.

Proposition 2.5 (Minkowski type inequality) If K , L ∈ Sn, 0 ≤ i < n and 0 ≤ p < n – 1,
then

˜Wp,i(K , L)n–i ≤ ˜Wi(K)p–i+1
˜Wi(L)n–p–1, (2.9)

with equality if and only if K and L are dilates.

Taking i = 0 in (2.9), we have: If K , L ∈ Sn and 0 ≤ p < n – 1, then

˜Vp(K , L)n ≤ V (K)p+1V (L)n–p–1, (2.10)

with equality if and only if K and L are dilates. In the following, we establish the Brunn-
Minkowski inequality for the p-radial Blaschke addition.

Proposition 2.6 If K , L ∈ Sn, 0 ≤ i < n and 0 ≤ p < n – 1, then

˜Wi(K +̂pL)(n–p–1)/(n–i) ≤ ˜Wi(K)(n–p–1)/(n–i) + ˜Wi(L)(n–p–1)/(n–i), (2.11)

with equality if and only if K and L are dilates.

Proof From (2.3) and (2.7), it is easily seen that the p-dual mixed quermassintegral
̂Wp,i(K , L) is linear with respect to the p-radial Blaschke addition and together with in-
equality (2.9) shows that

˜Wp,i(Q, K +̂pL) = ˜Wp,i(Q, K) + ˜Wp,i(Q, L)

≤ ˜Wi(Q)(p–i+1)/(n–i)(
˜Wi(K)(n–p–1)/(n–i) + ˜Wi(L)(n–p–1)/(n–i)), (2.12)

with equality if and only if K and L are dilates of Q. Take K +̂pL for Q in (2.12), recall that
˜Wp,i(Q, Q) = ˜Wi(Q), inequality (2.11) follows easy.

Taking i = 0 in (2.11), we obtain that if K , L ∈ Sn and 0 ≤ p < n – 1, then

V (K +̂pL)(n–p–1)/n ≤ V (K)(n–p–1)/n + V (L)(n–p–1)/n,



Zhao Journal of Inequalities and Applications  (2017) 2017:308 Page 5 of 12

with equality if and only if K and L are dilates. Taking p = 0 and i = 0 in (2.11), (2.11)
becomes the well-known dual Knesser-Süss inequality (2.2). �

3 Improvement of the harmonic Blaschke addition
Let us recall the concept of harmonic Blaschke addition defined by Lutwak [4]. Suppose
that K and L are star bodies in R

n, the harmonic Blaschke addition denoted by K +̆L is
defined by

ρ(K +̆L, ·)n+1

V (K +̆L)
=

ρ(K , ·)n+1

V (K)
+

ρ(L, ·)n+1

V (L)
. (3.1)

Lutwak’s Brunn-Minkowski inequality for the harmonic Blaschke addition was established
(see [4]). If K , L ∈ Sn, then

V (K +̆L)1/n ≥ V (K)1/n + V (L)1/n, (3.2)

with equality if and only if K and L are dilates.
In the section, we give an improved concept of the harmonic Blaschke addition.

Definition 3.1 For 0 ≤ i < n, p < i – 1 and K , L ∈ Sn, we define the p-harmonic Blaschke
addition of star bodies K and L denoted by K +̆pL and defined by

ρ(K +̆pL, ·)n–p–1

W̃i(K +̆pL)
=

ρ(K , ·)n–p–1

˜Wi(K)
+

ρ(L, ·)n–p–1

W̃i(L)
. (3.3)

The Brunn-Minkowski inequality for the p-harmonic Blaschke addition follows imme-
diately from (1.6), (3.3) and Minkowski’s integral inequality (see [3]).

Proposition 3.2 If K , L ∈ Sn, 0 ≤ i < n and p < i – 1, then

˜Wi(K +̆pL)–(p+1–i)/(n–i) ≤ ˜Wi(K)–(p+1–i)/(n–i) + ˜Wi(L)–(p+1–i)/(n–i), (3.4)

with equality if and only if K and L are dilates.

4 Radial Blaschke-Minkowski homomorphisms
Definition 4.1 ([5]) A map � : Sn → Sn is called a radial Blaschke-Minkowski homo-
morphism if it satisfies the following conditions:

(a) � is continuous.
(b) For all K , L ∈ Sn,

�(K +̈L) = �(K )̃+�(L).

(c) For all K , L ∈ Sn and every ϑ ∈ SO(n),

�(ϑK) = ϑ�(K),

where SO(n) is the group of rotations in n dimensions.
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Radial Blaschke-Minkowski homomorphisms are important examples of star body val-
ued valuations. Their natural duals, Blaschke-Minkowski homomorphisms, are an im-
portant notion in the theory of convex body valued valuations (see, e.g., [6–12] and [13–
20]). In 2006, Schuster [5] established the following Brunn-Minkowski inequality for ra-
dial Blaschke-Minkowski homomorphisms of star bodies. If K and L are star bodies in R

n,
then

V
(

�(K +̃L)
)1/n(n–1) ≤ V (�K)1/n(n–1) + V (�L)1/n(n–1), (4.1)

with equality if and only if K and L are dilates.
If K and L are star bodies in R

n, p 	= 0 and λ,μ ≥ 0, then λ · K +̃pμ · L is the star body
whose radial function is given by (see, e.g., [21])

ρ(λ · K +̃pμ · L, ·)p = λρ(K , ·)p + μρ(L, ·)p. (4.2)

The addition +̃p is called Lp-radial addition. The Lp dual Brunn-Minkowski inequality
states: If K , L ∈ Sn and 0 < p ≤ n, then

V (K +̃pL)p/n ≤ V (K)p/n + V (L)p/n,

with equality when p 	= n if and only if K and L are dilates. The inequality is reversed when
p > n or p < 0 (see [21]).

In 2013, an Lp Brunn-Minkowski inequality for radial Blaschke-Minkowski homomor-
phisms was established in [22]: If K and L are star bodies in R

n and 0 < p < n – 1, then

V
(

�(K +̃pL)
)p/n(n–1) ≤ V (�K)p/n(n–1) + V (�L)p/n(n–1), (4.3)

with equality if and only if K and L are dilates. Taking p = 1, (4.3) reduces to (4.1).

Theorem 4.2 (see [5]) Let � : Sn → Sn be a radial Blaschke-Minkowski homomorphism.
There is a continuous operator � : Sn × · · · × Sn

︸ ︷︷ ︸

n–1

→ Sn symmetric in its arguments such

that, for K1, . . . , Km ∈ Sn and λ1, . . . ,λm ≥ 0,

�(λ1K1+̃ · · · +̃λmKm) =
∑

i1,...,in–1

λi1 · · ·λin–1�(Ki1 , . . . , Kin–1 ). (4.4)

Clearly, Theorem 4.2 generalizes the notion of radial Blaschke-Minkowski homomor-
phisms. We call � : Sn × · · · × Sn → Sn a mixed radial Blaschke-Minkowski homomor-
phism induced by � . Mixed radial Blaschke-Minkowski homomorphisms were first stud-
ied in more detail in [23, 24]. If K1 = · · · = Kn–i–1 = K , Kn–i = · · · = Kn–1 = L, we write
�i(K , L) for �(K , . . . , K

︸ ︷︷ ︸

n–i–1

, L, . . . , L
︸ ︷︷ ︸

i

). If K1 = · · · = Kn–i–1 = K , Kn–i = · · · = Kn–1 = B, we write

�iK for �(K , . . . , K
︸ ︷︷ ︸

n–i–1

, B, . . . , B
︸ ︷︷ ︸

i

) and call �iK the mixed Blaschke-Minkowski homomor-

phism of order i of K . �0K is written simply as �K .
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Lemma 4.3 (see [5]) A map � : Sn → Sn is a radial Blaschke-Minkowski homomorphism
if and only if there is a measure μ ∈M+(Sn–1, ê) such that

ρ(�K , ·) = ρ(K , ·)n–1 ∗ μ, (4.5)

where M+(Sn–1, ê) denotes the set of nonnegative zonal measures on Sn–1.

For the mixed radial Blaschke-Minkowski homomorphism induced by � , Schuster [5]
proved that

ρ
(

�(K1, . . . , Kn–1), ·) = ρ(K1, ·) · · ·ρ(Kn–1, ·) ∗ μ.

Obviously, a special case is the following:

ρ(�iK , ·) = ρ(K , ·)n–1–i ∗ μ,

where i are integers. We now extend the integers i to real numbers, define the Blaschke-
Minkowski homomorphism of order p of K .

Definition 4.4 Let K ∈ Sn, the Blaschke-Minkowski homomorphism of order p of K ,
denoted by �pK , is defined for all p ∈R by

ρ(�pK , ·) = ρ(K , ·)n–1–p ∗ μ. (4.6)

This extended definition will be required to prove our main results.

5 Inequalities for the radial Blaschke-Minkowski homomorphism
Theorem 5.1 Let K , L ∈ Sn. If 0 ≤ p < n – 1 and i ≤ n – 1 ≤ j ≤ n, then

(

˜Wi(�p(K +̂pL))
˜Wj(�p(K +̂pL))

)1/(j–i)

≤
(

˜Wi(�pK)
˜Wj(�pK)

)1/(j–i)

+
(

˜Wi(�pL)
˜Wj(�pL)

)1/(j–i)

, (5.1)

with equality if and only if �pK and �pL are dilates.

Remark 5.2 Taking j = n in (5.1) and noting that ˜Wn(K) =
∫

Sn–1 dS(u) = nωn, (5.1) be-
comes the following inequality: If K , L ∈ Sn, 0 ≤ p < n – 1 and i ≤ n – 1, then

˜Wi
(

�p(K +̂pL)
)1/(n–i) ≤ ˜Wi(�pK)1/(n–i) + ˜Wi(�pL)1/(n–i), (5.2)

with equality if and only if �pK and �pL are dilates. Taking p = 0 in (5.1), (5.1) becomes
the following inequality: If K , L ∈ Sn and i ≤ n – 1 ≤ j ≤ n, then

(

˜Wi(�(K +̂L))
˜Wj(�(K +̂L))

)1/(j–i)

≤
(

˜Wi(�K)
˜Wj(�K)

)1/(j–i)

+
(

˜Wi(�L)
˜Wj(�L)

)1/(j–i)

, (5.3)

with equality if and only if �K and �L are dilates.
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Theorem 5.3 Let K , L ∈ Sn. If 0 ≤ i < n, p < i – 1 and k, j ∈ R satisfy j ≤ n – 1 ≤ k ≤ n, then

1
˜Wi(K +̆pL)

(

˜Wj(�p(K +̆pL))
˜Wk(�p(K +̆pL))

)1/(k–j)

≤ 1
˜Wi(K)

(

˜Wj(�pK)
˜Wk(�pK)

)1/(k–j)

+
1

˜Wi(L)

(

˜Wj(�pL)
˜Wk(�pL)

)1/(k–j)

, (5.4)

with equality if and only if �pK and �pL are dilates.

Remark 5.4 Taking k = n in (5.4) and noting that ˜Wn(K) =
∫

Sn–1 dS(u) = nωn, (5.4) be-
comes the following inequality: If K , L ∈ Sn, 0 ≤ i < n, p < i – 1 and j ≤ n – 1, then

˜Wj(�p(K +̆pL))1/(n–j)

˜Wi(K +̆pL)
≤

˜Wj(�pK)1/(n–j)

˜Wi(K)
+

˜Wj(�pL)1/(n–j)

˜Wi(L)
, (5.5)

with equality if and only if �pK and �pL are dilates. Taking i = 0, j = 0 and k = n in (5.4),
we have: If K , L ∈ Sn and p < –1, then

V (�p(K +̆pL))1/n

V (K +̆pL)
≤ V (�pK)1/n

V (K)
+

V (�pL)1/n

V (L)
, (5.6)

with equality if and only if �pK and �pL are dilates.

6 Dresher’s inequalities for p-radial Blaschke and harmonic Blaschke additions
An extension of Beckenbach’s inequality (see [3], p. 27) was obtained by Dresher [25] by
means of moment-space techniques.

Lemma 6.1 (Dresher’s inequality) If p ≥ 1 ≥ r ≥ 0, f , g ≥ 0 and φ is a distribution func-
tion, then

(
∫

(f + g)p dφ
∫

(f + g)r dφ

)1/(p–r)

≤
(

∫

f p dφ
∫

f r dφ

)1/(p–r)

+
(

∫

gp dφ
∫

gr dφ

)1/(p–r)

, (6.1)

with equality if and only if the functions f and g are proportional.

We are now in a position to prove Theorem 5.1. The following statement is just a slight
reformulation of it.

Theorem 6.2 Let K , L ∈ Sn. If 0 ≤ p < n – 1 and s, t ∈R satisfy s ≥ 1 ≥ t ≥ 0, then

(

˜Wn–s(�p(K +̂pL))
˜Wn–t(�p(K +̂pL))

)1/(s–t)

≤
(

˜Wn–s(�pK)
˜Wn–t(�pK)

)1/(s–t)

+
(

˜Wn–s(�pL)
˜Wn–t(�pL)

)1/(s–t)

, (6.2)

with equality if and only if �pK and �pL are dilates.

Proof From (2.4), we obtain

ρ(K +̂pL, ·)n–p–1 ∗ μ = ρ(K , ·)n–p–1 ∗ μ + ρ(L, ·)n–p–1 ∗ μ,
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where μ is the generating measure of � from Lemma 4.3. Hence, from (4.6), we obtain

ρ
(

�p(K +̂pL), ·) = ρ(�pK , ·) + ρ(�pL, ·).

Therefore, by (1.6), we have

˜Wn–s
(

�p(K +̂pL)
)

=
1
n

∫

Sn–1

(

ρ(�pK , u) + ρ(�pL, u)
)s dS(u) (6.3)

and

˜Wn–t
(

�p(K +̂pL)
)

=
1
n

∫

Sn–1

(

ρ(�pK , u) + ρ(�pL, u)
)t dS(u). (6.4)

From (6.3), (6.4) and Lemma 6.1, we obtain

(

˜Wn–s(�p(K +̂pL))
˜Wn–t(�p(K +̂pL))

)1/(s–t)

=
(

∫

Sn–1 (ρ(�pK , u) + ρ(�pL, u))s dS(u)
∫

Sn–1 (ρ(�pK , u) + ρ(�pL, u))t dS(u)

)1/(s–t)

≤
(

∫

Sn–1 ρ(�pK , u)s dS(u)
∫

Sn–1 ρ(�pK , u)t dS(u)

)1/(s–t)

+
(

∫

Sn–1 ρ(�pL, u)s dS(u)
∫

Sn–1 ρ(�pL, u)t dS(u)

)1/(s–t)

=
(

˜Wn–s(�pK)
˜Wn–t(�pK)

)1/(s–t)

+
(

˜Wn–s(�pL)
˜Wn–t(�pL)

)1/(s–t)

.

Equality holds if and only if the functions ρ(�pK , u) and ρ(�pL, u) are proportional.
Taking s = n – i and t = n – j in Theorem 6.2, Theorem 6.2 becomes Theorem 5.1

stated in Section 5. If � : Sn × · · · × Sn
︸ ︷︷ ︸

n–1

→ Sn is the mixed intersection operator I :

Sn × · · · × Sn
︸ ︷︷ ︸

n–1

→ Sn in (6.2) and n – s = i and n – t = j, we obtain the following result:

If K , L ∈ Sn, 0 ≤ p < n – 1 and i ≤ n – 1 ≤ j ≤ n, then

(

˜Wi(Ip(K +̂pL))
˜Wj(Ip(K +̂pL))

)1/(j–i)

≤
(

˜Wi(IpK)
˜Wj(IpK)

)1/(j–i)

+
(

˜Wi(IpL)
˜Wj(IpL)

)1/(j–i)

, (6.5)

with equality if and only if IpK and IpL are dilates. Taking j = n in (6.5) and noting that
˜Wn(K) =

∫

Sn–1 dS(u) = nωn, (6.5) becomes the following inequality: If K , L ∈ Sn, 0 ≤ p <
n – 1 and i ≤ n – 1, then

˜Wi
(

Ip(K +̂pL)
)1/(n–i) ≤ ˜Wi(IpK)1/(n–i) + ˜Wi(IpL)1/(n–i),

with equality if and only if IpK and IpL are dilates. �

We are now in a position to prove Theorem 5.3. The following statement is just a slight
reformulation of it.
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Theorem 6.3 Let K , L ∈ Sn. If 0 ≤ i < n, p < i – 1 and s, t ∈R satisfy s ≥ 1 ≥ t ≥ 0, then

1
˜Wi(K +̆pL)

(

˜Wn–s(�p(K +̆pL))
˜Wn–t(�p(K +̆pL))

)1/(s–t)

≤ 1
˜Wi(K)

(

˜Wn–s(�pK)
˜Wn–t(�pK)

)1/(s–t)

+
1

˜Wi(L)

(

˜Wn–s(�pL)
˜Wn–t(�pL)

)1/(s–t)

, (6.6)

with equality if and only if �pK and �pL are dilates.

Proof From (3.3), we obtain

ρ(K +̆pL, ·)n–p–1 ∗ μ

˜Wi(K +̆pL)
=

ρ(K , ·)n–p–1 ∗ μ

˜Wi(K)
+

ρ(L, ·)n–p–1 ∗ μ

˜Wi(L)
.

Hence, from (4.6), we obtain

ρ(�p(K +̆pL), ·)
˜Wi(K +̆pL)

=
ρ(�pK , ·)

˜Wi(K)
+

ρ(�pL, ·)
˜Wi(L)

.

By (1.6), we have

˜Wn–s(�p(K +̆pL))
˜Wi(K +̆pL)s

=
1
n

∫

Sn–1

(

ρ(�pK , u)
˜Wi(K)

+
ρ(�pL, u)

˜Wi(L)

)s

dS(u) (6.7)

and

˜Wn–t(�p(K +̆pL))
˜Wi(K +̆pL)t

=
1
n

∫

Sn–1

(

ρ(�pK , u)
˜Wi(K)

+
ρ(�pL, u)

˜Wi(L)

)t

dS(u). (6.8)

From (6.7), (6.8) and Lemma 6.1, we obtain

1
˜Wi(K +̆pL)

(

˜Wn–s(�p(K +̆pL))
˜Wn–t(�p(K +̆pL))

)1/(s–t)

=
(

∫

Sn–1 ( ρ(�pK ,u)
˜Wi(K ) + ρ(�pL,u)

˜Wi(L) )s dS(u)
∫

Sn–1 ( ρ(�pK ,u)
˜Wi(K ) + ρ(�pL,u)

˜Wi(L) )t dS(u)

)1/(s–t)

≤
(

∫

Sn–1 ( ρ(�pK ,u)
˜Wi(K ) )s dS(u)

∫

Sn–1 ( ρ(�pK ,u)
˜Wi(K ) )t dS(u)

)1/(s–t)

+
(

∫

Sn–1 ( ρ(�pL,u)
˜Wi(L) )s dS(u)

∫

Sn–1 ( ρ(�pL,u)
˜Wi(L) )t dS(u)

)1/(s–t)

=
1

˜Wi(K)

(

˜Wn–s(�pK)
˜Wn–t(�pK)

)1/(s–t)

+
1

˜Wi(L)

(

˜Wn–s(�pL)
˜Wn–t(�pL)

)1/(s–t)

,

with equality if and only if �pK and �pL are dilates.
Taking s = n – j and t = n – k in Theorem 6.3, Theorem 6.3 becomes Theorem 5.3

stated in Section 5. If � : Sn × · · · × Sn
︸ ︷︷ ︸

n–1

→ Sn is the mixed intersection operator I :

Sn × · · · × Sn
︸ ︷︷ ︸

n–1

→ Sn in (6.6) and j = n – s and k = n – t, we obtain the following result:
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If K , L ∈ Sn, 0 ≤ i < n, p < i – 1 and j ≤ n – 1 ≤ k ≤ n, then

1
˜Wi(K +̆pL)

(

˜Wj(Ip(K +̆pL))
˜Wk(Ip(K +̆pL))

)1/(k–j)

≤ 1
˜Wi(K)

(

˜Wj(IpK)
˜Wk(IpK)

)1/(k–j)

+
1

˜Wi(L)

(

˜Wj(IpL)
˜Wk(IpL)

)1/(k–j)

, (6.9)

with equality if and only if IpK and IpL are dilates. Taking k = n in (6.9) and noting that
˜Wn(K) =

∫

Sn–1 dS(u) = nωn, (6.9) becomes the following inequality: If K , L ∈ Sn, 0 ≤ i < n,
p < i – 1 and j ≤ n – 1, then

˜Wj(Ip(K +̆pL))1/(n–j)

˜Wi(K +̆pL)
≤

˜Wj(IpK)1/(n–j)

˜Wi(K)
+

˜Wj(IpL)1/(n–j)

˜Wi(L)
, (6.10)

with equality if and only if IpK and IpL are dilates. �

7 Conclusions
In the present study, we first revised and improved the concepts of radial Blaschke addition
and harmonic Blaschke addition in an Lp space. Following this, we established Dresher’s
inequalities (Brunn-Minkowski type) for the radial Blaschke-Minkowski homomorphisms
with respect to the p-radial addition and the p-harmonic Blaschke addition.
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