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Abstract
In this paper, we show an elegant inequality involving the ratio of generalized
complete elliptic integrals of the first kind and generalize an interesting result of Alzer.
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1 Introduction
The generalized complete elliptic integral of the first kind is defined for r ∈ (0, 1) by

Kp(r) =
∫ πp
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dθ

(1 – rp sinp
p θ )1– 1

p
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∫ 1

0
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1
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where sinp θ is the generalized trigonometric function and

πp = 2
∫ 1

0

dt

(1 – tp)
1
p

=
2
p

B
(

1
p

, 1 –
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)
.

The function sinp θ and the number πp play important roles in expressing the solu-
tions of inhomogeneous eigenvalue problem of p-Laplacian –(|u′|p–2u′)′ = λ|u|p–2u with a
boundary condition. These functions have some applications in the quasi-conformal the-
ory, geometric function theory and the theory of Ramanujan modular equation. Báricz [1]
established some Turán type inequalities for a Gauss hypergeometric function and for a
generalized complete elliptic integral and showed a sharp bound for the generalized com-
plete elliptic integral of the first kind in 2007. In 2012, Bhayo and Vuorinen [2] dealt with
generalized elliptic integrals and generalized modular functions. Several new inequalities
are given for these and related functions.

For more details on monotonicity, inequalities and convexity and concavity of these
functions, the reader may refer to [3–5] and [6] and the references therein.

In 1990, Anderson et al. [7] presented the following inequality:

K(r)
K(

√
r)

>
1

1 + r
for r ∈ (0, 1). (1.1)
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Inspired by this work, Alzer and Richards [6] gave the refinement of (1.1): for all r ∈ (0, 1),
the following inequality

K(r)
K(

√
r)

>
1

1 + r
4

(1.2)

holds true.
It is natural how inequality (1.2) is generalized to Kp(r). Our main result reads as follows.

Theorem 1.1 For r ∈ (0, 1) and p ∈ [1, 2], we have

1
1 + λpr

<
Kp(r)

Kp(
√

r)
<

1
1 + upr

, (1.3)

where the constants λp = 1
p (1 – 1

p ) and up = 0 are the best possible.

2 Lemmas
Lemma 2.1 The function �(x) = 1+ax

1+bx (1 + bx �= 0) is strictly increasing (decreasing) in
(0,∞) if and only if a – b > 0 (a – b < 0).

Proof Simple computation yields

d
dx

(
1 + ax
1 + bx

)
=

a – b
(1 + bx)2 .

The proof is complete. �

Lemma 2.2 (Lemma 2.1 in [8]) The psi function ψ(x) = �′(x)
�(x) is strictly concave on (0,∞)

and satisfies the duplication formula
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1
2
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1
2
ψ

(
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1
2

)
+ log 2 (2.1)

for x > 0.

Lemma 2.3 (Lemma 3 in [9]) For x > 0, we have

ln x –
1
x

< ψ(x) < ln x –
1

2x
. (2.2)

Lemma 2.4 For x > 0 and p ∈ [1, 2], we have

ψ
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)
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)
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)
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Proof Using Lemma 2.3, we only need to prove the following inequality:
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For p ∈ [1, 2], we easily obtain 1
p ≥ 1 – 1

p . So, we have

1
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p
> 0.

On the other hand,
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⇔ 3
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– 4
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So, we complete the proof. �

Lemma 2.5 We have

lim
r→1

Kp(r)
Kp( p√r)

= 1. (2.4)

Proof Applying the asymptotic formula ([10], equality (2))

F(a, b; a + b; x) ∼ –
1

B(a, b)
log(1 – x) (x → 1) (2.5)

and expression [10]

Kp(r) =
πp

2
F
(

1
p

, 1 –
1
p

; 1, rp
)

, (2.6)

where F(a; b; c; z) and B(x, y) denote a classical hypergeometric function and a beta func-
tion, respectively, we obtain

lim
r→1

F(a, b; a + b; rp)
F(a, b; a + b; r)

= 1. (2.7)

Putting a = 1
p and b = 1 – 1

p , we complete the proof. �

3 Proof of Theorem 1.1
Define
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By applying (2.6), we get

fp(r) =
∞∑

n=0

(1 + λpr)rpn

and

gp(r) =
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where an =
( 1
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(n!)2 and (r)n = r(r + 1) · · · (r + n – 1).
Because of 1 ≤ p ≤ 2, we have

fp(r)
gp(r)

≥
∑∞

n=0(1 + λpr)anrpn∑∞
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Let
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Simple computation results in
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by using Lemma 2.1.
(In fact, we easily know

1
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.

Next, considering 1 ≤ p ≤ 2, we only need to prove 12n2 + 4n – 1 ≤ 0. It is obvious.)
Setting
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Using Lemma 2.2, we easily get

Q′
p(x)

Qp(x)
= ψ

(
x +

1
p

)
+ ψ

(
x + 1 –

1
p

)
+ 2ψ

(
x +

1
2

)
– ψ

(
x +

1
2p

)

– ψ

(
x +

1
2

+
1

2p

)
– ψ

(
x +

1
2

–
1

2p

)
– ψ

(
x + 1 –

1
2p

)
.

Applying Lemma 2.2 again, we have
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Hence, we have
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It follows that the function Qp(x) is increasing in x ∈ (0,∞). So, we have
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Hence, we obtain

Qp,n(r) ≥ 16
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and fp(r) > gp(r).
On the other hand, since the function Kp(r) is strictly increasing on r ∈ (0, 1), we have

Kp(r)
Kp( p√r)

< 1.

Hence, we rewrite formula (1.3) as

u < up(r) =
Kp( p√r)

Kp(r) – 1

r
< λ.
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Simple calculation leads to
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The proof is complete.

4 Conclusions
We show an elegant inequality involving the ratio of generalized complete elliptic integrals
of the first kind and generalize an interesting result of Alzer.
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