RESEARCH

Open Access

On *p*-radial Blaschke and harmonic Blaschke additions

Chang-Jian Zhao*

*Correspondence: chjzhao@163.com Department of Mathematics, China Jiliang University, Hangzhou, 310018, P.R. China

Abstract

In the paper, we first improve the radial Blaschke and harmonic Blaschke additions and introduce the *p*-radial Blaschke and *p*-harmonic Blaschke additions. Following this, Dresher type inequalities for the radial Blaschke-Minkowski homomorphisms with respect to *p*-radial Blaschke and *p*-harmonic Blaschke additions are established.

MSC: 46E27; 52A20

Keywords: radial Blaschke addition; harmonic Blaschke addition; *p*-radial Blaschke addition; *p*-harmonic Blaschke addition; radial Blaschke-Minkowski homomorphisms; Brunn-Minkowski inequality

1 Notation and preliminaries

The setting for this paper is an *n*-dimensional Euclidean space \mathbb{R}^n . We reserve the letter *u* for unit vectors, and the letter *B* is reserved for the unit ball centered at the origin. The surface of *B* is S^{n-1} . The volume of the unit *n*-ball is denoted by ω_n . We use V(K) for the *n*-dimensional volume of a body *K*. Associated with a compact subset *K* of \mathbb{R}^n , which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot) : S^{n-1} \to \mathbb{R}$ defined for $u \in S^{n-1}$ by

 $\rho(K, u) = \max\{\lambda \ge 0 : \lambda u \in K\}.$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let S^n denote the set of star bodies in \mathbb{R}^n . Let $\tilde{\delta}$ denote the radial Hausdorff metric, i.e., if $K, L \in S^n$, then $\tilde{\delta}(K, L) = |\rho(K, u) - \rho(L, u)|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$.

1.1 Dual mixed volumes

The radial Minkowski linear combination, $\lambda_1 K_1 + \cdots + \lambda_r K_r$ is defined by

$$\lambda_1 K_1 + \dots + \lambda_r K_r = \{\lambda_1 x_1 + \dots + \lambda_r x_r : x_i \in K_i, i = 1, \dots, r\}$$

$$(1.1)$$

for $K_1, \ldots, K_r \in S^n$ and $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$. It has the following important property (see [1]):

$$\rho(\lambda K + \mu L, \cdot) = \lambda \rho(K, \cdot) + \mu \rho(L, \cdot)$$
(1.2)

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

for $K, L \in S^n$ and $\lambda, \mu \ge 0$. For $K_1, \ldots, K_r \in S^n$ and $\lambda_1, \ldots, \lambda_r \ge 0$, the volume of the radial Minkowski linear combination $\lambda_1 K_1 + \cdots + \lambda_r K_r$ is a homogeneous polynomial of degree n in the λ_i ,

$$V(\lambda_1 K_1 \widetilde{+} \cdots \widetilde{+} \lambda_r K_r) = \sum_{i_1, \dots, i_n = 1}^r \widetilde{V}(K_{i_1}, \dots, K_{i_n}) \lambda_{i_1} \cdots \lambda_{i_n}.$$
(1.3)

If we require the coefficients of the polynomial in (1.3) to be symmetric in their arguments, then they are uniquely determined. The coefficient $\tilde{V}(K_{i_1},...,K_{i_n})$ is nonnegative and depends only on the bodies $K_{i_1},...,K_{i_n}$. It is called the dual mixed volume of $K_{i_1},...,K_{i_n}$.

If $K_1, \ldots, K_n \in S^n$, then the dual mixed volume $\widetilde{V}(K_1, \ldots, K_n)$ can be represented in the form (see [2])

$$\widetilde{V}(K_1,\ldots,K_n) = \frac{1}{n} \int_{S^{n-1}} \rho(K_1,u) \cdots \rho(K_n,u) \, dS(u). \tag{1.4}$$

If $K_1 = \cdots = K_{n-i} = K$, $K_{n-i+1} = \cdots = K_n = L$, then the dual mixed volume is written as $\widetilde{V}_i(K, L)$. If L = B, then the dual mixed volume $\widetilde{V}_i(K, L) = \widetilde{V}_i(K, B)$ is written as $\widetilde{W}_i(K)$. For $K, L \in S^n$, the *i*th dual mixed volume of K and L, $\widetilde{V}_i(K, L)$ can be extended to all $i \in \mathbb{R}$ by

$$\widetilde{V}_{i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{n-i} \rho(L,u)^{i} dS(u),$$
(1.5)

where $i \in \mathbb{R}$. Thus, if $K \in S^n$, then

$$\widetilde{W}_{i}(K) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} \, dS(u).$$
(1.6)

1.2 Mixed intersection bodies

For $K \in S^n$, there is a unique star body IK whose radial function satisfies, for $u \in S^{n-1}$,

$$\rho(\mathbf{I}K, u) = \nu(K \cap E_u),$$

where v is (n - 1)-dimensional dual volume. It is called the intersection body of K. The volume of the intersection body of K is given by (see [1])

$$V(\mathbf{I}K) = \frac{1}{n} \int_{S^{n-1}} v(K \cap E_u)^n \, dS(u)$$

The mixed intersection body of $K_1, \ldots, K_{n-1} \in S^n$, denoted by $I(K_1, \ldots, K_{n-1})$, is defined by

$$\rho(\mathbf{I}(K_1,\ldots,K_{n-1}),u)=\tilde{\nu}(K_1\cap E_u,\ldots,K_{n-1}\cap E_u),$$

where $\tilde{\nu}$ is the (n-1)-dimensional dual mixed volume. If $K_1 = \cdots = K_{n-i-1} = K$, $K_{n-i} = \cdots = K_{n-1} = L$, then $I(K_1, \dots, K_{n-1})$ is written as $I_i(K, L)$. If L = B, then $I_i(K, L)$ is written as I_iK and called the *i*th intersection body of *K*. For I_0K , we simply write IK.

2 Improvement of the radial Blaschke addition

Let us recall the concept of radial Blaschke addition defined by Lutwak [1]. Suppose that K and L are star bodies in \mathbb{R}^n , the radial Blaschke addition denoted by K + L is a star body whose radial function is

$$\rho(K+L, \cdot)^{n-1} = \rho(K, \cdot)^{n-1} + \rho(L, \cdot)^{n-1}.$$
(2.1)

The dual Knesser-Süss inequality for the radial Blaschke addition was established by Lutwak [1]. If $K, L \in S^n$, then

$$V(K+L)^{(n-1)/n} \le V(K)^{(n-1)/n} + V(L)^{(n-1)/n},$$
(2.2)

with equality if and only if *K* and *L* are dilates.

In the section, we give a generalized concept of the radial Blaschke addition.

Definition 2.1 If $K, L \in S^n$, $0 \le p < n-1$ and $\lambda, \mu > 0$ (not both zero), the *p*-radial Blaschke linear combination of K and L denoted by $\lambda \diamond K +_p \mu \diamond L$ is a star body whose radial function is defined by

$$\rho(\lambda \diamond K \widehat{+}_{\nu} \mu \diamond L, \cdot)^{n-p-1} = \lambda \rho(K, \cdot)^{n-p-1} + \mu \rho(L, \cdot)^{n-p-1}.$$
(2.3)

From (2.3), it is easy to see that

 $\lambda \diamond K = \lambda^{1/(n-p-1)} K.$

When $\lambda = \mu = 1$, the *p*-radial Blaschke combination becomes the *p*-radial Blaschke addition $K \widehat{+}_p L$ and

$$\rho(K\widehat{+}_{p}L, \cdot)^{n-p-1} = \rho(K, \cdot)^{n-p-1} + \rho(L, \cdot)^{n-p-1}.$$
(2.4)

Obviously, when p = 0, (2.4) becomes (2.1).

In the following, we define the dual mixed quermassintegral with respect to the *p*-radial Blaschke addition. First, we show two propositions. The following proposition follows immediately from (2.3) with L'Hôpital's rule.

Proposition 2.2 Let $0 \le p < n-1$, $0 \le i < n$ and $\varepsilon > 0$. If $K, L \in S^n$, then

$$\lim_{\varepsilon \to 0^+} \frac{\rho(K \widehat{+}_p \varepsilon \diamond L, u)^{n-i} - \rho(K, u)^{n-i}}{\varepsilon} = \frac{n-i}{n-p-1} \rho(K, u)^{p-i+1} \rho(L, u)^{n-p-1}.$$
 (2.5)

The following proposition follows immediately from Proposition 2.2 and (1.6).

Proposition 2.3 Let $0 \le p < n-1$, $0 \le i < n$ and $\varepsilon > 0$. If $K, L \in S^n$, then

$$\frac{n-p-1}{n-i}\lim_{\varepsilon \to 0^+} \frac{\widetilde{W}_i(K\widehat{+}_p\varepsilon \diamond L, u) - \widetilde{W}_i(K)}{\varepsilon}$$
$$= \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{p-i+1} \rho(L, u)^{n-p-1} dS(u).$$
(2.6)

Definition 2.4 For $0 \le p < n - 1$, $0 \le i < n$ and $K, L \in S^n$, the *p*-dual mixed quermassintegral of star bodies *K* and *L*, denoted by $\widetilde{W}_{p,i}(K, L)$, is defined by

$$\widetilde{W}_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{p-i+1} \rho(L,u)^{n-p-1} \, dS(u).$$
(2.7)

Obviously, when K = L, $\widetilde{W}_{p,i}(K,L)$ becomes the dual quermassintegral of star body K, i.e., $\widetilde{W}_{p,i}(K,K) = \widetilde{W}_i(K)$. Taking i = 0 in (2.7), $\widetilde{W}_{p,i}(K,L)$ becomes the p-dual mixed volume $\widetilde{V}_p(K,L)$ and

$$\widetilde{V}_{p}(K,L) = \frac{1}{n} \int_{S^{n-1}} \rho(K,u)^{p+1} \rho(L,u)^{n-p-1} \, dS(u).$$
(2.8)

From (2.7), combining Hölder's integral inequality (see [3]) gives the following.

Proposition 2.5 (Minkowski type inequality) If $K, L \in S^n$, $0 \le i < n$ and $0 \le p < n - 1$, *then*

$$\widetilde{W}_{p,i}(K,L)^{n-i} \le \widetilde{W}_i(K)^{p-i+1} \widetilde{W}_i(L)^{n-p-1},$$
(2.9)

with equality if and only if K and L are dilates.

Taking *i* = 0 in (2.9), we have: If $K, L \in S^n$ and $0 \le p < n - 1$, then

$$\widetilde{V}_{p}(K,L)^{n} \leq V(K)^{p+1}V(L)^{n-p-1},$$
(2.10)

with equality if and only if K and L are dilates. In the following, we establish the Brunn-Minkowski inequality for the p-radial Blaschke addition.

Proposition 2.6 If $K, L \in S^n$, $0 \le i < n$ and $0 \le p < n - 1$, then

$$\widetilde{W}_{i}(K\widehat{+}_{p}L)^{(n-p-1)/(n-i)} \leq \widetilde{W}_{i}(K)^{(n-p-1)/(n-i)} + \widetilde{W}_{i}(L)^{(n-p-1)/(n-i)},$$
(2.11)

with equality if and only if K and L are dilates.

Proof From (2.3) and (2.7), it is easily seen that the *p*-dual mixed quermassintegral $\widehat{W}_{p,i}(K,L)$ is linear with respect to the *p*-radial Blaschke addition and together with inequality (2.9) shows that

$$\widetilde{W}_{p,i}(Q, K\widehat{+}_p L) = \widetilde{W}_{p,i}(Q, K) + \widetilde{W}_{p,i}(Q, L)$$

$$\leq \widetilde{W}_i(Q)^{(p-i+1)/(n-i)} \big(\widetilde{W}_i(K)^{(n-p-1)/(n-i)} + \widetilde{W}_i(L)^{(n-p-1)/(n-i)} \big), \qquad (2.12)$$

with equality if and only if *K* and *L* are dilates of *Q*. Take $K +_p L$ for *Q* in (2.12), recall that $\widetilde{W}_{p,i}(Q, Q) = \widetilde{W}_i(Q)$, inequality (2.11) follows easy.

Taking *i* = 0 in (2.11), we obtain that if $K, L \in S^n$ and $0 \le p < n - 1$, then

$$V(K\widehat{+}_p L)^{(n-p-1)/n} \le V(K)^{(n-p-1)/n} + V(L)^{(n-p-1)/n},$$

with equality if and only if *K* and *L* are dilates. Taking p = 0 and i = 0 in (2.11), (2.11) becomes the well-known dual Knesser-Süss inequality (2.2).

3 Improvement of the harmonic Blaschke addition

Let us recall the concept of harmonic Blaschke addition defined by Lutwak [4]. Suppose that *K* and *L* are star bodies in \mathbb{R}^n , the harmonic Blaschke addition denoted by $K \neq L$ is defined by

$$\frac{\rho(K + L, \cdot)^{n+1}}{V(K + L)} = \frac{\rho(K, \cdot)^{n+1}}{V(K)} + \frac{\rho(L, \cdot)^{n+1}}{V(L)}.$$
(3.1)

Lutwak's Brunn-Minkowski inequality for the harmonic Blaschke addition was established (see [4]). If $K, L \in S^n$, then

$$V(K + L)^{1/n} \ge V(K)^{1/n} + V(L)^{1/n},$$
(3.2)

with equality if and only if K and L are dilates.

In the section, we give an improved concept of the harmonic Blaschke addition.

Definition 3.1 For $0 \le i < n$, p < i - 1 and $K, L \in S^n$, we define the *p*-harmonic Blaschke addition of star bodies *K* and *L* denoted by $K \ne_p L$ and defined by

$$\frac{\rho(K + L, \cdot)^{n-p-1}}{\widetilde{W}_i(K + L)} = \frac{\rho(K, \cdot)^{n-p-1}}{\widetilde{W}_i(K)} + \frac{\rho(L, \cdot)^{n-p-1}}{\widetilde{W}_i(L)}.$$
(3.3)

The Brunn-Minkowski inequality for the *p*-harmonic Blaschke addition follows immediately from (1.6), (3.3) and Minkowski's integral inequality (see [3]).

Proposition 3.2 If $K, L \in S^n$, $0 \le i < n$ and p < i - 1, then

$$\widetilde{W}_{i}(K\check{+}_{p}L)^{-(p+1-i)/(n-i)} \le \widetilde{W}_{i}(K)^{-(p+1-i)/(n-i)} + \widetilde{W}_{i}(L)^{-(p+1-i)/(n-i)},$$
(3.4)

with equality if and only if K and L are dilates.

4 Radial Blaschke-Minkowski homomorphisms

Definition 4.1 ([5]) A map $\Psi : S^n \to S^n$ is called a radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:

- (a) Ψ is continuous.
- (b) For all $K, L \in S^n$,

$$\Psi(K \ddot{+} L) = \Psi(K) \widetilde{+} \Psi(L).$$

(c) For all $K, L \in S^n$ and every $\vartheta \in SO(n)$,

$$\Psi(\vartheta K) = \vartheta \Psi(K),$$

where SO(n) is the group of rotations in *n* dimensions.

Radial Blaschke-Minkowski homomorphisms are important examples of star body valued valuations. Their natural duals, Blaschke-Minkowski homomorphisms, are an important notion in the theory of convex body valued valuations (see, e.g., [6–12] and [13–20]). In 2006, Schuster [5] established the following Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms of star bodies. If *K* and *L* are star bodies in \mathbb{R}^n , then

$$V(\Psi(K\widetilde{+}L))^{1/n(n-1)} \le V(\Psi K)^{1/n(n-1)} + V(\Psi L)^{1/n(n-1)},$$
(4.1)

with equality if and only if *K* and *L* are dilates.

If *K* and *L* are star bodies in \mathbb{R}^n , $p \neq 0$ and $\lambda, \mu \geq 0$, then $\lambda \cdot K +_p \mu \cdot L$ is the star body whose radial function is given by (see, e.g., [21])

$$\rho(\lambda \cdot K +_p \mu \cdot L, \cdot)^p = \lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p.$$
(4.2)

The addition $\tilde{+}_p$ is called L_p -radial addition. The L_p dual Brunn-Minkowski inequality states: If $K, L \in S^n$ and 0 , then

$$V(K\widetilde{+}_p L)^{p/n} \le V(K)^{p/n} + V(L)^{p/n}$$

with equality when $p \neq n$ if and only if *K* and *L* are dilates. The inequality is reversed when p > n or p < 0 (see [21]).

In 2013, an L_p Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms was established in [22]: If K and L are star bodies in \mathbb{R}^n and 0 , then

$$V(\Psi(K\widetilde{+}_{p}L))^{p/n(n-1)} \le V(\Psi K)^{p/n(n-1)} + V(\Psi L)^{p/n(n-1)},$$
(4.3)

with equality if and only if *K* and *L* are dilates. Taking p = 1, (4.3) reduces to (4.1).

Theorem 4.2 (see [5]) Let $\Psi : S^n \to S^n$ be a radial Blaschke-Minkowski homomorphism. There is a continuous operator $\Psi : \underbrace{S^n \times \cdots \times S^n}_{n-1} \to S^n$ symmetric in its arguments such that, for $K_1, \ldots, K_m \in S^n$ and $\lambda_1, \ldots, \lambda_m \ge 0$,

$$\Psi(\lambda_1 K_1 \widetilde{+} \cdots \widetilde{+} \lambda_m K_m) = \sum_{i_1, \dots, i_{n-1}} \lambda_{i_1} \cdots \lambda_{i_{n-1}} \Psi(K_{i_1}, \dots, K_{i_{n-1}}).$$
(4.4)

Clearly, Theorem 4.2 generalizes the notion of radial Blaschke-Minkowski homomorphisms. We call $\Psi : S^n \times \cdots \times S^n \to S^n$ a mixed radial Blaschke-Minkowski homomorphism induced by Ψ . Mixed radial Blaschke-Minkowski homomorphisms were first studied in more detail in [23, 24]. If $K_1 = \cdots = K_{n-i-1} = K, K_{n-i} = \cdots = K_{n-1} = L$, we write $\Psi_i(K,L)$ for $\Psi(\underbrace{K,\ldots,K}_{n-i-1},\underbrace{L,\ldots,L}_{i})$. If $K_1 = \cdots = K_{n-i-1} = K, K_{n-i} = \cdots = K_{n-1} = B$, we write Ψ_iK for $\Psi(\underbrace{K,\ldots,K}_{n-i-1},\underbrace{B,\ldots,B}_{i})$ and call Ψ_iK the mixed Blaschke-Minkowski homomorphism of order i of K. Ψ_0K is written simply as ΨK .

Lemma 4.3 (see [5]) $A map \Psi : S^n \to S^n$ is a radial Blaschke-Minkowski homomorphism if and only if there is a measure $\mu \in \mathcal{M}_+(S^{n-1}, \hat{e})$ such that

$$\rho(\Psi K, \cdot) = \rho(K, \cdot)^{n-1} * \mu, \tag{4.5}$$

where $\mathcal{M}_+(S^{n-1}, \hat{e})$ denotes the set of nonnegative zonal measures on S^{n-1} .

For the mixed radial Blaschke-Minkowski homomorphism induced by Ψ , Schuster [5] proved that

$$\rho(\Psi(K_1,\ldots,K_{n-1}),\cdot)=\rho(K_1,\cdot)\cdots\rho(K_{n-1},\cdot)*\mu.$$

Obviously, a special case is the following:

$$\rho(\Psi_i K, \cdot) = \rho(K, \cdot)^{n-1-i} * \mu,$$

where i are integers. We now extend the integers i to real numbers, define the Blaschke-Minkowski homomorphism of order p of K.

Definition 4.4 Let $K \in S^n$, the Blaschke-Minkowski homomorphism of order p of K, denoted by $\Psi_p K$, is defined for all $p \in \mathbb{R}$ by

$$\rho(\Psi_p K, \cdot) = \rho(K, \cdot)^{n-1-p} * \mu.$$

$$(4.6)$$

This extended definition will be required to prove our main results.

5 Inequalities for the radial Blaschke-Minkowski homomorphism Theorem 5.1 Let $K \downarrow \subset S^n \downarrow f \cup c \neq n \rightarrow 1$ and $i \in n \rightarrow 1$ size n then

Theorem 5.1 Let $K, L \in S^n$. If $0 \le p < n-1$ and $i \le n-1 \le j \le n$, then

$$\left(\frac{\widetilde{W}_{i}(\Psi_{p}(K\widehat{+}_{p}L))}{\widetilde{W}_{j}(\Psi_{p}(K\widehat{+}_{p}L))}\right)^{1/(j-i)} \leq \left(\frac{\widetilde{W}_{i}(\Psi_{p}K)}{\widetilde{W}_{j}(\Psi_{p}K)}\right)^{1/(j-i)} + \left(\frac{\widetilde{W}_{i}(\Psi_{p}L)}{\widetilde{W}_{j}(\Psi_{p}L)}\right)^{1/(j-i)},\tag{5.1}$$

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

Remark 5.2 Taking j = n in (5.1) and noting that $\widetilde{W}_n(K) = \int_{S^{n-1}} dS(u) = n\omega_n$, (5.1) becomes the following inequality: If $K, L \in S^n$, $0 \le p < n - 1$ and $i \le n - 1$, then

$$\widetilde{W}_i \left(\Psi_p(K\widehat{+}_p L) \right)^{1/(n-i)} \le \widetilde{W}_i (\Psi_p K)^{1/(n-i)} + \widetilde{W}_i (\Psi_p L)^{1/(n-i)},$$
(5.2)

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates. Taking p = 0 in (5.1), (5.1) becomes the following inequality: If $K, L \in S^n$ and $i \le n - 1 \le j \le n$, then

$$\left(\frac{\widetilde{W}_{i}(\Psi(K\widehat{+}L))}{\widetilde{W}_{j}(\Psi(K\widehat{+}L))}\right)^{1/(j-i)} \leq \left(\frac{\widetilde{W}_{i}(\Psi K)}{\widetilde{W}_{j}(\Psi K)}\right)^{1/(j-i)} + \left(\frac{\widetilde{W}_{i}(\Psi L)}{\widetilde{W}_{j}(\Psi L)}\right)^{1/(j-i)},\tag{5.3}$$

with equality if and only if ΨK and ΨL are dilates.

Theorem 5.3 Let $K, L \in S^n$. If $0 \le i < n, p < i-1$ and $k, j \in \mathbb{R}$ satisfy $j \le n-1 \le k \le n$, then

$$\frac{1}{\widetilde{W}_{i}(K + pL)} \left(\frac{\widetilde{W}_{j}(\Psi_{p}(K + pL))}{\widetilde{W}_{k}(\Psi_{p}(K + pL))} \right)^{1/(k-j)} \\
\leq \frac{1}{\widetilde{W}_{i}(K)} \left(\frac{\widetilde{W}_{j}(\Psi_{p}K)}{\widetilde{W}_{k}(\Psi_{p}K)} \right)^{1/(k-j)} + \frac{1}{\widetilde{W}_{i}(L)} \left(\frac{\widetilde{W}_{j}(\Psi_{p}L)}{\widetilde{W}_{k}(\Psi_{p}L)} \right)^{1/(k-j)},$$
(5.4)

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

Remark 5.4 Taking k = n in (5.4) and noting that $\widetilde{W}_n(K) = \int_{S^{n-1}} dS(u) = n\omega_n$, (5.4) becomes the following inequality: If $K, L \in S^n$, $0 \le i < n, p < i - 1$ and $j \le n - 1$, then

$$\frac{\widetilde{W}_{j}(\Psi_{p}(K\check{+}_{p}L))^{1/(n-j)}}{\widetilde{W}_{i}(K\check{+}_{p}L)} \leq \frac{\widetilde{W}_{j}(\Psi_{p}K)^{1/(n-j)}}{\widetilde{W}_{i}(K)} + \frac{\widetilde{W}_{j}(\Psi_{p}L)^{1/(n-j)}}{\widetilde{W}_{i}(L)},$$
(5.5)

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates. Taking i = 0, j = 0 and k = n in (5.4), we have: If $K, L \in S^n$ and p < -1, then

$$\frac{V(\Psi_p(K\check{+}_pL))^{1/n}}{V(K\check{+}_pL)} \le \frac{V(\Psi_pK)^{1/n}}{V(K)} + \frac{V(\Psi_pL)^{1/n}}{V(L)},\tag{5.6}$$

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

6 Dresher's inequalities for *p*-radial Blaschke and harmonic Blaschke additions An extension of Beckenbach's inequality (see [3], p. 27) was obtained by Dresher [25] by means of moment-space techniques.

Lemma 6.1 (Dresher's inequality) If $p \ge 1 \ge r \ge 0$, $f, g \ge 0$ and ϕ is a distribution function, then

$$\left(\frac{\int (f+g)^p \, d\phi}{\int (f+g)^r \, d\phi}\right)^{1/(p-r)} \le \left(\frac{\int f^p \, d\phi}{\int f^r \, d\phi}\right)^{1/(p-r)} + \left(\frac{\int g^p \, d\phi}{\int g^r \, d\phi}\right)^{1/(p-r)},\tag{6.1}$$

with equality if and only if the functions f and g are proportional.

We are now in a position to prove Theorem 5.1. The following statement is just a slight reformulation of it.

Theorem 6.2 Let $K, L \in S^n$. If $0 \le p < n-1$ and $s, t \in \mathbb{R}$ satisfy $s \ge 1 \ge t \ge 0$, then

$$\left(\frac{\widetilde{W}_{n-s}(\Psi_p(K\widehat{+}_pL))}{\widetilde{W}_{n-t}(\Psi_p(K\widehat{+}_pL))}\right)^{1/(s-t)} \le \left(\frac{\widetilde{W}_{n-s}(\Psi_pK)}{\widetilde{W}_{n-t}(\Psi_pK)}\right)^{1/(s-t)} + \left(\frac{\widetilde{W}_{n-s}(\Psi_pL)}{\widetilde{W}_{n-t}(\Psi_pL)}\right)^{1/(s-t)},\tag{6.2}$$

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

Proof From (2.4), we obtain

$$\rho(K\widehat{+}_{p}L, \cdot)^{n-p-1} * \mu = \rho(K, \cdot)^{n-p-1} * \mu + \rho(L, \cdot)^{n-p-1} * \mu,$$

where μ is the generating measure of Ψ from Lemma 4.3. Hence, from (4.6), we obtain

$$\rho(\Psi_p(K\widehat{+}_pL),\cdot) = \rho(\Psi_pK,\cdot) + \rho(\Psi_pL,\cdot).$$

Therefore, by (1.6), we have

$$\widetilde{W}_{n-s}(\Psi_p(K\widehat{+}_pL)) = \frac{1}{n} \int_{S^{n-1}} \left(\rho(\Psi_pK, u) + \rho(\Psi_pL, u) \right)^s dS(u)$$
(6.3)

and

$$\widetilde{W}_{n-t}\left(\Psi_p(K\widehat{+}_pL)\right) = \frac{1}{n} \int_{S^{n-1}} \left(\rho(\Psi_pK, u) + \rho(\Psi_pL, u)\right)^t dS(u).$$
(6.4)

From (6.3), (6.4) and Lemma 6.1, we obtain

$$\begin{split} &\left(\frac{\widetilde{W}_{n-s}(\Psi_p(K\widehat{+}_pL))}{\widetilde{W}_{n-t}(\Psi_p(K\widehat{+}_pL))}\right)^{1/(s-t)} \\ &= \left(\frac{\int_{S^{n-1}}(\rho(\Psi_pK,u) + \rho(\Psi_pL,u))^s \, dS(u)}{\int_{S^{n-1}}(\rho(\Psi_pK,u) + \rho(\Psi_pL,u))^t \, dS(u)}\right)^{1/(s-t)} \\ &\leq \left(\frac{\int_{S^{n-1}}\rho(\Psi_pK,u)^s \, dS(u)}{\int_{S^{n-1}}\rho(\Psi_pK,u)^t \, dS(u)}\right)^{1/(s-t)} + \left(\frac{\int_{S^{n-1}}\rho(\Psi_pL,u)^s \, dS(u)}{\int_{S^{n-1}}\rho(\Psi_pL,u)^t \, dS(u)}\right)^{1/(s-t)} \\ &= \left(\frac{\widetilde{W}_{n-s}(\Psi_pK)}{\widetilde{W}_{n-t}(\Psi_pK)}\right)^{1/(s-t)} + \left(\frac{\widetilde{W}_{n-s}(\Psi_pL)}{\widetilde{W}_{n-t}(\Psi_pL)}\right)^{1/(s-t)}. \end{split}$$

Equality holds if and only if the functions $\rho(\Psi_p K, u)$ and $\rho(\Psi_p L, u)$ are proportional.

Taking s = n - i and t = n - j in Theorem 6.2, Theorem 6.2 becomes Theorem 5.1 stated in Section 5. If $\Psi : \underbrace{S^n \times \cdots \times S^n}_{n-1} \to S^n$ is the mixed intersection operator **I** : $\underbrace{S^n \times \cdots \times S^n}_{n-1} \to S^n$ in (6.2) and n - s = i and n - t = j, we obtain the following result: If $K, L \in S^n, 0 \le p < n - 1$ and $i \le n - 1 \le j \le n$, then

$$\left(\frac{\widetilde{W}_{i}(\mathbf{I}_{p}(K\widehat{+}_{p}L))}{\widetilde{W}_{j}(\mathbf{I}_{p}(K\widehat{+}_{p}L))}\right)^{1/(j-i)} \le \left(\frac{\widetilde{W}_{i}(\mathbf{I}_{p}K)}{\widetilde{W}_{j}(\mathbf{I}_{p}K)}\right)^{1/(j-i)} + \left(\frac{\widetilde{W}_{i}(\mathbf{I}_{p}L)}{\widetilde{W}_{j}(\mathbf{I}_{p}L)}\right)^{1/(j-i)},\tag{6.5}$$

with equality if and only if $\mathbf{I}_p K$ and $\mathbf{I}_p L$ are dilates. Taking j = n in (6.5) and noting that $\widetilde{W}_n(K) = \int_{S^{n-1}} dS(u) = n\omega_n$, (6.5) becomes the following inequality: If $K, L \in S^n$, $0 \le p < n-1$ and $i \le n-1$, then

$$\widetilde{W}_i \big(\mathbf{I}_p(K \widehat{+}_p L) \big)^{1/(n-i)} \leq \widetilde{W}_i (\mathbf{I}_p K)^{1/(n-i)} + \widetilde{W}_i (\mathbf{I}_p L)^{1/(n-i)},$$

with equality if and only if $I_p K$ and $I_p L$ are dilates.

We are now in a position to prove Theorem 5.3. The following statement is just a slight reformulation of it.

Theorem 6.3 Let $K, L \in S^n$. If $0 \le i < n, p < i - 1$ and $s, t \in \mathbb{R}$ satisfy $s \ge 1 \ge t \ge 0$, then

$$\frac{1}{\widetilde{W}_{i}(K\check{+}_{p}L)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}(K\check{+}_{p}L))}{\widetilde{W}_{n-t}(\Psi_{p}(K\check{+}_{p}L))} \right)^{1/(s-t)} \\
\leq \frac{1}{\widetilde{W}_{i}(K)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}K)}{\widetilde{W}_{n-t}(\Psi_{p}K)} \right)^{1/(s-t)} + \frac{1}{\widetilde{W}_{i}(L)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}L)}{\widetilde{W}_{n-t}(\Psi_{p}L)} \right)^{1/(s-t)},$$
(6.6)

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

Proof From (3.3), we obtain

$$\frac{\rho(K \check{+}_p L, \cdot)^{n-p-1} * \mu}{\widetilde{W}_i(K \check{+}_p L)} = \frac{\rho(K, \cdot)^{n-p-1} * \mu}{\widetilde{W}_i(K)} + \frac{\rho(L, \cdot)^{n-p-1} * \mu}{\widetilde{W}_i(L)}.$$

Hence, from (4.6), we obtain

$$\frac{\rho(\Psi_p(K \check{+}_p L), \cdot)}{\widetilde{W}_i(K \check{+}_p L)} = \frac{\rho(\Psi_p K, \cdot)}{\widetilde{W}_i(K)} + \frac{\rho(\Psi_p L, \cdot)}{\widetilde{W}_i(L)}.$$

By (1.6), we have

$$\frac{\widetilde{W}_{n-s}(\Psi_p(K + \mu L))}{\widetilde{W}_i(K + \mu L)^s} = \frac{1}{n} \int_{S^{n-1}} \left(\frac{\rho(\Psi_p K, u)}{\widetilde{W}_i(K)} + \frac{\rho(\Psi_p L, u)}{\widetilde{W}_i(L)} \right)^s dS(u)$$
(6.7)

and

$$\frac{\widetilde{W}_{n-t}(\Psi_p(K\check{+}_pL))}{\widetilde{W}_i(K\check{+}_pL)^t} = \frac{1}{n} \int_{S^{n-1}} \left(\frac{\rho(\Psi_pK,u)}{\widetilde{W}_i(K)} + \frac{\rho(\Psi_pL,u)}{\widetilde{W}_i(L)} \right)^t dS(u).$$
(6.8)

From (6.7), (6.8) and Lemma 6.1, we obtain

$$\begin{split} &\frac{1}{\widetilde{W}_{i}(K\stackrel{*}{+}_{p}L)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}(K\stackrel{*}{+}_{p}L))}{\widetilde{W}_{n-t}(\Psi_{p}(K\stackrel{*}{+}_{p}L))} \right)^{1/(s-t)} \\ &= \left(\frac{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}K,u)}{\widetilde{W}_{i}(K)} + \frac{\rho(\Psi_{p}L,u)}{\widetilde{W}_{i}(L)} \right)^{s} dS(u)}{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}K,u)}{\widetilde{W}_{i}(K)} + \frac{\rho(\Psi_{p}L,u)}{\widetilde{W}_{i}(L)} \right)^{t} dS(u)} \right)^{1/(s-t)} \\ &\leq \left(\frac{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}K,u)}{\widetilde{W}_{i}(K)} \right)^{s} dS(u)}{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}K,u)}{\widetilde{W}_{i}(K)} \right)^{t} dS(u)} \right)^{1/(s-t)} + \left(\frac{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}L,u)}{\widetilde{W}_{i}(L)} \right)^{s} dS(u)}{\int_{S^{n-1}} \left(\frac{\rho(\Psi_{p}K,u)}{\widetilde{W}_{i}(K)} \right)^{t} dS(u)} \right)^{1/(s-t)} \\ &= \frac{1}{\widetilde{W}_{i}(K)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}K)}{\widetilde{W}_{n-t}(\Psi_{p}K)} \right)^{1/(s-t)} + \frac{1}{\widetilde{W}_{i}(L)} \left(\frac{\widetilde{W}_{n-s}(\Psi_{p}L)}{\widetilde{W}_{n-t}(\Psi_{p}L)} \right)^{1/(s-t)}, \end{split}$$

with equality if and only if $\Psi_p K$ and $\Psi_p L$ are dilates.

Taking s = n - j and t = n - k in Theorem 6.3, Theorem 6.3 becomes Theorem 5.3 stated in Section 5. If $\Psi : \underbrace{S^n \times \cdots \times S^n}_{n-1} \to S^n$ is the mixed intersection operator **I** : $\underbrace{S^n \times \cdots \times S^n}_{n-1} \to S^n$ in (6.6) and j = n - s and k = n - t, we obtain the following result: If $K, L \in S^n$, $0 \le i < n, p < i - 1$ and $j \le n - 1 \le k \le n$, then

$$\frac{1}{\widetilde{W}_{i}(K \check{+}_{p}L)} \left(\frac{\widetilde{W}_{j}(\mathbf{I}_{p}(K \check{+}_{p}L))}{\widetilde{W}_{k}(\mathbf{I}_{p}(K \check{+}_{p}L))} \right)^{1/(k-j)} \\
\leq \frac{1}{\widetilde{W}_{i}(K)} \left(\frac{\widetilde{W}_{j}(\mathbf{I}_{p}K)}{\widetilde{W}_{k}(\mathbf{I}_{p}K)} \right)^{1/(k-j)} + \frac{1}{\widetilde{W}_{i}(L)} \left(\frac{\widetilde{W}_{j}(\mathbf{I}_{p}L)}{\widetilde{W}_{k}(\mathbf{I}_{p}L)} \right)^{1/(k-j)},$$
(6.9)

with equality if and only if $\mathbf{I}_p K$ and $\mathbf{I}_p L$ are dilates. Taking k = n in (6.9) and noting that $\widetilde{W}_n(K) = \int_{S^{n-1}} dS(u) = n\omega_n$, (6.9) becomes the following inequality: If $K, L \in S^n$, $0 \le i < n$, p < i - 1 and $j \le n - 1$, then

$$\frac{\widetilde{W}_{j}(\mathbf{I}_{p}(K\check{+}_{p}L))^{1/(n-j)}}{\widetilde{W}_{i}(K\check{+}_{p}L)} \leq \frac{\widetilde{W}_{j}(\mathbf{I}_{p}K)^{1/(n-j)}}{\widetilde{W}_{i}(K)} + \frac{\widetilde{W}_{j}(\mathbf{I}_{p}L)^{1/(n-j)}}{\widetilde{W}_{i}(L)},\tag{6.10}$$

with equality if and only if $I_p K$ and $I_p L$ are dilates.

7 Conclusions

In the present study, we first revised and improved the concepts of radial Blaschke addition and harmonic Blaschke addition in an L_p space. Following this, we established Dresher's inequalities (Brunn-Minkowski type) for the radial Blaschke-Minkowski homomorphisms with respect to the *p*-radial addition and the *p*-harmonic Blaschke addition.

Funding

The author's research is supported by the Natural Science Foundation of China (11371334).

Competing interests

The author declares that he has no competing interests.

Authors' contributions

C-JZ provided the questions and gave the proof for the main results. He read and approved the manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 September 2017 Accepted: 4 December 2017 Published online: 16 December 2017

References

- 1. Lutwak, E: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232-261 (1988)
- 2. Lutwak, E: Dual mixed volumes. Pac. J. Math. 58, 531-538 (1975)
- 3. Beckenbach, EF, Bellman, R: Inequalities. Springer, Berlin (1961)
- 4. Lutwak, E: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 60, 365-391 (1990)
- 5. Schuster, FE: Volume inequalities and additive maps of star bodies. Mathematika 53, 211-234 (2006)
- 6. Haberl, C: Star body valued valuations. Indiana Univ. Math. J. 58, 2253-2276 (2009)
- 7. Haberl, C, Schuster, FE: General L_p affine isoperimetric inequalities. J. Differ. Geom. 83, 1-26 (2009)
- Kiderlen, M: Blaschke- and Minkowski-endomorphisms of convex bodies. Trans. Am. Math. Soc. 358, 5539-5564 (2006)
- 9. Ludwig, M: Minkowski valuations. Trans. Am. Math. Soc. 357(10), 4191-4213 (2005)
- 10. Lutwak, E: Mixed projection inequalities. Trans. Am. Math. Soc. 287(1), 91-105 (1985)
- 11. Schuster, FE: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)
- 12. Zhao, CJ: On Blaschke-Minkowski homomorphisms. Geom. Dedic. 149, 373-378 (2010)
- 13. Abardia, J, Bernig, A: Projection bodies in complex vector spaces. Adv. Math. 227, 830-846 (2011)
- 14. Alesker, S, Bernig, A, Schuster, FE: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21, 751-773 (2011)
- 15. Haberl, C: L_p intersection bodies. Adv. Math. 217, 2599-2624 (2008)
- 16. Haberl, C, Ludwig, M: A characterization of L_p intersection bodies. Int. Math. Res. Not. 2006, Article ID 10548 (2006)
- 17. Ludwig, M: General affine surface areas. Adv. Math. 224, 2346-2360 (2010)
- 18. Ludwig, M: Minkowski areas and valuations. J. Differ. Geom. 86, 133-161 (2010)
- 19. Schuster, FE, Wannerer, T: GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364, 815-826 (2012)

- 20. Wannerer, T: GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655-1672 (2011)
- 21. Gardner, RJ: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39, 355-405 (2002)
- Wang, W: L_p Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms. Geom. Dedic. 164, 273-285 (2013)
- 23. Schuster, FE: Valuations and Busemann-Petty type problems. Adv. Math. 219, 344-368 (2008)
- 24. Schuster, FE: Convolutions and multiplier transformations of star bodies. Trans. Am. Math. Soc. 359, 5567-5591 (2007)
- 25. Dresher, M: Moment space and inequalities. Duke Math. J. 20, 261-271 (1953)

Submit your manuscript to a SpringerOpen[●] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com