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Abstract
Topological indices are the mathematical tools that correlate the chemical structure
with various physical properties, chemical reactivity or biological activity numerically.
A topological index is a function having a set of graphs as its domain and a set of real
numbers as its range. In QSAR/QSPR study, a prediction about the bioactivity of
chemical compounds is made on the basis of physico-chemical properties and
topological indices such as Zagreb, Randić and multiple Zagreb indices. In this paper,
we determine the lower and upper bounds of Zagreb indices, the atom-bond
connectivity (ABC) index, multiple Zagreb indices, the geometric-arithmetic (GA)
index, the forgotten topological index and the Narumi-Katayama index for the
Cartesian product of F-sum of connected graphs by using combinatorial inequalities.
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1 Introduction and preliminary results
We consider G as a simple, connected and finite graph with a vertex set V (G) =
{u1, u2, u3, . . . , un}, an edge set E(G) = {e1, e2, e3, . . . , em}, the order of G = |V (G)| = n and
the size of G = |E(G)| = m. An edge e ∈ E(G) with end vertices ui and uj is denoted by
uiuj. The number of edges having u as an end vertex is called the degree of u in G and
is denoted by degG(u). The minimum and maximum degrees of graph G are denoted
by δG and �G, respectively. Pn and Cn are used for path and cycle with order n, respec-
tively.

The branch of chemistry in which we discuss and predict the chemical structure by
using mathematical tools without referring to quantum mechanics is called mathematical
chemistry [1, 2]. The branch of mathematical chemistry which applies graph theory to
mathematical modeling of chemical phenomena is known as chemical graph theory [2].
This theory has a remarkable role in the development of chemical sciences.

The Zagreb indices are the first degree-based structure descriptors [3, 4]. The terms
∑

v∈V (G)[degG(v)]2,
∑

uv∈E(G) degG(u) degG(v) and
∑

v∈V (G)[degG(v)]3 first appeared in the
topological formula for total π-energy of conjugated molecules that was derived in 1972
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by Gutman and Trinajstić [3]. Ten years later, Balaban et al. included

M1(G) =
∑

v∈V (G)

[
degG(v)

]2 =
∑

uv∈E(G)

[
degG(u) + degG(v)

]

and

M2(G) =
∑

uv∈E(G)

degG(u) degG(v)

among topological indices and named them ‘Zagreb group indices’ [5], which was later on
abbreviated to ‘Zagreb indices’, and now M1(G) and M2(G) are called the first and second
Zagreb indices. Afterwards these indices were used as branching indices [6]. Later on, the
Zagreb indices found applications in QSPR and QSAR studies [1, 7]. These indices have
been used to study molecular complexity, chirality, ZE-isomorphism and hetero-systems.
Chemical applications and mathematical properties of Zagreb indices can be studied from
[8–10].

Narumi and Katayama studied the degree product of a graph G for the first time in
1984. The Narumi-Katayama index proposed by Narumi and Katayama [11] is defined as
follows:

NK(G) =
∏

v∈V (G)

degG(v).

Estrada et al. [12] introduced the atom-bond connectivity index defined as follows:

ABC(G) =
∑

uv∈E(G)

√
degG(u) + degG(v) – 2

degG(u) degG(v)
.

It has been applied up till now to study the stability of alkanes and the strain energy of cy-
cloalkanes [12, 13]. The ABC-index can be used for modeling thermodynamic properties
of organic chemical compounds. The ABC-index happens to be the only topological in-
dex for which theoretical, quantum-theory-based, foundation and justification have been
found.

The first geometric-arithmetic connectivity index or simply geometric-arithmetic (GA)
index of a connected graph G was introduced by Vukičević et al. in 2009 [14] and is defined
as follows:

GA(G) =
∑

uv∈E(G)

2
√

degG(u) degG(v)
degG(u) + degG(v)

.

The augmented Zagreb index proposed by Furtula et al. in 2010 [15] is defined as follows:

AZI(G) =
∑

uv∈E(G)

[
degG(u) degG(v)

degG(u) + degG(v) – 2

]3

.

This graph invariant is a valuable predictive index in the study of the heat of formation in
octanes and heptanes [15].
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The first multiple Zagreb index was introduced by Ghorbani and Azimi in 2012 [16] and
defined as follows:

PM1(G) =
∏

uv∈V (G)

[
degG(u) + degG(v)

]
=

∏

v∈V (G)

[
degG(v)

]2.

Clearly, the first multiple Zagreb index is the square of Narumi-Katayama index.
The third Zagreb index was introduced by Shirdel in 2013 [17] and defined as follows:

M3(G) =
∑

uv∈E(G)

[
degG(u) + degG(v)

]2.

Furtula and Gutman showed that the term
∑

v∈V (G)[degG(v)]3 has a very promising appli-
cation potential [18]. They called it the forgotten topological index or shortly the F-index,
and it is defined as follows:

F(G) =
∑

v∈V (G)

[
degG(v)

]3 =
∑

uv∈E(G)

[(
degG(u)

)2 +
(
degG(v)

)2].

They proved that the linear combination M1 + λF yields a highly accurate mathematical
model of certain physico-chemical properties of alkanes [18].

Clearly, this index is a combination of second and third Zagreb indices, i.e.,

F(G) = M3(G) – 2M2(G).

The Cartesian product is an important method to construct a bigger graph and plays an
important role in the design and analysis of networks [19]. The Cartesian product of the
graphs G and H , denoted by G�H , is a graph with a vertex set V (G�H) = V (G) × V (H)
and (u1, v1)(u2, v2) ∈ E(G�H) whenever [u1 = u2 and v1v2 ∈ E(H)] or [u1u2 ∈ E(G) and
v1 = v2].

Now we state distinct properties of the Cartesian product of graphs in form of the fol-
lowing lemma.

Lemma 1 Let G1 and G2 be graphs of orders n1, n2 and sizes m1, m2, respectively. Then we
have:

(a) |V (G1�G2)| = |V (G1)||V (G2)| and |E(G1�G2)| = |V (G2)||E(G1)| + |V (G1)||E(G2)|,
(b) degG1�G2 (u, v) = degG1 (u) + degG2 (v).

For a connected graph G, define four related graphs S(G), R(G), Q(G) and T(G) as fol-
lows:

(1) S(G) is the graph obtained by inserting an additional vertex in each edge of G, i.e.,
replacing each edge of G by a path of length 2. The graph S(G) is also known as a
subdivision graph of G.

(2) R(G) is the graph obtained by adding a new vertex corresponding to each edge of G,
then joining each new vertex to the end vertices of the corresponding edge.

(3) Q(G) is the graph obtained by inserting a new vertex into each edge of G, then
joining with edges those pairs of new vertices on adjacent edges of G.
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Figure 1 The graphs G, S(G), R(G), Q(G) and T(G).

Figure 2 The graphs P2 +S C4, P2 +R C4, P2 +Q C4 and P2 +T C4.

(4) T(G) has as its vertices, the edges and vertices of G. Adjacency in T(G) is defined as
adjacency or incidence for the corresponding elements of G. The graph T(G) is
called the total graph of G.

The four operations, S(G), R(G), Q(G) and T(G) on a graph G are illustrated in Figure 1.
Eliasi and Taeri [20] introduced four new operations that are based on S(G), R(G), Q(G),

T(G) as follows.
Let F be one of the symbols S, R, Q or T . The F-sum, denoted by G +F H , of graphs

G and H having orders n1 and n2, respectively, is a graph with the set of vertices V (G +F

H) = (V (G) ∪ E(G)) × V (H) and (u1, v1)(u2, v2) ∈ E(G +F H) if and only if [u1 = u2 ∈ V (G)
and v1v2 ∈ E(H)] or [v1 = v2 ∈ V (H) and u1u2 ∈ E(F(G))], where F ∈ {S, R, Q, T}. G +F H
consists of n2 copies of the graph F(G), and we label these copies by vertices of H . The
vertices in each copy have two types, the vertices in V (G) (black vertices) and the vertices
in E(G) (white vertices). Now we join only black vertices with the same name in F(G) in
which their corresponding labels are adjacent in H . The graphs P2 +F C4 are shown in
Figure 2.

Eliasi and Taeri [20] computed the expression for the Wiener index of four graph oper-
ations which are based on these graphs S(G), R(G), Q(G), and T(G) in terms of W (F(G))
and W (H). Deng et al. [21] computed the first and second Zagreb indices for the graph
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operations S(G), R(G), Q(G) and T(G). Akhter and Imran computed bounds for the gen-
eral sum-connectivity index of F-sums of graphs [22]. Some explicit computing formulas
for different topological indices of some important graphs can be found in [7, 23–27].

To avoid computational complications, it is important to express the formulas for the
product of F-sum of graphs in terms of their factor graphs. So, we presented bounds for the
first Zagreb index, the ABC-index, the third Zagreb index, the augmented Zagreb index,
the F-index, the first multiple Zagreb index and the GA-index for the Cartesian product
of F-sum of graphs in form of its factor graphs.

2 Main results and discussions
This section is meant for determination of bounds for the first Zagreb, the third Zagreb,
the augmented Zagreb, the first multiple Zagreb, ABC and GA indices of the Cartesian
product of F-sum of graphs in terms of their factor graphs. Bounds for the F-index and
the Narumi-Katayama index are also discussed. The following lemmas are useful for de-
termination of these bounds.

In the following lemma, we compute the size of F-sum of graphs for F = S.

Lemma 2 If G = G1 +S G2, then the size of G is n1m2 +2n2m1, where |V (G1)| = n1, |V (G2)| =
n2, |E(G1)| = m1 and |E(G2)| = m2.

Proof We know that S(G1) is a subdivision of G1, therefore the size of S(G1) is 2|E(G1)| =
2m1.

Hence |E(G)| = |V (G1)||E(G2)| + 2|V (G2)||E(G1)| = n1m2 + 2n2m1. �

In the following lemma, we compute the size of F-sum of graphs for F = Q.

Lemma 3 If G = G1 +Q G2, then the size of G is n1m2 + n2m1(m1+3)
2 , where |V (G1)| = n1,

|V (G2)| = n2, |E(G1)| = m1 and |E(G2)| = m2.

Proof By using combinations, the size of Q(G1) = 2m1 +m1 C2 = m1(m1+3)
2 .

Hence |E(G)| = |V (G1)||E(G2)| + |V (G2)||E[Q(G1)]| = n1m2 + n2m1(m1+3)
2 . �

In the following lemma, we compute the size of F-sum of graphs for F = R.

Lemma 4 If G = G1 +R G2, then the size of G is n1m2 +3n2m1, where |V (G1)| = n1, |V (G2)| =
n2, |E(G1)| = m1 and |E(G2)| = m2.

Proof We know that the size of R(G1) is equal to three times the size of G1, therefore the
size of R(G1) is 3|E(G1)| = 3m1.

Hence |E(G)| = |V (G1)||E(G2)| + 3|V (G2)||E(G1)| = n1m2 + 3n2m1. �

In the following lemma, we compute the size of F-sum of graphs for F = T .

Lemma 5 If G = G1 +T G2, then the size of G is n1m2 + n2m1(m1+5)
2 , where |V (G1)| = n1,

|V (G2)| = n2, |E(G1)| = m1 and |E(G2)| = m2.

Proof By using combinations, the size of T(G1) = 3m1 +m1 C2 = m1(m1+5)
2 .

Hence |E(G)| = |V (G1)||E(G2)| + |V (G2)||E[T(G1)]| = n1m2 + n2m1(m1+5)
2 . �
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Let G1, G2, H1, H2 be simple, connected graphs such that |V (G1)| = n1, |V (G2)| = n2,
|V (H1)| = n′

1, |V (H2)| = n′
2, |E(G1)| = m1, |E(G2)| = m2, |E(H1)| = m′

1 and |E(H2)| = m′
2.

In the following theorem the lower and upper bounds for the first Zagreb, the third
Zagreb, the atom-bond connectivity (ABC), the augmented Zagreb, the first multiple Za-
greb and geometric-arithmetic (GA) indices of the Cartesian product of F-sum of graphs
in terms of their factor graphs for F = S are determined.

Theorem 1 Let G = G1 +S H1 and H = G2 +S H2, then
(a) 2α(δG + δH ) ≤ M1(G�H) ≤ 2α(�G + �H ),
(b) α

√
2(δG+δH –1)
�G+�H

≤ ABC(G�H) ≤ α

√
2(�G+�H –1)

δG+δH
,

(c) 4α(δG + δH )2 ≤ M3(G�H) ≤ 4α(�G + �H )2,
(d) 1

8α[ (δG+δH )2

�G+�H –1 ]3 ≤ AZI(G�H) ≤ 1
8α[ (�G+�H )2

δG+δH –1 ]3,
(e) 2α(δG + δH )α ≤ PM1(G�H) ≤ 2α(�G + �H )α ,
(f ) α( δG+δH

�G+�H
) ≤ GA(G�H) ≤ α( �G+�H

δG+δH
),

where α = n1(n′
1 + m′

1)(m2n′
2 + 2n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 2n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof Let G and H be the graphs with vertex sets {u1, u2, . . . , un1(n′
1+m′

1)} and {v1, v2, . . . ,
vn2(n′

2+m′
2)}, respectively. Then

(a) By definition,

M1(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H)

[
degG�H (ui, vj) + degG�H(uk , vl)

]

=
∑

(ui ,vj)(uk ,vl)∈E(G�H),i�=k

[
degG�H (ui, vj) + degG�H(uk , vl)

]

+
∑

(ui ,vj)(uk ,vl)∈E(G�H),j �=l

[
degG�H(ui, vj) + degG�H (uk , vl)

]
,

M1(G�H) =
∑

ui∈V (G)

∑

vjvl∈E(H)

[
degG�H (ui, vj) + degG�H (ui, vl)

]

+
∑

vj∈V (H)

∑

uiuk∈E(G)

[
degG�H (ui, vj) + degG�H (uk , vj)

]
.

(1)

By using Lemma 1, part (b), we obtain

degG�H (ui, vj) + degG�H (uk , vl) = degG(ui) + degH (vj) + degG(uk) + degH (vl).

Since, for any vertex u ∈ V (G), degG(u) ≤ �G and degG(u) ≥ δG, therefore, by using these
facts, we obtain

degG�H (ui, vj) + degG�H (uk , vl) ≤ �G + �H + �G + �H ,

which implies the inequality

degG�H (ui, vj) + degG�H (uk , vl) ≤ 2(�G + �H ). (2)
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By using inequality (2) in equation (1), we obtain

M1(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H),i�=k

[
degG�H(ui, vj) + degG�H (uk , vl)

]

+
∑

(ui ,vj)(uk ,vl)∈E(G�H),j �=l

[
degG�H (ui, vj) + degG�H (uk , vl)

]

=
∑

ui∈V (G)

∑

vjvl∈E(H)

[
degG�H (ui, vj) + degG�H(ui, vl)

]

+
∑

vj∈V (H)

∑

uiuk∈E(G)

[
degG�H (ui, vj) + degG�H(uk , vj)

]

≤ ∣
∣V (G)

∣
∣
∣
∣E(H)

∣
∣2(�G + �H ) +

∣
∣E(G)

∣
∣
∣
∣V (H)

∣
∣2(�G + �H ).

Since |V (G)| = n1(n′
1 + m′

1), |V (H)| = n2(n′
2 + m′

2), |E(G)| = m1n′
1 + 2n1m′

1, |E(H)| = m2n′
2 +

2n2m′
2, �G = �G1 + �H1 and �H = �G2 + �H2 , therefore we obtain

M1(G�H) ≤ 2
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

× (�G1 + �H1 + �G2 + �H2 ). (3)

By using similar arguments with degG(u) ≥ δG, we obtain

M1(G�H) ≥ 2
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

× (δG1 + δH1 + δG2 + δH2 ). (4)

Hence part (a) of the theorem is proved by substituting n1(n′
1 +m′

1)(m2n′
2 +2n2m′

2)+n2(n′
2 +

m′
2)(m1n′

1 + 2n1m′
1) = α in inequalities (3) and (4).

(b) By definition,

ABC(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H)

√
degG�H (ui, vj) + degG�H (uk , vl) – 2

degG�H (ui, vj) degG�H (uk , vl)
.

ABC(G�H) =
∑

ui∈V (G)

∑

vjvl∈E(H)

√
degG�H (ui, vj) + degG�H(ui, vl) – 2

degG�H(ui, vj) degG�H(ui, vl)

+
∑

vj∈V (H)

∑

uiuk∈E(G)

√
degG�H (ui, vj) + degG�H (uk , vj) – 2

degG�H (ui, vj) degG�H (uk , vj)
.

(5)

By using Lemma 1, part (b), we obtain

degG�H (ui, vj) degG�H (uk , vl) =
[
degG(ui) + degH (vj)

][
degG(uk) + degH (vl)

]
.

Since, for any vertex u ∈ V (G), degG(u) ≤ �G and degG(u) ≥ δG, therefore, by using these
facts, we obtain

degG�H (ui, vj) degG�H (uk , vl) ≤ (�G + �H )(�G + �H ),
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which implies the inequality

degG�H (ui, vj) degG�H (uk , vl) ≤ (�G + �H )2. (6)

By using inequalities (2) and (6) in equation (5), we obtain

ABC(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H),i�=k

√
degG�H (ui, vj) + degG�H (uk , vl) – 2

degG�H(ui, vj) degG�H(uk , vl)

+
∑

(ui ,vj)(uk ,vl)∈E(G�H),j �=l

√
degG�H(ui, vj) + degG�H (uk , vl) – 2

degG�H (ui, vj) degG�H (uk , vl)

=
∑

ui∈V (G)

∑

vjvl∈E(H)

√
degG�H (ui, vj) + degG�H (ui, vl) – 2

degG�H (ui, vj) degG�H (ui, vl)

+
∑

vj∈V (H)

∑

uiuk∈E(G)

√
degG�H(ui, vj) + degG�H (ui, vl) – 2

degG�H (ui, vj) degG�H (ui, vl)

≤ ∣
∣V (G)

∣
∣
∣
∣E(H)

∣
∣

√
2(�G + �H ) – 2

(�G + �H )2 +
∣
∣E(G)

∣
∣
∣
∣V (H)

∣
∣

√
2(�G + �H ) – 2

(�G + �H )2 .

Since |V (G)| = n1(n′
1 + m′

1), |V (H)| = n2(n′
2 + m′

2), |E(G)| = m1n′
1 + 2n1m′

1, |E(H)| = m2n′
2 +

2n2m′
2, �G = �G1 + �H1 and �H = �G2 + �H2 , therefore we get

ABC(G�H) ≤ [
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
√

2(�G1 + �G2 + �H1 + �H2 – 1)
δG1 + δG2 + δH1 + δH2

. (7)

By using similar arguments with degG(u) ≥ δG, we obtain

ABC(G�H) ≥ [
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
√

2(δG1 + δG2 + δH1 + δH2 – 1)
�G1 + �G2 + �H1 + �H2

. (8)

Hence from inequalities (7) and (8), part (b) of the theorem is proved.
(c) By definition,

M3(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H)

[
degG�H (ui, vj) + degG�H(uk , vl)

]2,

M3(G�H) =
∑

ui∈V (G)

∑

vjvl∈E(H)

[
degG�H (ui, vj) + degG�H (ui, vl)

]2

+
∑

vj∈V (H)

∑

uiuk∈E(G)

[
degG�H (ui, vj) + degG�H (uk , vj)

]2.

(9)
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By using inequality (2) in equation (9) and adopting the same procedure as in part (a) of
this theorem,

M3(G�H) ≤ 4
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

× (�G1 + �H1 + �G2 + �H2 )2 (10)

and

M3(G�H) ≥ 4
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

× (δG1 + δH1 + δG2 + δH2 )2. (11)

Inequalities (10) and (11) complete the proof of part (c) of the theorem.
(d) By definition,

AZI(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H)

[
degG�H (ui, vj). degG�H (uk , vl)

degG�H (ui, vj) + degG�H (uk , vl) – 2

]3

.

AZI(G�H) =
∑

ui∈V (G)

∑

vjvl∈E(H)

[
degG�H(ui, vj) degG�H(uk , vl)

degG�H (ui, vj) + degG�H (uk , vl) – 2

]3

+
∑

vj∈V (H)

∑

uiuk∈E(G)

[
degG�H (ui, vj) degG�H (uk , vl)

degG�H (ui, vj) + degG�H(uk , vl) – 2

]3

.

(12)

By using inequalities (2) and (6) in equation (12) and adopting the same procedure as in
parts (a) and (b) of this theorem, we obtain

AZI(G�H) ≤ 1
8
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
[

(�G1 + �H1 + �G2 + �H2 )2

δG1 + δH1 + δG2 + δH2 – 1

]3

(13)

and

AZI(G�H) ≥ 1
8
[
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
[

(δG1 + δH1 + δG2 + δH2 )2

�G1 + �H1 + �G2 + �H2 – 1

]3

. (14)

Inequalities (13) and (14) complete the proof of part (d) of the theorem.
(e) By definition,

PM1(G�H) =
∏

(ui ,vj)(uk ,vl)∈E(G�H)

[
degG�H(ui, vj) + degG�H (uk , vl)

]
. (15)

By using inequality (2) in equation (15) and adopting the same procedure as in part (i)
of this theorem,

PM1(G�H) ≤ [
2(�G + �H )

]n1(n′
1+m′

1)(m2n′
2+2n2m′

2)+n2(n′
2+m′

2)(m1n′
1+2n1m′

1) (16)
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and

PM1(G�H) ≥ [
2(δG + δH )

]n1(n′
1+m′

1)(m2n′
2+2n2m′

2)+n2(n′
2+m′

2)(m1n′
1+2n1m′

1). (17)

Hence from inequalities (16) and (17), part (e) of the theorem is proved.
(f ) By definition,

GA(G�H) =
∑

(ui ,vj)(uk ,vl)∈E(G�H)

2
√

degG�H (ui, vj) degG�H(uk , vl)
degG�H (ui, vj) + degG�H (uk , vl)

. (18)

By using inequalities (2) and (6) in equation (18) and adopting the same procedure as in
part (b) of this theorem,

GA(G�H) ≤ [
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
(

�G1 + �G2 + �H1 + �H2

δG1 + δG2 + δH1 + δH2

)

(19)

and

GA(G�H) ≥ [
n1

(
n′

1 + m′
1
)(

m2n′
2 + 2n2m′

2
)

+ n2
(
n′

2 + m′
2
)(

m1n′
1 + 2n1m′

1
)]

×
(

δG1 + δG2 + δH1 + δH2

�G1 + �G2 + �H1 + �H2

)

. (20)

Hence from inequalities (19) and (20), part (f ) of the theorem is proved. �

We determine the lower and upper bounds for the F-index and the Narumi-Katayama
index of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = S.

Corollary 1 Let G = G1 +S H1 and H = G2 +S H2, then
(a) 2α(δG + δH )2 ≤ F(G�H) ≤ 2α(�G + �H )2,
(b) [2(δG + δH )] α

2 ≤ NK(G�H) ≤ [2(�G + �H )] α
2 ,

where α = n1(n′
1 + m′

1)(m2n′
2 + 2n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 2n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof (a) By using the relation F(G) = M3(G) – 2M2(G), in Theorem 1, we obtain the re-
quired result.

(b) By using the relation NK(G) =
√

PM1(G), in Theorem 1, we obtain the required re-
sult. �

In the following theorem the lower and upper bounds for the first Zagreb, the third
Zagreb, the atom-bond connectivity (ABC), the augmented Zagreb, the first multiple Za-
greb and geometric-arithmetic (GA) indices of the Cartesian product of F-sum of graphs
in terms of their factor graphs for F = Q are determined.

Theorem 2 Let G = G1 +Q H1 and H = G2 +Q H2, then
(a) 2β(δG + δH ) ≤ M1(G�H) ≤ 2β(�G + �H ),
(b) β

√
2(δG+δH –1)
�G+�H

≤ ABC(G�H) ≤ β

√
2(�G+�H –1)

δG+δH
,
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(c) 4β(δG + δH )2 ≤ M3(G�H) ≤ 4β(�G + �H )2,
(d) 1

8β[ (δG+δH )2

�G+�H –1 ]3 ≤ AZI(G�H) ≤ 1
8β[ (�G+�H )2

δG+δH –1 ]3,
(e) 2β (δG + δH )β ≤ PM1(G�H) ≤ 2β (�G + �H )β ,
(f ) β( δG+δH

�G+�H
) ≤ GA(G�H) ≤ β( �G+�H

δG+δH
),

where β = 1
2 [n1(n′

1 + m′
1){2n2m′

2 + n′
2m2(m2 + 3)} + n2(n′

2 + m′
2){2n1m′

1 + n′
1m1(m1 + 3)}],

δG + δH = δG1 + δG2 + δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof Let G and H be the graphs with vertex sets {u1, u2, . . . , un1(n′
1+m′

1)} and {v1, v2, . . . ,
vn2(n′

2+m′
2)}, respectively. The proof is similar to that of Theorem 1 using Lemma (3). �

Corollary 2 Let G = G1 +Q H1 and H = G2 +Q H2, then
(a) 2β(δG + δH )2 ≤ F(G�H) ≤ 2β(�G + �H )2,
(b) [2(δG + δH )]

β
2 ≤ NK(G�H) ≤ [2(�G + �H )]

β
2 ,

where β = 1
2 [n1(n′

1 + m′
1){2n2m′

2 + n′
2m2(m2 + 3)} + n2(n′

2 + m′
2){2n1m′

1 + n′
1m1(m1 + 3)}],

δG + δH = δG1 + δG2 + δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof (a) By using the relation F(G) = M3(G) – 2M2(G), in Theorem 2, we obtain the re-
quired result.

(b) By using the relation NK(G) =
√

PM1(G), in Theorem 2, we obtain the required re-
sult. �

In the following theorem we determine the lower and upper bounds for the first Zagreb,
ABC, the third Zagreb, the augmented Zagreb, the first multiple Zagreb and GA indices
of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = R.

Theorem 3 Let G = G1 +R H1 and H = G2 +R H2, then
(a) 2γ (δG + δH ) ≤ M1(G�H) ≤ 2γ (�G + �H ),

(b) γ

√
2(δG+δH –1)
�G+�H

≤ ABC(G�H) ≤ γ

√
2(�G+�H –1)

δG+δH
.

(c) 4γ (δG + δH )2 ≤ M3(G�H) ≤ 4γ (�G + �H )2,
(d) 1

8γ [ (δG+δH )2

�G+�H –1 ]3 ≤ AZI(G�H) ≤ 1
8γ [ (�G+�H )2

δG+δH –1 ]3,
(e) 2γ (δG + δH )γ ≤ PM1(G�H) ≤ 2γ (�G + �H )γ ,
(f ) γ ( δG+δH

�G+�H
) ≤ GA(G�H) ≤ γ ( �G+�H

δG+δH
),

where γ = n1(n′
1 + m′

1)(m2n′
2 + 3n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 3n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof Let G and H be the graphs with vertex sets {u1, u2, . . . , un1(n′
1+m′

1)} and {v1, v2, . . . ,
vn2(n′

2+m′
2)}, respectively. The proof is similar to that of Theorem 1 using Lemma (4). �

We determine the lower and upper bounds for the F-index and the Narumi-Katayama
index of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = R.

Corollary 3 Let G = G1 +R H1 and H = G2 +R H2, then
(a) 2γ (δG + δH )2 ≤ F(G�H) ≤ 2γ (�G + �H )2,
(b) [2(δG + δH )]

γ
2 ≤ NK(G�H) ≤ [2(�G + �H )]

γ
2 ,

where γ = n1(n′
1 + m′

1)(m2n′
2 + 3n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 3n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .
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Proof (a) Using the relation F(G) = M3(G) – 2M2(G), in Theorem 3, we get the required
result.

(b) Using the relation NK(G) =
√

PM1(G), in Theorem 3, we get the required result. �

In the following theorem we determine the lower and upper bounds for the first Zagreb,
ABC, the third Zagreb, the augmented Zagreb, the first multiple Zagreb and GA indices
of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = T .

Theorem 4 Let G = G1 +T H1 and H = G2 +T H2, then
(a) 2η(δG + δH ) ≤ M1(G�H) ≤ 2η(�G + �H ),
(b) η

√
2(δG+δH –1)
�G+�H

≤ ABC(G�H) ≤ η

√
2(�G+�H –1)

δG+δH
,

(c) 4η(δG + δH )2 ≤ M3(G�H) ≤ 4η(�G + �H )2,
(d) 1

8η[ (δG+δH )2

�G+�H –1 ]3 ≤ AZI(G�H) ≤ 1
8η[ (�G+�H )2

δG+δH –1 ]3,
(e) 2η(δG + δH )η ≤ PM1(G�H) ≤ 2η(�G + �H )η ,
(f ) η( δG+δH

�G+�H
) ≤ GA(G�H) ≤ η( �G+�H

δG+δH
),

where η = 1
2 [n1(n′

1 + m′
1){2n2m′

2 + n′
2m2(m2 + 5)} + n2(n′

2 + m′
2){2n1m′

1 + n′
1m1(m1 + 5)}],

δG + δH = δG1 + δG2 + δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof Let G and H be the graphs with vertex sets {u1, u2, . . . , un1(n′
1+m′

1)} and {v1, v2, . . . ,
vn2(n′

2+m′
2)}, respectively. The proof is similar to that of Theorem 1 using Lemma (5). �

We determine the lower and upper bounds for the F-index and the Narumi-Katayama
index of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = T .

Corollary 4 Let G = G1 +T H1 and H = G2 +T H2, then
(a) 2η(δG + δH )2 ≤ F(G�H) ≤ 2η(�G + �H )2,
(b) [2(δG + δH )]

η
2 ≤ NK(G�H) ≤ [2(�G + �H )]

η
2 ,

where η = 1
2 [n1(n′

1 + m′
1){2n2m′

2 + n′
2m2(m2 + 5)} + n2(n′

2 + m′
2){2n1m′

1 + n′
1m1(m1 + 5)}],

δG + δH = δG1 + δG2 + δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof (a) Using the relation F(G) = M3(G) – 2M2(G), in Theorem 4, we get the required
result.

(b) Using the relation NK(G) =
√

PM1(G), in Theorem 4, we get the required result. �

In the following theorem we determine the lower and upper bounds for the first Zagreb,
ABC, the third Zagreb, the augmented Zagreb, the first multiple Zagreb and GA indices
of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = S and
F = R.

Theorem 5 Let G = G1 +S H1 and H = G2 +R H2, then
(a) 2ξ (δG + δH ) ≤ M1(G�H) ≤ 2ξ (�G�H ),
(b) ξ

√
2(δGδH –1)
�G+�H

≤ ABC(G�H) ≤ ξ

√
2(�G+�H –1)

δG+δH
,

(c) 4ξ (δG + δH )2 ≤ M3(G�H) ≤ 4ξ (�G + �H )2,
(d) 1

8ξ [ (δGδH )2

�G+�H –1 ]3 ≤ AZI(G�H) ≤ 1
8ξ [ (�G+�H )2

δG+δH –1 ]3,
(e) [2(δG + δH )]ξ ≤ PM1(G�H) ≤ [2(�G + �H )]ξ ,
(f ) ξ

δG+δH
�G+�H

≤ GA(G�H) ≤ ξ
�G+�H
δG+δH

,
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where ξ = n1(n′
1 + m′

1)(m2n′
2 + 2n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 3n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof Let G and H be the graphs with vertex sets {u1, u2, . . . , un1(n′
1+m′

1)} and {v1, v2, . . . ,
vn2(n′

2+m′
2)}, respectively. The proof is similar to that of 1 with |E(G)| = m1n′

1 + 2n1m′
1 and

|E(H)| = m2n′
2 + 3n2m′

2. �

We determine the lower and upper bounds for the F-index and the Narumi-Katayama
index of the Cartesian product of F-sum of graphs in terms of their factor graphs for F = S
and F = R.

Corollary 5 Let G = G1 +S H1 and H = G2 +R H2, then
(a) 2ξ (δGδH )2 ≤ F(G�H) ≤ 2ξ (�G + �H )2,
(b) [2(δG + δH )]

ξ
2 ≤ NK(G�H) ≤ [2(�G + �H )]

ξ
2 ,

where ξ = n1(n′
1 + m′

1)(m2n′
2 + 3n2m′

2) + n2(n′
2 + m′

2)(m1n′
1 + 2n1m′

1), δG + δH = δG1 + δG2 +
δH1 + δH2 and �G + �H = �G1 + �G2 + �H1 + �H2 .

Proof (a) Using the relation F(G) = M3(G) – 2M2(G), in Theorem 5, we get the required
result.

(b) Using the relation NK(G) =
√

PM1(G), in Theorem 5, we get the required result. �
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