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Abstract
In this paper, some new generalization of Darbo’s fixed point theorem is proved by
using a F(ψ ,ϕ)-contraction in terms of a measure of noncompactness. Our result
extends to obtaining a common fixed point for a pair of compatible mappings. The
paper contains an application for nonlinear integral equations as well.
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1 Introduction and preliminaries
A contractive condition in terms of a measure of noncompactness, which was first used
by Darbo, is one of the fruitful tools to obtain fixed point and common fixed point theo-
rems. The extensions of these contractions in linear and integral type which are known as
generalizations of Darbo’s fixed point theorem, are considered by many authors; see, for
example, [–] and the references therein.

Recently, Khodabakhshi [] obtained some new common fixed point results with the
technique associated with a measure of noncompactness for two commuting operators.

Inspired by the class of α-ψ contractive type mappings which was introduced by Samet
et al. [], Ansari [] presented the weaker class of this contraction named F(ψ ,ϕ)-
contraction and used it to obtain fixed point and common fixed point results.

This paper mainly aims at employing the F(ψ ,ϕ)-contraction and its property in terms
of a measure of noncompactness to investigate a fixed point and a common fixed point for
a pair of compatible mappings.

Now we present some definitions, notations and results which will be needed later.
Throughout this paper we assume that E is an infinite dimensional Banach space. If C
is a subset of E then the symbols co(C) and ME and NE denote the closure of convex hull
of C and the family of nonempty bounded subsets of E and the subfamily consisting of all
relatively compact subsets of E, respectively.

The measure of noncompactness was introduced by Kuratowski [],

μ(S) := inf

{
δ >  : S =

n⋃
i=

Si for some Si with diam(Si) ≤ δ for  ≤ i ≤ n < ∞
}

,
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for a bounded subset S of a metric space X.
From now on we will use the following definition for the measure of noncompactness.

Definition . ([]) A mapping μ : ME → [,∞) is said to be a measure of noncompact-
ness in E if it satisfies the following conditions:

(A) ∅ �= Kerμ = {X ∈ME : μ(X) = } ⊆NE ;
(A) X ⊆ Y ⇒ μ(X) ≤ μ(Y );
(A) μ(X) = μ(co X) = μ(X);
(A) μ(λX + ( – λ)Y ) ≤ λμ(X) + ( – λ)μ(Y ) for λ ∈ [, ];
(A) If {Xn} is a sequence of closed sets from ME such that Xn+ ⊆ Xn, (n ≥ ) and if

limn→∞ μ(Xn) =  then the intersection set X∞ =
⋂∞

n= Xn is nonempty.

The family Kerμ described in (A) is said to be the kernel of the measure of noncom-
pactness μ. Observe that X∞ ∈ Kerμ, since μ(X∞) ≤ μ(Xn) for any n.

Definition . ([]) A function ψ : [,∞) → [,∞) is called an altering distance func-
tion if the following properties are satisfied:

() ψ is nondecreasing and continuous;
() ψ(t) =  if and only if t = .

We denote by � the class of altering distance functions.

Definition . ([]) An ultra altering distance function is a continuous, nondecreasing
mapping ϕ : [,∞) → [,∞) such that ϕ(t) >  for t >  and ϕ() ≥ .

We denote by � the class of ultra altering distance functions.

Definition . ([]) A mapping F : [,∞) → R is called a C-class function if it is con-
tinuous and satisfies the following axioms:

() F(s, t) ≤ s;
() F(s, t) = s implies that either s =  or t = ; for all s, t ∈ [,∞).

Note for some F we have F(, ) = .

We denote C-class functions by C .

Definition . ([]) A pair of self-mappings F and G on X is weakly compatible if there
exists a point x ∈ X such that F(x) = G(x) implies FGx = GFx i.e., they commute at their
coincidence point.

Proposition . ([, Proposition .]) Let f and g be weakly compatible self-mappings of
a set X. If f and g have a unique point of coincidence, w = f (x) = g(x). Then w is the unique
common fixed point of f and g .

Lemma . ([]) Let X be a nonempty set and f : X → X be a function. Then there exists
a subset E ⊆ X such that f (E) = f (X) and f : E → X is one to one.

Now, we mention the following two theorems stated in [, ].
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Theorem . (Schauder []) Let C be a closed, convex subset of a Banach space E. Then
every compact, continuous map F : C → C has at least one fixed point.

As a significant generalization of Schauder’s fixed point theorem, we have the following
fixed point theorem.

Theorem . (Darbo []) Let C be a nonempty, bounded, closed, and convex subset of a
Banach space E and let T : C → C be a continuous mapping. Assume that there exists a
constant k ∈ [, ) such that

μ
(
T(X)

) ≤ kμ(X)

for any subset X of C. Then T has a fixed point.

2 Main results
This section starts by some of the theorems and corollaries related to fixed point are ob-
tained by using F(ψ ,ϕ)-contraction in terms of a measure of noncompactness. Next, for a
pair of compatible mappings a common fixed point theorem is considered. In the sequel,
theorems are proved in integral type to obtain a fixed point and a common fixed point.
Our results generalized Darbo’s fixed point theorem and a fixed point theorem which was
recently proved.

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be a continuous mapping, such that

ψ
(
μ

(
T(M)

)) ≤ F
(
ψ

(
μ(M)

)
,ϕ

(
μ(M)

))
,

for any subset M of C and where ψ ∈ � , ϕ ∈ � and F ∈ C . Then T has a fixed point.

Proof Define a sequence {Cn}∞n= setting

C := C, Cn := coT(Cn–),

where n = , , . . . . Now let us prove that

Cn+ ⊆ Cn, T(Cn) ⊆ Cn, ()

for every n = , , . . . . The first inclusion will be proved via mathematical induction. Let
n = . Since C = C, C is convex and closed, T(·) : C → C, we have C = co(T(C)) ⊂ C.
Now assume that Cn ⊂ Cn–. Then co(T(Cn)) ⊂ co(T(Cn–)). So we obtain Cn+ ⊂ Cn. The
second inclusion follows immediately from the first one, T(Cn) ⊂ co(T(Cn)) = Cn+ ⊂ Cn.

If there exists N ∈N such that μ(N) =  then CN is compact and Schauder’s fixed point
theorem ensures that T has a fixed point in CN where CN ⊂ C. Suppose μ(Cn) >  for each
n ∈N.
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Taking into consideration that F ∈ C , the property (A) from Definition (.) and using
the inequality given in the theorem, we have

ψ
(
μ(Cn+)

)
= ψ

(
μ

(
co

(
T(Cn)

)))
= ψ

(
μ

(
T(Cn)

))
≤ F

(
ψ

(
μ(Cn)

)
,ϕ

(
μ(Cn)

))
≤ ψ

(
μ(Cn)

)
, ()

for every n = , , . . . . From () and condition (A) of Definition (.) we conclude that
μ(Cn+) ≤ μ(Cn) for every n = , , . . . . This means that the sequence {μ(Cn)}∞n= is not
increasing, and consequently there exists r ≥  such that limn→∞ μ(Cn) = r. Since ψ is
continuous, according to () we get

ψ(r) ≤ F
(
ψ(r),φ(r)

) ≤ ψ(r),

and hence

F
(
ψ(r),ϕ(r)

)
= ψ(r).

The last inequality and the inclusion F ∈ C yield ψ(r) =  or ϕ(r) = . These equalities and
the inclusions ψ ∈ � , ϕ ∈ � imply that r = . So, we obtain

lim
n→∞μ(Cn) = . ()

Let C∞ =
⋂∞

n= Cn. Since Cn+ ⊂ Cn, Cn is bounded, closed, and convex for every n =
, , . . . , we see that C∞ is also bounded, closed, and convex, so the equality () and prop-
erty (A) of Definition (.) imply that C∞ is nonempty and compact. From the inclusion
() it follows that

T(C∞) = T

( ∞⋂
n=

Cn

)
⊂

[ ∞⋂
n=

T(Cn)

]
⊂

[ ∞⋂
n=

Cn

]
= C∞.

Finally, by virtue of Schauder’s fixed point theorem we see that the map T : C∞ → C∞ has
a fixed point in C∞. Since C∞ ⊂ C, we conclude that the map T has a fixed point in C.
The proof is completed. �

If we let F(s, t) = ks in Theorem . we get the following result.

Corollary . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be a continuous mapping. Assume that

ψ
(
μ(TM)

) ≤ k
(
ψ

(
μ(M)

))
,

for M ⊆ C. Then T has a fixed point.

If we let ψ(t) = t in Theorem . we get the following.
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Corollary . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be a continuous mapping. Assume that

μ(TM) ≤ F
(
μ(M),ϕ

(
μ(M)

))
,

for M ⊆ C. Then T has a fixed point.

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be continuous mapping. Assume that there exist ψ ∈ � , ϕ ∈ � and
F ∈ C such that the inequality

ψ
(
μ

(
T(C)

)) ≤ F
(
ψ

(
M(X, Y )

)
,ϕ

(
M(X, Y )

))
,

is satisfied for every noncompact subset X, Y of C, where

M(X, Y ) = max
{
μ(X),μ

(
T(X)

)
,μ

(
T(Y )

)
,μ

(
T(X) ∪ T(Y )

)}
.

Then T has a fixed point.

Proof Define a sequence {Cn}∞n= setting

C := C, Cn := co
(
T(Cn–)

)
,

where n = , , . . . . Analogously to Theorem . it is possible to show that

Cn+ ⊆ Cn, T(Cn) ⊆ Cn, ()

for every n = , , . . . .
If μ(CN ) =  for some N ∈N then CN is a compact set and by virtue of Schauder’s theo-

rem the continuous map T : CN → CN has a fixed point in CN ⊂ C.
Now suppose that μ(CN ) >  for every n ∈ N. From () and condition (A) of Defi-

nition . we conclude that μ(Cn+) ≤ μ(Cn) for every n = , , . . . . This means that the
sequence {μ(Cn)}∞n= is not increasing, and consequently there exists r ≥  such that
limn→∞ μ(Cn) = r.

Taking into consideration that F ∈ C , condition (A), we have

ψ
(
μ(Cn+)

)
= ψ

(
μ

(
co

(
T(Cn)

)))
= ψ

(
T(Cn)

)
≤ F

(
ψ

(
M(Cn, Cn+)

)
,ϕ

(
M(Cn, Cn+)

))
≤ ψ

(
M(Cn, Cn+)

)
, ()

where

M(Cn, Cn+) = max
{
μ(Cn),μ

(
T(Cn)

)
,μ

(
T(Cn+)

)
,μ

(
T(Cn) ∪ T(Cn+)

)}
.

Since T(Cn) ⊂ Cn and Cn+ ⊂ Cn we have

μ
(
T(Cn)

) ≤ μ(Cn), μ
(
T(Cn+)

) ≤ μ
(
T(Cn)

)
,

μ
(
T(Cn) ∪ T(Cn+)

) ≤ μ(Cn ∪ Cn+) = μ(Cn),
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for every n ≥ . Thus we obtain

M(Cn, Cn+) = μ(Cn),

and consequently

ψ
(
M(Cn, Cn+)

)
= ψ

(
μ(Cn)

)
, ϕ

(
M(Cn, Cn+)

)
= ϕ

(
μ(Cn)

)
,

for every n ≥ . The last equalities and () yield

ψ
(
μ(Cn+)

) ≤ F
(
ψ

(
M(Cn, Cn+)

)
,ϕ

(
M(Cn, Cn+)

)) ≤ ψ
(
μ(Cn)

)
,

and hence

ψ
(
μ(Cn+)

) ≤ F
(
ψ

(
μ(Cn)

)
,ϕ

(
μ(Cn)

)) ≤ ψ
(
μ(Cn)

)
,

for every n ≥ . Since limn→∞ μ(Cn) = r; ψ , ϕ and F are continuous functions, we get

F
(
ψ(r),ϕ(r)

)
= ψ(r).

The inclusion F ∈ C yields ψ(r) =  or ϕ(r) = . These equalities and inclusions ψ ∈ � ,
ϕ ∈ � imply that r = . So, we obtain

lim
n→∞μ(Cn) = .

From now on the proof repeats the proof of Theorem .. The theorem is proved. �

By taking ψ(t) = t we have the following.

Corollary . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be a continuous mapping. Assume that there exist ψ ∈ � , ϕ ∈ � and
F ∈ C such that the inequality

μ
(
T(C)

) ≤ F
(
ψ

(
M(X, Y )

)
,ϕ

(
M(X, Y )

))
,

is satisfied for every noncompact subset X, Y of C, where

M(X, Y ) = max
{
μ(X),μ

(
T(X)

)
,μ

(
T(Y )

)
,μ

(
T(X) ∪ T(Y )

)}
.

Then the map T has a fixed point.

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T , S : C → C be continuous mappings. Assume that:

(a). The range of T contains the range of S.
(b). For any M ⊂ C:

ψ(μ
(
T(M)

) ≤ F
(
ψ

(
μ

(
S(M)

))
,ϕ

(
μ

(
S(M)

)))
, ()

where ψ ∈ � , ϕ ∈ � and F ∈ C .
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Then:
(i). The sets A = {x ∈ C : S(x) = x} and B = {x ∈ C : T(x) = x} are nonempty and closed.

(ii). T and S have a coincidence point.
(iii). If T and S are weakly compatible. Then S and T have a unique common fixed point.

Proof Let C = C, choose C ⊂ E such that S(C) ⊆ T(C) and C := coS(C). This can be
done since the range of T contains the range of S. We have

S(C) ⊆ coS(C) ⊆ RS ⊆ RT ,

so there exists C such that S(C) ⊆ T(C).
Continuing this process having chosen Cn in E we obtain Cn+ in E such that S(Cn) ⊆

T(Cn+) and Cn+ := coSCn.
If we put Cn+ := coS(Cn), then

S(Cn) ⊆ Cn+ = coS(Cn) ⊆ C and T(Cn+) ⊆ C, ∀n ∈N∪ {},

so

S(Cn) ∩ T(Cn+) ⊆ C,

therefore S(Cn) ⊆ T(Cn+) for every n ∈N∪ {} because the cases

S(Cn) ∩ T(Cn+) = ∅ and T(Cn+) ⊆ S(Cn)

are impossible, since RS ⊆ RT .
We observe that Cn+ ⊆ Cn and SCn ⊆ Cn for n ∈N∪ {}, because

C = co
(
S(C)

) ⊆ C.

Let Cn ⊆ Cn– so

Cn+ = co
(
S(Cn)

) ⊆ co
(
S(Cn–)

)
= Cn.

And also

S(Cn) ⊂ S(Cn–) ⊂ co
(
S(Cn–)

)
= Cn.

If μ(CN ) = , for some N ∈N, then T has a fixed point in C, because Schauder’s fixed point
theorem guarantees this. Suppose μ(Cn) >  for each n ∈N. Therefore we get

ψ
(
μ(Cn+)

)
= ψ

(
μ

(
co(SCn)

))
= ψ

(
μ

((
S(Cn)

)))
≤ ψ

(
μ

(
T(Cn+)

))
≤ F

(
ψ

(
μ

(
S(Cn+)

))
,ϕ

(
μ

(
S(Cn+)

)))
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≤ F
(
ψ

(
μ(Cn+)

)
,ϕ

(
μ(Cn+)

))
≤ ψ

(
μ(Cn+)

)
. ()

Since Cn+ ⊂ Cn for every n = , , . . . , the condition (A) of Definition . implies that
μ(Cn+) ≤ μ(Cn) for every n = , , . . . . This means that the sequence {μ(Cn)}∞n= is not
increasing, and consequently there exists r ≥  such that limn→∞ μ(Cn) = r. By () we find
that

ψ(r) ≤ F
(
ψ(r),ϕ(r)

) ≤ ψ(r),

so

F
(
ψ(r),ϕ(r)

)
= ψ(r),

according to the property of F we have ψ(r) =  or ϕ(r) = . Hence

r = lim
n→∞μ(Cn) = .

Also since Cn+ ⊆ Cn by property (A) of Definition . C∞ =
⋂∞

n= Cn is nonempty and
compact.

Moreover, since Cn and C are convex, and S(Cn) ⊂ Cn, S : Cn → Cn for n = , , , . . . and
so S : C∞ → C∞, now Schauder’s fixed point theorem ensures S has a fixed point and the
set A = {x ∈ C : S(x) = x} is nonempty and closed.

Similarly to S; T has a fixed point and by continuity of T , B = {x ∈ C : T(x) = x} is
nonempty and closed. By Lemma ., take

D :=
{

x ∈ C : S(x) = x or T(x) = x
}

and define a map g := S(D) → S(D) by g(Sx) = Tx. Clearly g is well defined. Now if we put
X : S(D) and E := B in Lemma ., then g(E) = g(X), so g is one to one. Now by using ()
we have

ψ
(
μ

(
g
(
S(M)

)))
= ψ

(
μ

(
T(M)

)) ≤ F
(
ψ

(
μ

(
S(M)

))
,ϕ

(
μ

(
S(M)

)))
,

so according to Theorem . there exists z ∈ E and it is unique, since g is one to one, such
that g(Sz) = Sz, which implies Tz = Sz.

Hence T and S have a unique coincidence point thus from Proposition . and it follows
that T and S have a unique common fixed point. �

Example . Let C = [, ] be a subset of R. Take S, T : [, ] → [, ] defined by

T(x) =



x and S(x) =



x,

also let

M = [, ], ϕ(t) =
t


, ψ(t) = t, F(s, t) =
s

s + t
,
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and

μ(X) = diam(X).

It is clear that ψ ∈ � and ϕ ∈ �. To verify the hypotheses of Theorem .:
(a). RS = [, 

 ] ⊂ RT = [, ].
By taking C = [, ] and C = [, 

 ] we have

S
(
[, ]

)
=

[
,




]
= T

([
,




])
,

the algorithm of Cn follows by

C =
[

,



]
, C =

[
,




]
, C =

[
,




]
, · · · ,

such that S(Cn) ⊆ T(Cn+).
(b). ψ(μ(T[, ])) = 

 , ψ(μ(S[, ])) = 
 , ϕ(μ(S[, ])) = 

 , and also

F
(




,




)
=




,

therefore

ψ

(
μ

(
T(M)

)
=




≤ F
(
ψ

(
μ

(
S(M)

))
,ϕ

(
μ

(
S(M)

))))
=




, ()

thus the sets F = {x ∈ C : S(x) = x} and K = {x ∈ C : T(x) = x} are nonempty and closed.
Also T() = S(), so  is a coincidence point. Finally since T and S commute at , that
is, ST() = TS(), so T and S are weakly compatible and  is a common fixed point of S
and T .

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be a continuous mapping such that

∫ ϕ(μ(T(M)))


f (t) dt ≤ F

(∫ ϕ(μ(M))


f (t) dt,

∫ ψ(μ(M))


f (t)

)
, ()

for any subset M of C and where f : [,∞) → [,∞) be a Lebesgue integrable function,
which is summable on each compact of [,∞) and

∫ ε

 f (t) dt >  for each ε >  and ψ ∈ � ,
ϕ ∈ � and F ∈ C . Then T has a fixed point.

Proof Define a sequence {Cn} as follows:

C := C, Cn := coTCn–, for n = , , . . . .

If μ(CN ) =  for some N ∈ N. Then T has a fixed point C by the proof of previous the-
orems. Suppose μ(Cn) >  for all n ∈ N. Since Cn+ ⊂ Cn for every n = , , . . . , the con-
dition (A) of Definition . implies that μ(Cn+) ≤ μ(Cn) n = , , . . . . This means that
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the sequence {μ(Cn)}∞n= is not increasing, and consequently there exists r ≥  such that
limn→∞ μ(Cn) = r. From the inclusions ψ ∈ � , ϕ ∈ � we obtain limn→∞ ψ(μ(Cn)) = ψ(r)
and limn→∞ ϕ(μ(Cn)) = ϕ(r). Since f (·) is Lebesgue integrable on each compact subset of
[,∞), we see that

lim
n→∞

∫ ψ(μ(Cn))


f (t) dt =

∫ ψ(r)


f (t) dt, lim

n→∞

∫ ϕ(μ(Cn))


f (t) dt =

∫ ϕ(r)


f (t) dt.

The last equalities, inclusion F ∈ C and () imply that

∫ ϕ(r)


f (t) dt ≤ F

(∫ ϕ(r)


f (t) dt,

∫ ψ(r)


f (t) dt

)
≤

∫ ϕ(r)


f (t) dt,

and hence

F
(∫ ϕ(r)


f (t) dt,

∫ ψ(r)


f (t) dt

)
=

∫ ϕ(r)


f (t) dt.

Thus we see that
∫ ϕ(r)


f (t) dt = , or

∫ ψ(r)


f (t) dt = ,

and consequently

ϕ(r) =  or ψ(r) = .

From the last equalities it follows that r = , i.e. limn→∞ μ(Cn) = r. Also since Cn+ ⊆ Cn

by property (A) of Definition . C∞ =
⋂∞

n= Cn is a nonempty, closed, and convex subset
of C. Moreover, we know that C∞ belongs to ker(μ). So C∞ is compact and invariant by
the mapping T . Consequently, Schauder’s fixed point theorem implies that T has a fixed
point in C∞. Since C∞ ⊂ C the proof is complete. �

Remark . Put f (t) = , ϕ(t) = t and F(s, t) = ks for t ∈ [,∞) in Theorem .. Then

μ
(
T(X)

)
=

∫ ϕ(μ(T(X)))


f (t) dt

≤ F
(∫ ϕ(μ(X))


f (t) dt,

∫ ψ(μ(X))


f (t) dt

)

= k
(∫ ϕ(μ(X))


f (t) dt

)

= k
(
μ(X)

)
,

thus we get Darbo’s fixed point theorem.

Corollary . Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and let T : C → C be a continuous mapping such that

∫ ϕ(‖Tx–Ty‖)


f (t) dt ≤ F

(∫ ϕ(‖x–y‖)


f (t) dt,

∫ ψ(‖x–y‖)


f (t) dt

)
,
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for any x, y ∈ C where f : [,∞) → [,∞) be a Lebesgue integrable function which is
summable on each compact set of [,∞) and

∫ ε

 f (t) dt >  for each ε >  and ψ ∈ � , ϕ ∈ �

and F ∈ C . Then T has a fixed point.

Proof Define μ : mE →R+ with μ(X) = diam(X) for any X ∈mE , where diam(X) is a diam-
eter of the set X. It is easy to verify that μ is a measure of noncompactness on space E. By
assumption, we have

∫ ϕ(supx,y∈X ‖Tx–Ty‖)


f (t) dt ≤ F

(∫ ϕ(supx,y∈X ‖x–y‖)


f (t) dt,

∫ ψ(supx,y∈X ‖x–y‖)


f (t) dt

)
,

thus we get

∫ ϕ(μ(TX))


f (t) dt ≤ F

(∫ ϕ(μ(X))


f (t) dt,

∫ ψ(μ(X))


f (t) dt

)
,

so according to Theorem . we get the result. �

Corollary . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T : C → C be continuous mapping such that

∫ ϕ(μ(T(X)))


f (t) dt ≤ F

(∫ ϕ(μ(X))


f (t) dt,

∫ ψ(μ(X))


f (t) dt

)
– ψ∗

(∫ ψ(μ(X))


f (t) dt

)
,

for any subset X of C and where f : [,∞) → [,∞) be a Lebesgue integrable function,
which is summable on each compact subset of [,∞) and

∫ ε

 f (t) dt >  for each ε >  and
ψ ,ψ∗ ∈ � , ϕ ∈ � and F ∈ C . Then T has a fixed point.

Proof Define a sequence {Cn}∞n= setting

C := C, Cn := coT(Cn–),

where n = , , . . . . Analogously to Theorem . it is possible to show that

Cn+ ⊆ Cn, T(Cn) ⊆ Cn, ()

for every n = , , . . . . From condition (A) of Definition . we conclude that μ(Cn+) ≤
μ(Cn) for every n = , , . . . . This means that the sequence {μ(Cn)}∞n= is not increasing,
and consequently there exists r ≥  such that limn→∞ μ(Cn) = r.

If μ(CN ) =  for some N ∈N then CN is a compact set and using Schauder’s theorem we
conclude that the continuous map T : CN → CN has a fixed point in CN ⊂ C.

Now suppose that μ(CN ) >  for every n ∈N. Taking into consideration that F ∈ C , ψ∗ ∈
ψ and condition (A), we have

∫ ϕ(μ(Cn+))


f (t) dt =

∫ ϕ(μ(co(TCn)))


f (t) dt

=
∫ ϕ(μ(TCn))


f (t) dt
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≤ F
(∫ ϕ(μ(Cn))


f (t) dt,

∫ ψ(μ(Cn))


f (t) dt

)
– ψ∗

(∫ ψ(μ(Cn))


f (t) dt

)

≤
∫ ϕ(μ(Cn))


f (t) dt – ψ∗

(∫ ψ(μ(Cn))


f (t) dt

)
. ()

Since limn→∞ μ(Cn) = r, F ∈ C , ϕ ∈ �, ψ∗ ∈ � , the function f (·) is Lebesgue summable on
the compact subset of [,∞), and from () we obtain

∫ ϕ(r)


f (t) dt ≤

∫ ϕ(r)


f (t) dt – ψ∗

(∫ ψ(r)


f (t) dt

)
,

and hence

ψ∗
(∫ ψ(r)


f (t) dt

)
≤ .

From the last inequality it follows that ψ(r) =  and consequently r = , i.e. limn→∞ μ(Cn) =
.

Continuing the proof analogously to the proof of the theorem . we obtain the result. �

Theorem . Let C be a nonempty, bounded, closed, and convex subset of a Banach space
E and let T , S : C → C be continuous mappings. Assume that:

(a). The range of T contains the range of S.
(b). For any M ⊆ C:

∫ ϕ(μ(T(M))


f (t) dt ≤ F

(∫ ϕ(μ(S(M)))


f (t) dt,

∫ ψ(μ(S(M)))


f (t) dt

)
, ()

where ψ ∈ � , ϕ ∈ � and F ∈ C .
Then:

(i). The sets A = {x ∈ C : S(x) = x} and B = {x ∈ C : T(x) = x} are nonempty and closed.
(ii). T and S have a coincidence point.

(iii). If T and S are weakly compatible, then S and T have a common fixed point.

Proof Let C = C, Cn := coSCn– for n = , , . . . . As is pointed out in Theorem ., Cn+ in
E such that T(Cn+) = S(Cn). We have

T(Cn) ⊆ Cn and also S(Cn) ⊂ S(Cn–) ⊂ co
(
S(Cn–)

)
= Cn,

for all n ∈N. Thus

∫ ϕ(μ(Cn+))


f (t) dt =

∫ ϕ(μ(co(S(Cn))))


f (t) dt

=
∫ ϕ(μ(S(Cn)))


f (t) dt

=
∫ ϕ(μ(T(Cn+)))


f (t) dt

≤ F
(∫ ϕ(μ(S(Cn+)))


f (t) dt,

∫ ψ(μ(S(Cn+)))


f (t) dt

)
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≤ F
(∫ ϕ(μ(Cn+))


f (t) dt,

∫ ψ(μ(Cn+))


f (t) dt

)

≤
∫ ϕ(μ(Cn+))


f (t) dt

≤
∫ ϕ(μ(Cn))


f (t) dt. ()

The remaining part is similar to the previous proofs. �

3 Application
In this section, since integral equations arise in different problems of theory and applica-
tions (see, e.g., [–] and the references therein). We consider the existence of solutions
for the following nonlinear integral equation in BC(R+), the space of bounded and con-
tinuous functions x(·) : R+ →R

+:

x(t) = λf
(

t,
∫ t


g
(
t, s, x

(
α(s)

))
ds

)
+ ( – λ)

∫ t


g
(
t, s, x(s)

)
ds, t ≥ ,λ ∈ (, ) ()

for any nonempty bounded subset X of BC(R+), x ∈ X and T >  and ε > , let

ωT (x, ε) = sup
{∣∣x(t) – x(s)

∣∣ : s, t ∈ [, T], |t – s| ≤ ε
}

,

ωT (X, ε) = sup
{
ωT (x, ε) : x ∈ X

}
, ωT

 (X) = lim
ε→

ωT (X, ε),

ω(X) = lim
T→∞ωT

 (X), X(t) =
{

x(t) : x ∈ X
}

,

diam X(t) = sup
{∣∣x(t) – y(t)

∣∣ : x, y ∈ X
}

,

and

μ(X) = ω(X) + lim
t→∞ sup diam X(t). ()

Banaś has shown in [] that the function μ is a measure of noncompactness in the space
BC(R+).

Theorem . The nonlinear integral equation () has at least one solution in the space
BC(R+), if the following conditions are satisfied:

(A). The function α : R+ →R
+ is continuous, α(t) → ∞ as t → ∞.

(A). The function f : R+ ×R →R is continuous and

∣∣f (t, x) – f (t, y)
∣∣ ≤ ψ

(|x – y|),

moreover, ψ and ϕ are an altering distance function and an ultra altering distance
function, respectively which ψ satisfies for all t, s ∈ R

+, ψ(t) + ψ(s) ≤ ψ(s + t) and
ψ(t) < t.

(A).
L = sup

{
f (t, ) : t ∈R

+}
< ∞.
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(A). The function g : R+ ×R
+ ×R →R is continuous and there exists a continuous function

b : R+ ×R
+ → R

+ which is increasing with respect to the first component, satisfying

∣∣g(t, s, x)
∣∣ ≤ b(t, s),

for all t, s ∈R
+ and x ∈R where

lim
t→∞

∫ t


b(t, s) ds = .

(A).
f
(
t, Kx(t)

)
= K

(
f
(
t, x(t)

))
,

where

Kx(t) =
∫ t


g
(
t, s, x(s)

)
ds.

For the following remark, by definition, commuting mappings means for a pair of self-
mappings K , L : X → X that there exists a point x ∈ X such that KL(x) = LK(x).

Remark . Note that by hypothesis (A) there exists constant V >  such that

V = sup
t≥

v(t) = sup
t≥

[∫ t


b(t, s) ds

]
.

Proof Put

Q =
{

x ∈ BC
(
R

+)
: ‖x‖ ≤ r = L + V

}
,

(Fx)(t) = f
(
t, x(t)

)
, (Kx)(t) =

∫ t


g
(
t, s, x(s)

)
ds.

Thus equation () becomes

x(t) = (Hx)(t) = λFKx
(
α(t)

)
+ ( – λ)(Kx)(t)

we define the operation G : C(R+) → C(R+) by

G(x) =
Hx – ( – λ)(Kx)(t)

λ
= FKx

(
α(t)

)
,

where C(R+) is the space of continuous functions on R
+.

Khodabakhshi and Vaezpour in [] have shown that G, K are continuous on Q, bounded,
commuting mappings, RG ⊆ RK and also G, K have a common fixed point. The conditions
(a) and (b) of Theorem . hold.

By referring to [] we get

μ
(
G(X)

) ≤ ψ
(
μ

(
K(X)

)) ≤ μ
(
K(X)

)
.
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On the other hand

∣∣g(t, s, x)
∣∣ ≤ b(t, s),

for all t, s ∈R
+. And for T >  such that t, t ∈ [, T] and x ∈ X we have

∣∣Kx(t) – Kx(t)
∣∣ =

∣∣∣∣
∫ t


g
(
t, s, x(s)

)
ds –

∫ t


g
(
t, s, x(s)

)
ds

∣∣∣∣
≤

∣∣∣∣
∫ t


g
(
t, s, x(s)

)
ds

∣∣∣∣
≤

∫ t


b(t, s) ds

≤
∫ T


b(T , s) ds, ()

so

ωT
 (KX) ≤

∫ T


b(T , s) ds; ()

by taking T → ∞

ω(KX) ≤ lim
T→∞

∫ T


b(T , s) ds = . ()

Also

∣∣Kx(t) – Ky(t)
∣∣ =

∣∣∣∣
∫ t


g
(
t, s, x(s)

)
ds –

∫ t


g
(
t, s, y(s)

)
ds

∣∣∣∣
≤

∣∣∣∣
∫ t


g
(
t, s, x(s)

)
ds

∣∣∣∣
≤

∫ t


b(t, s) ds

≤
∫ T


b(T , s) ds, ()

so we have

lim sup
T→∞

diam
(
KX(T)

) ≤ lim sup
T→∞

∫ T


b(T , s) ds = ; ()

by () and () we have

μ(KX) = μ
(
ω(KX) + lim sup

T→∞
diam(KX)

)
= μ() +  = ,

therefore

ψ
(
μ(KX)

)
= ,
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thus for the C-class function F and the ultra altering distance function ϕ, defined in Defi-
nitions . and ., respectively, we can get

ψ
(
μ

(
G(X)

) ≤ ψ
(
μ

(
K(X)

))
= F

(
ψ

(
μ(KX)

)
,ϕ

(
μ(KX)

)))
,

since K and G commutes, so they are weakly compatible; therefore according to Theo-
rem ., G and K have a common fixed point so H has a fixed point and thus the functional
integral equation () has at least one solution. �

4 Conclusion
In Theorem . of [] the condition TS = ST for two self-mappings T , S is used. But in
this article for achieving a common fixed point from two self-maps the hypothesis of the
common range which is weaker than the hypotheses of a commuting map is utilized.

In this article the measure of noncompactness is used instead of the metric d, which is
used in [] and []. Also, contractions associated with a measure of noncompactness in
two linear and integral types and the application in solving integral equations are consid-
ered, while in the two mentioned article just the linear contractions in terms of the metric
d is used for achieving a fixed point.
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