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1 Introduction
In the practical applications, since the appearance modelings of many products in indus-
try are quite complex, they often cannot be described by a single surface in many cases.
Thus, there is a need to design such products using adjacent surfaces. The smooth conti-
nuity among multiple surface patches with certain smooth constraints is usually used to
achieve the appearance design of complex products. The ultimate aim of smooth continu-
ity is to make adjacent surface patches satisfy certain smooth conditions so that the com-
plex piecewise surface composed of these surface patches has global smoothness visually.
Parametric surfaces, which are not only the standard form for the mathematical descrip-
tion of product appearance in CAD/CAM, but also a powerful tool for various shape de-
signs and geometric representations, have received much attention since the 1960s. Thus
the smooth continuity between parametric surfaces is an important method to construct
complex surfaces and also significant research in the CAD/CAM system [1, 2].

There are two kinds of measuring standards established for the continuity of piecewise
parametric surfaces [3]: (1) parametric continuity, which is usually called C" continuity;
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(2) geometric continuity, or G” continuity for short. However, the parametric continuity
of a surface is relevant to its selected parameter and is usually valid under certain ones. In
addition, if the common boundary of two adjacent surfaces is irregular, even though the
two surfaces satisfy C! continuity at the joint, it does not necessarily mean that the two
surfaces possess a common tangent plane at any point on their common boundary. That
is, the piecewise surface composed of the two adjacent surfaces may not be smooth at the
joint. So the smooth continuity between surfaces cannot be exactly measured only by the
parametric continuity [3]. In addition, the smoothness of surfaces is a kind of geomet-
ric characteristic. Therefore, in constructing smooth piecewise surfaces, people usually
consider only geometric continuity, namely, G” continuity, which is irrelevant to the se-
lected parameters. In practical application, adjacent surfaces usually only need to reach
G! continuity, which means that adjacent surfaces need to possess a common tangent
plane or surface normal at any point on their common boundary; while in some situations
with high demand for smoothness, adjacent surfaces are required to reach G? continuity
(namely, curvature continuity) [3]. At present, owing to their simple and intuitive defi-
nition and some outstanding properties, Bézier parametric surfaces have long been one
of the important methods for representing surfaces in the CAD/CAM system. However,
the Bézier model still has a weakness that the shape of a Bézier surface is uniquely deter-
mined by its control mesh points. In order to overcome this weakness, scholars proposed
rational Bézier surfaces and NURBS surfaces, whose shapes can be modified or adjusted
by changing their weight factors on the condition of given control mesh points. How-
ever, the introduction of rational fractions also brought in some other drawbacks such as
complex calculation, inconvenience for integrals, higher-order expressions resulting from
repeated differentiation, etc. [4]. In addition, though the smooth continuity technologies
of Bézier, rational Bézier and NURBS surfaces, which can be used to construct various
complex surfaces, have been widely researched in [5-10], the drawbacks of these surfaces
also exist in the piecewise surfaces composed of them. All of these might get the design of
complex surfaces in trouble (such as the problem of shape adjustment).

In order to reserve the advantages of Bézier model and improve the shape adjustability
of curves and surfaces, scholars have constructed many Bézier curves and surfaces with
shape parameters [11-18]. The common features of these curves and surfaces are as fol-
lows: (1) they inherit most of properties of Bézier curves and surfaces; (2) they all have
shape parameters used to adjust the shape of these curves and surfaces handily; (3) the
absence of rational fractions in their expressions makes them simpler than rational Bézier
and NURBS curves and surfaces. Thus these curves and surfaces have extensive applica-
tions in describing complex curves and surfaces. However, the expressions of these Bézier
curves and surfaces with shape parameters are polynomials; and consequently, they face
the problem of smooth continuity in constructing complex curves and surfaces. Therefore,
when researchers defined their curves and surfaces with shape parameters in [11-15], they
also further studied the C!, C? or G}, G2 continuity conditions of their proposed curves,
but the continuity conditions of these surfaces have not been studied until now (note: the
continuity conditions of the surfaces in [16—18] are also not studied). Compared with the
research on smooth continuity between Bézier curves with shape parameters, the corre-
sponding research on Bézier surfaces with shape parameters has not been extensively done
and the relevant research results are relatively few. In this paper, we make some improve-
ments to the Bézier-like surfaces in [17] and construct a kind of high-order generalized
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Bézier-like surfaces associated with multiple shape parameters. To improve the ability of
describing complex surfaces by using the proposed surfaces, we lay emphasis on the study
of G? continuity conditions of these surfaces.

The remainder of the paper is organized as follows. The definition of generalized Bézier-
like surfaces is given in Section 2. In Section 3, we propose the G2 continuity conditions for
generalized Bézier-like surfaces. Some examples of G* smooth continuity between gener-
alized Bézier-like surfaces are given in Section 4. In Section 5, we discuss the shape ad-
justment of piecewise surfaces. At last, some conclusions are given in Section 6.

2 Generalized Bézier-like surfaces with shape parameters
2.1 Definition of Bernstein-like basis functions
Definition 1 For any ¢ € [0, 1], the following polynomial functions of ¢

3CL+Co,-CL . 2C] L ,
biu(t; 1) = (1+ 12 +Ct,"-1 2 - C’j—lxt+xt2>c;tl(1—t)”-’ (i=0,1,...,n) (1)

n!
i(n-i)!?

are called the Bernstein-like basis functions of degree n [17], where n > 2, C! =
C,l,=CI =C!7) =0; A € [-1,1] is a shape parameter.

It can be easily proved that the Bernstein-like basis functions b; ,(¢; A) share many prop-
erties with classical Bernstein basis functions, such as non-negativity, property of weight
distribution, symmetry, linear independence, etc. Especially when the shape parameter
A=0,bi,(t:2) (i=0,1,...,n) degrade into classical Bernstein basis functions of degree #.
Figure 1 shows the graphs of the cubic Bernstein-like basis functions with the shape pa-
rameter X taking different values, where the red solid lines, blue dotted lines and green dot
dash lines are the graphs of the basis functions with the shape parameter A = —1,0 and 1,
respectively.

By the Bernstein-like basis functions in (1), a Bézier-like curve of degree n associated
with the shape parameter A can be defined as follows [17]:

C(;2) = ) Pibiu(t;2), te0,1], (2)
i=0

where P, e R (d =2,3;i=0,1,...,n; n > 2) are control points of the curve; b;,(t;A) (i =
0,1,...,n) are Bernstein-like basis functions of degree # defined by (1).

Figure 1 The cubic Bernstein-like basis functions s
with the shape parameter A =-1,0and 1. 0.9 ¥,
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2.2 Construction of generalized Bézier-like surfaces

Similar to the form of classical tensor-product Bézier surfaces (but slightly different),
a kind of generalized Bézier-like surfaces associated with m + 2 shape parameters can
be constructed by blending m + 1 Bézier-like curves with independent shape parame-

ters.

Definition2 Given m x n control mesh points P;; € R® (i = 0,1,...,m;j=0,1,...,m;m,n >
2) in 3D space, A and y; (i = 0,1,...,m) are constants and -1 < A,y; <1, the generalized

Bézier-like surfaces of degree (1, n) can be defined as

S(u,v; X, ) = Z |:bi,m(u;)») ij,n(V; yi)Pi,j:| 0<u,v=1), (3)

i=0 j=0

where b;,,(u; 1) and b;,(v;v;) (i = 0,1,...,m; j = 0,1,...,n) are Bernstein-like basis func-
tions of degree m and # defined by (1), respectively, m and n are positive integers, and

m,n>2; X,y (i=0,1,...,m) are shape control parameters of the surfaces.

Remark 1 The generalized Bézier-like surfaces inherited most of the properties of clas-
sical Bézier surface, such as angular point interpolation property, boundary property, de-

generacy, symmetry, convex hull property, geometric, affine invariance, etc.

Remark 2 The generalized Bézier-like surfaces have the following advantages: on the con-
dition of keeping the control mesh points of a surface unchanged, the shape of the surface
can also be modified flexibly by changing its shape parameters, and the surface has 3”2 -1
ways to approximate its control mesh. Especially when all the shape parameters equal
0, the generalized Bézier-like surfaces degenerate into classical Bézier surfaces of degree

(m, n).

2.3 Influence rule of the shape parameters on generalized Bézier-like surfaces

In order to adjust the shape of the generalized Bézier-like surfaces effectively, the influ-
ence rule of the shape parameters on them is analyzed in details in this section. In other
words, how will the shape of the surfaces change when one or multiple parameters change
is particularly demonstrated to enable designers to modify the shape of the surfaces pur-

posefully and efficiently.

Proposition 1 On the condition of keeping the control mesh points and the shape param-
eters y; (i=0,1,...,m) of the generalized Bézier-like surfaces unchanged,

(a) the generalized Bézier-like surfaces will get nearer to (or farther away from) their
control mesh when the shape parameter X increases (or decreases).

(b) changing the value of the shape parameter A, the position and shape of the boundary
curves $(0,v; A, yi) and S(1,v; A, yi) as well as the position of the four corners of the
generated surfaces will keep unchanged, while the position and shape of the boundary
curves S(u,0; A, y;) and S(u,1; A, v;) will change.
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(a) (1,0,0,0,0)

(b) (1/3,0,0,0,0)
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Figure 2 Generalized Bézier-like surfaces of degree (3, 3) with different shape parameter A.

Figure 2 gives an example to show the shape adjustment of the generalized Bézier-like
surfaces by using the shape parameter A. The surface in Figure 2 is a generalized Bézier-like
one of degree (3, 3), whose shape is adjusted by changing the value of the shape parameter
A on the condition of the control mesh points and the remaining shape parameters y; (i =
0,1,...,m) keeping unchanged. In order to facilitate the discussion, the shape parameters
of the generalized Bézier-like surfaces can be written in vector form as (A, yo, 1, A2, ¥3). It
can be seen from Figure 2 that the shape change of the generalized Bézier-like surfaces

accords with the conclusion of Proposition 1.

Proposition 2 On the condition of keeping the control mesh points and the shape param-
eter A of the generalized Bézier-like surfaces unchanged,
(a) with the increase (or decrease) of the shape parameters y; (i = 0,1,...,m), the
generalized Bézier-like surfaces will gradually get nearer to (or farther away from)
their control mesh along the control polygon composed of the points P;;
(j=0,1,...,n). Therefore the shape parameters y; (i =0,1,...,m) mainly control the
shape of the generalized Bézier-like surfaces near the control points P;o,P;1,...,P;iy.
(b) with the single change of the shape parameter vy (0 Vi), the position and shape of the
boundary curve $(0,v; A, y;) (or S(L,v; &, y;)) of generalized Bézier-like surfaces will
change, while the position and shape of the other three boundary curves as well as the

position of the four corners of the surfaces remain unchanged. With the change of the
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(a) (0,0,0,0,1)

(b) (0,0,0,0,1/3)
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Figure 3 Generalized Bézier-like surfaces of degree (3, 3) with different shape parameter ;3.

shape parameters y; (i =1,2,...,m — 1), the position and shape of the four boundary
curves as well as the position of the four corners of the generated surfaces remain

unchanged.

Figure 3 gives an example to show the shape adjustment of the generalized Bézier-
like surfaces by using the shape parameter y;. The surface in Figure 3 is a generalized
Bézier-like one of degree (3,3), whose control mesh points are the same as those in
Figure 2. With the control mesh points and the values of the shape parameters A, y;
(i = 0,1,2) kept unchanged, the local shape of the generalized Bézier-like surface is ad-
justed by changing the shape parameter ys. It can be seen from Figure 3 that the shape
of the surface changes apparently near the control points Psg, P31, P32, P33, which are
marked as circles. What is more, the position and shape of the boundary curve S(1,v; A, ;)
(which is marked in blue) changes with the value change of y3, while the position and
shape of the other three boundary curves remain unchanged. The influence rules of the
shape parameters y; (i = 0,1,2) on generalized Bézier-like surfaces can be discussed sim-
ilarly.

Remark 3 On the basis of the conclusion of Proposition 1 and Proposition 2 and the con-
trol mesh points kept unchanged, we have the following:
(a) with the simultaneous increase (or decrease) of the shape parameters A, y;
(i=0,1,...,m), the generalized Bézier-like surfaces gradually get nearer to (or
farther away from) their control mesh.
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(a) (0,0,1,1,0)

(b) (0,0,-1,-1,0)
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Figure 4 Shape modification of generalized Bézier-like surfaces with fixed boundary.

(b) fixing the values of the shape parameters A, ¥, ¥, the shape of the generalized
Bézier-like surfaces can be adjusted by changing the shape parameters y;
(i=1,2,...,m—1) with the four boundary curves of the surfaces remaining

unchanged.

Figure 4 gives an example to show the shape adjustment of the generalized Bézier-like
surfaces by using the shape parameters y; (i = 1,2). It can be seen from Figure 4 that, on
the condition of keeping the four boundary curves of the surface in Figure 4 unchanged,
the concavo-convex shape of the surface can be flexibly modified by changing the shape
parameters 1, y». To sum up, with given control mesh, designers can conveniently adjust
both the local and global shape of generalized Bézier-like surfaces by changing the shape

parameters in practical application.

3 G2 continuity conditions for generalized Bézier-like surfaces

In designing complex surfaces, designers usually need to make adjacent surfaces reach G!
continuity, and G continuity is required in some situations with high demand for smooth-
ness. If two adjacent surfaces need to reach G? continuity, they must reach G! continuity
first. In other words, the G? geometric continuity conditions contain the G! ones, so the
G? continuity conditions of the surfaces are only covered in this section. In order to fa-
cilitate our discussion, suppose that there are the following two generalized Bézier-like

surfaces needing to reach G2 smooth continuity:

S1(1, Vi A, Vi) = i [Bimy (5 11) Z,tlo b (v; J/i,l)P},l']: @)
So(,v; M2, ¥i2) = 2 [Bimy (15 12) Z;fo bjn, (v; )/i,z)P,z,j],

where —1 < A1, Ao, ¥i1, vip <1, P (i = 0,1,...,m5 j = 0,1,...,m) and P, (i = 0,1,...,my;

j=0,1,...,ny) are control mesh points of the surfaces S; (i, v; 11, y;1) and Sy (u, v; Aa, ¥i2),

respectively. Because surfaces have their directivity, so there are three ways for the pro-

posed surfaces to reach G? smooth continuity at the joint: smooth continuity in the u

direction, smooth continuity in the direction of # and v, and smooth continuity in the v

direction.
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3.1 Smooth continuity in the u direction
Theorem 1 Ifthe two adjacent generalized Bézier-like surfaces S1(u,v; A1, Yi1) and S (u, v;

A2, Vio) satisfy all the following conditions:

my = my, A1 = Ay,

1 2 .
Pm1 =P;, (i=0,1,...,m),
pl _pl p2 _p2

iy iy -1 17700 .
n2+2¥; =f n+2yi1 ((=0,1,...m),

Q2yi1 +4ypm —m +m)(Py, — P, )

(5)
+ 10y — dyim +m — ”I%)(P},nl_l - Pll',nl_z)

=2[2yia + 4viany — ny + m3)(P3y — P3)
+(10y;2 — 4yiona + ny — n3) (P — P3))]

(i=0,1,...,m)

surfaces Sy and S, reach G* smooth continuity in the u direction at the joint, where f > 0 is

a real constant.

Proof If 81(u,v; A, ;1) and Sy(u,v; Ay, ¥;2) need to reach G2 smooth continuity in the u
direction at the joint, they are required to reach G' smooth continuity at the joint first. In
other words, the two surfaces need to possess a common tangent plane or surface normal
at any point on their common boundary [1-3, 19, 20].

The same is true of G smooth continuity. That is, the two surfaces are required to reach
G? continuity in the u direction first (namely, they need to possess a common boundary),

which means
S1(t6, 101, vin) = S$2(u, 05 A2, ¥42).

According to boundary properties of the surfaces in (3), the equation above can be ex-

pressed as
my my
Zbi:ml (u; A’I)Pll,}'ll = ZbivMZ (M; )\’2)P12,0 (6)
i=0 i=0

Based on the linear independence of the Bernstein-like basis functions in (1), (6) can be

simplified by coefficients comparing as follows:

my = my,
P, =P, (i=0,1,...,m), 7)
AL = Aa.

According to the definition of G' smooth continuity, the two generalized Bézier-like
surfaces are required to possess a common tangent plane at any point on their common

boundary (namely, their tangential derivatives across the boundary should be continuous)
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[3, 19, 20], thus they need to satisfy

d 0
—S1(u, L A1, vi1) X —S1(, 1511, vi1)
av ou

0 0
=f(14)5$2(bl,0;)»2, Vi2) X 552(%0;)\2, Yi2)s (8)

where f(u) is the scaling factor between their normal vectors at the joint and f(u) > 0.
For simplifying the calculation process, the Faux method [3, 19, 20] is usually adopted in
practical applications, by which (8) can be simplified as

0] ad
—S 11’)" »Vil) = —S 70;)\' » Vi2)» 9
™ 1,140, ¥41) fav 2(1, 03 22, Vi) 9)

where f > 0 is a real constant, (9) means that their cross-border tangent vector across their
common boundary should be continuous.
By calculating the cross-border tangent vector of S;(u,v; A1, ;1) and Sa(u, v; g, vi2) in

the v direction, and substituting them into (9), we have

m my
> 11+ 2i0)bim, 3 11) (P, = Pl 1) =f Y (2 + 2150)bimy (43 20) (PEy — Py). (10)
i=0 i=0

Combining with the results in (7), (10) can be simplified as

p. _pl P2 _p?
MMl o p B 00 (j=0,1,...,m). (11)
ny +2yio n +2y1

In addition, under the condition of G! smooth continuity, the two surfaces need to pos-
sess the same normal curvature at any point on their common boundary [3, 19], so the two

surfaces also need to satisfy

2

9 82 2
ﬁsl(% Ldnvin) =f2W52(M, 0; X2, vi2) + 2fg(u)

ou dv

So(u,0; A2, Vi)

2
d
+g°(u) S5(2, 05 X2, Vi2) + c——Sa2(u,0; A2, ¥i2)
dudu av
d
+ d(u)asz(u, 0; A2, ¥i2)» (12)

where g(u) and d(u) are linear functions of i, ¢ is an arbitrary constant and f is the same as
(9). To facilitate the operation and calculation in practical applications, usually set g(u) =
d(u) = c =0, so (12) can be further simplified as

92 92
—S1(u, A1, vi1) =f? 55201, 0512, ¥i2). (13)
v 1%
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According to (1), the second-order derivatives of the Bernstein-like basis functions

biy(t;A) (i=0,1,...,m; n > 2) at terminal points are

21 + (4 =D + n2, i=0,
, 8h+(2-8\n-2n? i=1,
b;,(0;1) = (14)
—10A + (4A - Dn+n?, i=2,
0; i:3,4,...,1’[,
—10A+ (@A -Dn+n% i=n-2,
) 8A+(2-8\)n-2n2, i=n-1,
b, (1) = (15)
20 + (41 = D + n?, i=n,
0, i=1,2,...,n-3.
Thus, on the basis of (4), (14) and (15), we have
22
;751(14, L1, ¥in) = 2ot [Bim (15 01) Z,Zlo b;fnl 1 Vi,l)Pll',j]
= 2000 bigmy (s M) [(2yi1 + dyiam — my + ”%)(P}_nl - P},nl_l)
+(10y;1 — 4yim +my — n%)(P},nl—l - P},nl—Z)]’ 16)

2
33752(14, 0522, ¥i2) = 2 oo [Bimy (45 A2) Z;fo b;fnz (0; )/i,z)P,'z,j]
= Y0 Digny (5 12) [y + 4¥iona — 1y + W%)(on - le)
+ (10y;2 — 4y;2m2 + 3 — 13)(P7, — P2)].

Substituting the second-order cross-border tangent vector above into (13), we can get

my

Zbi,ml (u; )»1)[(2)/1',1 +4yim —m + ”l%) (Pll',nl - le’,nl—l)
i=0

+ (10%‘,1 =4y n + - n%)(P},nl—l - le,nl—Z)]
)
= f* Z Bigmy (15 0:2)[ (2¥i2 + 4yiamy — my + 13) (P — P7)
i=0

+ (10y32 — 4yiomy + ny — n3) (P7, = P,) . (17)
Finally, combining with the conclusions of (7) and (11), (17) can be written as

(2yi1 + 4yiam —m + nf) (P}’n1 - P},nrl) + (10y;1 — 4yiam +m — nf) (P}‘nr1 - le‘,n1—2)
:fz[(Zyi,z + 4)/,‘,2}12 — "y + Vl%) (Pio - PLZ’I) + (10%’,2 - 4)/,',21’12 + 1y — }’l%) (PLZJ - Plz,z)]

(i=0,1,...,m). (18)

To sum up, if the two surfaces S; (&, v; A1, ¥i,1) and Sy (¢, v; Ay, y;2) satisfy (7), (11) and (18)
simultaneously, they reach G? smooth continuity in the u direction at the joint, and The-
orem 1 gets proved. Obviously, if the two surfaces satisfy both (7) and (11), they reach G!
smooth continuity in the u direction at the joint. O
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3.2 Smooth continuity in the direction of u and v
Theorem 2 Ifthe two adjacent generalized Bézier-like surfaces $1(u, v; A1, vi1) and Sy (u, v;

A2, Vi2) satisfy all the following conditions:

my = Hy, A =Yo2=712=Y22

P{{nl =1P§J (i jj =Zo, L...,m),

ln Tt L pL (2= 0,1, m),

Q2vi1 +4ypm —m +m)(Py, P, 1) (19)
+ 10y — 4yium +m —m})(Py, - Pi, )

:fz[(Z)\,z + 4)\.2}’1’12 —my + Wl%)(P(z)J - P%,j)
+ (10Ag — 4homiy + my — m%)(Pfj - Pij)]

(i=j=0,1,...,my)

surfaces S; and S, reach G* smooth continuity in the direction of u and v.

Proof Suppose that the surfaces S;(u,v;A1, ;1) and Sy(u,v; Ay, y;2) need to reach G?
smooth continuity in the u direction of 8; (&, v; A1, ;1) and the v direction of S5 (1, v; A2, i2).
Similar to the derivation in Theorem 1, the two surfaces need to satisfy G' continuity con-

ditions in the direction of # and v first, which means

my = ny,
1 _ 2 s e
Pi,m - POJ (l =)= 0,1,..., ml): (20)
A =Y02 =2
pt _p! P2 l._pg,j

ipm Cbnp-l , P
my+2Ay _f n1+2yi1 (l =)= 0,1,..., ml)’

where f > 0 is a real constant.
Furthermore, under the condition of G! smooth continuity, the two surfaces also need
to possess the same normal curvature at any point on their common boundary [3, 19], so

they also need to satisfy

2 2

0 0
=81, 100, ¥in) =% —552(0, v ha, i), (21)
v ou

where f is the same as (20).
Finally, by calculating the second-order cross-border tangent vector in (21) by the

method in Theorem 1 and substituting it into (21), we have

my

Z Bigm, (13 11) [ (2vi1 + 4yiam —m + 7)) (P}, — P}, 1)
an

+ (1031 — dyiam +m — ”f) (P},nl—l - Pll‘,nl—z)]
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ny
=f2 |:(2)L2 + 4)\214’12 — my + WZ%) Z b‘,y,z (V; VO»Z)P?),j
j=0

n

+ (8)\,2 - 8)\,2}’}’12 + 21’)’12 - 2}’}1%) Z bj,nz (V; Vl,Z)Pij
j=0

n
+ (<1025 + 4domy — my + 113) Z by, (vs yz,z)Pg,jj|. (22)
=0

Obviously, when Y2 = y12 = ¥2,2, combining the results in (20), (22) can be simplified as

(2%',1 +4y,m —m + ”f) (P},nl - P},n1—1)
+ (10y;1 — 4ysam +m — n%)(P},nl—l - le,nl—Z)

:f2[(2)\.2 + 4)\.2}’1’12 —my + m%) (ng/ — Pi])
+ (10Ay — 4homy + my — m3) (P - P’g’,j)]

(i=j=0,1,...,m). (23)

To sum up, if the two surfaces S;(u,v; A1, y;:1) and Sy (u, v; X, yi2) satisfy both (20) and
(23), the two surfaces reach G? smooth continuity in the direction of # and v at the joint,
and Theorem 2 gets proved. Obviously, if the shape parameters and control mesh points of
the two surfaces satisfy (20), the two surfaces reach G! smooth continuity in the direction
of u and v at the joint. O

3.3 Smooth continuity in the v direction

Similar to the G? continuity conditions in the u direction between generalized Bézier-like
surfaces, the following G* continuity conditions in the v direction can be proved to be
correct.

Theorem 3 Ifthe two adjacent generalized Bézier-like surfaces S$1(u, v; A1, yi1) and Sy (u, v
A2, Vio) satisfy all the following conditions:

ny = ny,

Pl :P%),] (i:o,l,...,nl)r

my,j

Ymi1-21 = Vm-1,1 = Vmy,1 = V0,2 = V1,2 = V2,25

PPty _ PP,
Ul S f ol (G=0,1,...m),
(2)»1 + 4 my —m + m%)(Pinl,j — Pinl—l,j) (24)
+ (10% = 4 + 1y = 1) Py 1= Py, o))

= 2[(20 + 4hommy — my + m3)(PG; — PL)
+ (102 — 4hommy + my — m3)(P; - P} )]
(j= 0,1,...,1’!1)

surfaces Sy and S, reach G? smooth continuity in the v direction at the joint, where f > 0 is
a real constant.
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Proof The proof process of this theorem is similar to that of Theorem 1 and Theorem 2,

so it is not covered here. O

Obviously, when all the shape parameters in Theorem 1 ~ Theorem 3 are equal to 0,
these continuity conditions above degrade into the corresponding G* continuity condi-
tions for high-order classical Bézier surfaces; when yo1 = y1,1 =+ = ¥my,1 and yo2 = Y12 =
-++ = Y2, the continuity conditions in Theorem 1 ~ Theorem 3 degrade into the corre-

sponding G? continuity conditions for Bézier-like surfaces in [17].

4 Steps and examples of G2 smooth continuity between generalized
Bézier-like surfaces
4.1 Steps of G smooth continuity between generalized Bézier-like surfaces
Using the smooth continuity of generalized Bézier-like surfaces with shape adjustability,
various complex surfaces can be designed handily and flexibly in engineering. In this sec-
tion, we take the G smooth continuity in the « direction between two generalized Bézier-
like surfaces as an example (the other two directions can be discussed similarly) to show
the basic steps of G? smooth continuity between generalized Bézier-like surfaces. On the
basis of the conclusion in Theorem 1, the steps are as follows:

Step 1. According to designing requirement, give the order m;, n; of the initial gener-
alized Bézier-like surface S;(u,v; A1, y;1) and its control mesh points P}Y/ (i=0,1,...,my;
j=0,1,...,m) as well as shape parameters Ay, ;1.

Step 2. Let m; = my, A = Ay and P},nl = P?,o (i=0,1,...,m), so that S;(u, v; A1, y;,1) and
Sy (u, v; M, yi2) possess a common boundary to reach G° continuity.

Step 3. Give the values of the shape parameter y;, and the constant f > 0 as well as the
other order n; of the second generalized Bézier-like surface S,(u, v; 13, ¥i2). On the basis
of Step 2, calculate the second row control points Pi2,1 (i=0,1,...,m) of Sy(u,v; Ao, ¥i2)
according to (11).

Step 4. On the basis of Step 2 and Step 3, calculate the third row control points P?,z
(i=0,1,...,m1) of So(u, v; Ay, vi2) according to (18).

Step 5. Given the remaining #n, — 2 control points Pin (i=0,1,...,my; j = 3,4,...,1)
of $5(u,v; A, ¥;i2) freely, the G2 smooth continuity between two generalized Bézier-like
surfaces in the u direction is achieved.

Repeating the steps above, G2 smooth continuity between multiple generalized Bézier-
like surfaces will be achieved.

4.2 Examples of G smooth continuity between generalized Bézier-like surfaces

In order to demonstrate the conclusions above, Figure 5 gives an example to show the G2
smooth continuity between two generalized Bézier-like surfaces of degree (4,4) in the v
direction. In this figure, the red surface is the initial one S;; the green surface S, is con-
structed according to the conclusion in Theorem 3, which reaches G? smooth continuity
with the red surface $; in the v direction at the joint; Figures 5(a) and 5(b) show the graphs
of the piecewise surface composed of S; and S, with the scaling factor f between their
normal vectors equaling 1 and 2. To analyze the influence rule of f on the shape of the
piecewise surface conveniently, all the shape parameters A1, A, y;; (i=0,1,2,3,4;j=1,2)

of the two piecewise surfaces in Figures 5(a) and 5(b) are the same and equal 1.
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Figure 5 G2 continuity condition in the v direction between two adjacent generalized Bézier-like
surfaces.

From the fourth and fifth equations of (24) and Figure 5, the scaling factor f between
their normal vectors can be used to adjust the positions of the second and third row control
points of the green surface S,. The bigger (or smaller) the value of f is, the closer (or farther
away) the control points P, (or P?,) move to the control points P}, (or P,), where P}, P},
sz (i=0,1,2,3,4) are the first, second and third row control points of the green surface S,.

From the smooth continuity result in Figure 5, the piecewise generalized Bézier-like
surface composed of §; and S, is smooth and continuous at the joint, so the result of

smooth continuity is quite good, and thus can better satisfy actual needs.

5 Shape adjustment of piecewise surfaces based on G2 smooth continuity

This section will focus on the shape adjustment of piecewise generalized Bézier-like sur-
faces with G? smooth continuity. For simplicity, we take the smooth continuity between
two generalized Bézier-like surfaces as an example to show the shape adjustment of piece-
wise surfaces. The situations for multiple surface patches can be discussed similarly, so
they are not covered here. Compared with the smooth continuity between classical Bézier
surfaces, the major advantage of the method in this paper is that apart from modifying
control mesh points, we can also adjust the local or global shape of a piecewise surface
by modifying its shape parameters with the overall smoothness of the surface remaining

unchanged.

Proposition 3 For a piecewise generalized Bézier-like surface with G* smooth continuity,
the following conclusions are established under the condition that the control mesh points
and G* smooth continuity of the surface remain unchanged.

(a) For a piecewise generalized Bézier-like surface with G* smooth continuityin the u
direction, we can adjust the global shape of the surface by changing the shape
parameters A and Ly simultaneously, but we cannot adjust its local shape by
changing its shape parameters.

(b) For a piecewise generalized Bézier-like surface with G* smooth continuity in the
direction of u and v, we can adjust its global shape by changing the shape parameters
M, Vip (0=0,1,..., my) simultaneously; meanwhile we can also adjust its local shape
by changing the shape parameters iy (i = 3,4,...,my).
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(c) For a piecewise generalized Bézier-like surface with G* smooth continuity in the v
direction, we can adjust its global shape by changing the shape parameters y;,
(i=0,1,...,my) and y;5 (i =1,2,...,my); meanwhile we can also adjust its local
shape by changing the shape parameters y;1 (i=0,1,...,m1 —3) or yin
(i=3,4,...,my).

Proof (a) According to the equation A; = X, in (5), when we change the value of the pa-
rameter ; to adjust the shape of the surface S;, the value of the parameter X, will also
change necessarily to maintain the G> smooth continuity, so does the shape of the sur-
face S,. Therefore we can adjust the global shape of the piecewise surface by changing the
shape parameters A; and A, simultaneously.

We can rewrite the fourth equation of (5) as

P, —P, _=c(P5-P,) (i=0,1,...,m), (25)

iny iny

42y
n1+2yi1
face are kept unchanged, the scaling factors ¢; (i = 0,1,...,m1) also will not change. So

where ¢; = f is a scaling factor. When the control mesh points of the piecewise sur-
when we change the values of the shape parameters y;; (i = 0,1,...,m;) to adjust the shape
of the surface S;, the values of the shape parameters y;, (i = 0,1,...,m;) need to change
necessarily, and vice versa. However, the two sets of modified shape parameters may not
satisfy the fourth and fifth equations of (5) simultaneously. In other words, it is hard for
the piecewise surface to maintain G? smooth continuity, thus the shape parameters y;;
(i=0,1,...,my)and y;5 (i = 0,1,...,m;,) cannot be used to adjust the local and global shape
of the piecewise surface.

(b) According to the equation A; = 92 = y12 = Y22 in (19), when we change the value of
the parameter A; to adjust the shape of the surface S;, the value of the shape parameters
Y02, Y1,2> V2,2 and the shape of the surface S, need to change necessarily to maintain the
G? smooth continuity. So we can change the shape parameters A; and y;5 (i = 0,1,..., 1)
simultaneously to adjust the global shape of the piecewise surface. Furthermore, as the
constraint equations for G smooth continuity in (19) do not contain the shape parameters
Via (i =3,4,...,my), we can modify these parameters to adjust the shape of the surface
S, so as to realize the local shape adjustment of the piecewise surface. In addition, by
the proving method of conclusion (1), it can be proved that the shape parameters 15, ;1
(i=0,1,...,m;) cannot be used to adjust the local or global shape of the piecewise surface.

(c) Obviously, conclusion (3) can be proved to be correct by the proving method of con-

clusion (1) and (2), so its proof is not covered here. O

Proposition 3 shows that piecewise generalized Bézier-like surfaces with G?> smooth
continuity in the v direction have more free shape parameters independent of smooth
continuity. Therefore the local shape adjustability of piecewise generalized Bézier-like sur-
faces with G? smooth continuity in the v direction is superior to that in the other two direc-
tions. Figure 6 gives an example to show the local and global shape adjustment of a piece-
wise surface composed of two generalized Bézier-like surfaces of degree (4,4) with G2
smooth continuity in the v direction. In this figure, the shape parameters of the red surface
S, and the green surface S, are marked as A1, y;1 (i =0,1,2,3,4) and A, ;2 (i =0,1,2,3,4),
respectively. Figure 6(a) shows the graph of the initial piecewise surface; Figures 6(c) and
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Figure 6 Shape modification of piecewise generalized Bézier-like surfaces with G2 continuity in the v

direction. (@) A1 =X =1,y1=y2,=101=0,1,234);(b) A1 =X =1,y1=y,=-1(1=0,1,2,3,4);
@A =2=1Y2=-101=34),v02=Y12=V2=VY1=10=0,1,234;(d) A1 =1, =1,
Vio=Va1=Y31=v21=10=0,1,234),y,:=-1(=0,1).

6(d) show the graphs of the locally modified piecewise surface with the shape parameters
v3.2, Va2 and o1, Y11 taking different values (32, ya2 and yo,1, 1,1 adjust the shape of the
green surface S, and the red surface S, respectively); Figure 6(b) shows the graph of the
globally modified piecewise surface with the shape parameters y;; (i =0,1,2,3,4; j =1,2)
taking different values (y;; (i = 0,1,2,3,4;j = 1,2) adjust both shapes of §; and S,).

6 Conclusions
In this paper, we constructed a kind of generalized Bézier-like surfaces associated with
multiple shape parameters. Then the G? continuity conditions for the generalized Bézier-
like surfaces of degree (m, n) are derived, and the influence rules of the shape parameters
on splicing surfaces are analyzed. We feel our work is significant since our proposals help
to simplify the construction and computer realization of complex surfaces as well as ex-
tend the conclusions of [17]. The modeling examples showed the effectiveness of the pro-
posed methods: the generalized Bézier-like surfaces have more powerful shape adjustabil-
ity and approximation ability than the existing Bézier-like surfaces described in [17]. The
advantages and features of the proposed methods can be summarized as follows:
+ The proposed generalized Bézier-like surfaces of degree (m, n) extend the conclusions
of the Bézier-like surfaces given in [17].
« For piecewise generalized Bézier-like surfaces with G?> smooth continuity, we can
adjust their global and local shape by changing their shape parameters.
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+ The G2 smooth continuity proposed in this paper is not only intuitive and easy to
implement, but also offers more degrees of freedom for constructing complex
surfaces in engineering design.

It is worth noting that the proposed methods in this paper are the first to consider G2

geometric continuity conditions for the generalized Bézier-like surfaces of degree (1, n).
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