Stevi¢ Journal of Inequalities and Applications (2017) 2017:220 ® Journal of Inequalities and Applications
DOI 10.11 86/51 3660-017-1493-x a SpringerOpen Journal

RESEARCH Open Access

Essential norm of some extensions

of the generalized composition operators
between kth weighted-type spaces

Stevo Stevi¢"

“Correspondence: sstevic@ptt.rs

Mathematical Institute of the Abstract

Serbian Academy of Sciences, Knez W lcul h ial f . fth lized .

Mihailova 36/1l, Beograd, 11000, e calculate the essential norm of some extensions of the generalized composition

Serbia operators between kth weighted-type spaces on the unit disk in the complex plane,

Operator Theory and Applications considerably extending some results in the literature.

Research Group, Department of

Mathematics, King Abdulaziz MSC: Primary 47B38; secondary 47B33; 30H99

University, PO. Box 80203, Jeddah,

21589, Saudi Arabia Keywords: essential norm; generalized composition operator; kth weighted-type
space; unit disk

1 Introduction
Let D be the open unit disk in the complex plane C, H(D) the class of all holomorphic
functions on D, and S(D) the class of all holomorphic self-maps of D.

Let 1(z) be a positive continuous function on D (weight) and k € Ny. The kth weighted-
type space denoted by Wl(f) (D) = W}gk) is defined as follows:

k) _ ,
WY ={f e HD): byyw(f) < oo},
where

by (f) = sup 1@)|fP ). (1)

The space was introduced in [1] where the composition operators from the weighted
Bergman space to the space were studied. Some other concrete operators on the space
were later studied in [2—4].

If k = 0, then bW!(LO)(‘) is a norm on space WLO), the so-called weighted-type space ([5,
6]). If k € N, then it is easy to see that belk)(') is a semi-norm on W/S’(). It is not a norm
on the space since from bw,‘f’ (f) = 0 it follows that f®(z) = 0, z € D, and consequently
f(2) = pr-1(z), where pi_; is a polynomial of degree at most k — 1. However, it is a norm on
the quotient space W;Lk) [Py_1, where P_; is the space of all polynomials of degree less than
or equal k — 1. Indeed, let f + P4_; € Wg‘)/Pk_l, and, based on the definition of a norm on
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a quotient space, let

W+ Bl o, = ot by (@). (2)

Then, if ||f + Px ”W(k =0, by using (1) and (2), we have
I

)/Pk—l

0= inf b = inf b + P =b ,
(i O @)=, T B pidyg = by )
from which it follows that f € P_;, thatiis, f + Pr_g = Pr1 = OWLk) P

On the other hand, there are some natural algebraic isomorphisms between some quo-
tient spaces and some spaces of holomorphic functions. Namely, we have

HD)/Pry =, {f e HD): f9(0) = 0,j = 0,k — 1} = H(D),
and
WO =, {f e WP f9(0) =0,j = 0,k— 1} = W (D).

Indeed, for each class g + Py € H(D)/Py_; (or g + Py € Wl(f)/IP’k,l) there is a unique
fe€g+Prsuch thatfg(')(O) =0,j=0,k—1. Namely, if g(z) = > a;7, then we can take

j
Jol2) = Z}O:Ok a;7, that is, f; = g + pgi_1, where pg_1(2) = Zlkz_ol (—aj)7, and the map

L(g + Pr1) :=f,

is a linear bijection from H(D)/P;_; onto Hi(D), as well as from Wl(tk)/]P’k_l onto WLIT,)((D).
Hence, we can identify the quotient spaces with the corresponding subspaces of holomor-
phic functions satisfying the conditions f%(0) = 0, j = 0,k — 1.

From (1) and (2) it follows that

W+ Pretllyyo,p, | =y (F)s

this fact along with the above mentioned algebraic isomorphism shows that the spaces
VOB, |- e, ) and WV

©p ok
i k-1
Wl(Lk)/Pk_l = W/(f,)((ﬂ))). So, they can be identified, and we can regard it to be the same if
we say f € WW/P,_y or f e W),

Let

(]D)),bw(k)(-)) are isometrically isomorphic, that is,
i

k-1
Wl = D170 + sup y(2) ), (3)
j=0 ze

where u is a weight and k € Ny (for k = 0 we use the standard convention 211;11 aj =0,
[ € 7). Then it is easy to see that (3) defines a norm on space Wlak), and that (Wl(tk), Il ”W)(Lk))
is a Banach space. The normed space is a natural generalization of the weighted-type,
Bloch-type and Zygmund-type spaces (see, e.g., [7-10]).

Let L : X — Y be a linear bounded operator, that is, it maps bounded sets of X into
bounded sets of Y. By ||L|x_y, we denote the operator norm of L : X — Y, that is,
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[ILllx—y = supjy, <1 IL(x)[ly. An operator K : X — Y is called compact if it maps bounded
subsets of X into relatively compact subsets of Y.
Essential norm of a bounded operator L : X — Y is defined by

Lllex—y:= inf L—-K|x>y= inf Lx) - K
ILllex—y Kellcn(xly)ll lx—y KEIICI%X,Y)HE&I;H (%) — K (x)|

Y’

that is, as the distance of operator L to the set of compact operators IC(X, Y).
Let

(Df)(2) =f'(2)

be the standard differentiation operator on H(ID). By D* we will denote the composition
of (exactly) k differentiation operators, that is, if f € H(D), then

Dkf = D(D(~ - (Df)-- ))
Ttimes

Let

z ¢ )
L)@ = /0 /0 [ revdade - dc, @)

where k € Nand f € H(D).
It is clear that DXIif = f for every f € H(DD), that is,

DI = Idwp), (5)

where Idy denotes the identity operator on space X.
It is also easy to see that

DI(f)(0)=0, forj=0,k-1, (6)
where we regard that D? is the identity operator.

Beside this, by using the Newton-Leibnitz-type formula for holomorphic functions k

times, we have

z ly 9}
LD ()(2) = /0 /0 /0 FO) dgy des - e

k1 o)
-y 0 %
o )

where k € N and f € H(D), from which it follows that

LDf =f, (8)

for every f € H(D)/Py_,, that is, I; DX is the identity operator on H(ID)/P;_;, and conse-
quently on its subspaces, such as are W/Sm)/IPk_l, where m > k.
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Let ¢ € S(D). Then by C, we denote the composition operator on H(ID), which is defined
by C,(f)(2) = f(¢(2)).

Let u € H(DD). Then by M, is denoted the multiplication operator on H (D), which is
defined by M, (f)(z) = g(z)f (2).

The product of operators C, and M,, that is,

(Mg 0 Cp)()2) = g(@)f (¢(2)),

is called the weighted composition operator and is denoted by gC,.

These three operators have been considerably studied on various spaces of holomorphic
functions (see, for example, [1, 2, 6, 11, 12] and the references therein).

Let ¢ € S(D), g € H(D) and k € N. We define an operator on H(D) as follows:

z 43 9}
Cox(N2) = /0 fo /0 F9(p(c)g(&) dedis - - di, 9)

for f € H(D). For k =1 is obtained the generalized composition operator in [9], which was
later studied or generalized, for example, in [10, 13-17]. For some related operators; see,
also [18—28] and the references therein.

Note that from (9) it immediately follows that

D"Cjk(f)(O) =0, forj=0,k-1. (10)

Motivated by [9, 29, 30] here we calculate the essential norm of operator (9) between

two kth weighted-type spaces. For some related results see also [6, 31].

2 Main results

In this section we prove the main results in this paper.

Theorem 1 Assume that ju and v are weights, k, m € No, and that the operator L: W® —
WU is bounded. Then
LIl

) =L (11)

W Wi e W B Wi

Proof If k = 0, then we regard that Wﬁo)/P,l = W&O), so that (11) obviously holds. Now as-
sume that k € N. For each compact operator K : W,(Lk) — WIE"‘), its restriction on Wftk)/ Pr_1,
thatis, K : Wlik) /Pr_1 — W', is also a compact operator, from which along with the def-
inition of the essential norm of an operator, it easily follows that

[IL]] 12)

<
WO B = Iy -

LetK: W/S")/H”k_l — W) be a compact operator and f € W;(Lk). Then by

k-1
K(f)(2) =K <f -3 a,zf>,
j=0
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where a; = f9(0)/jt, j = 0,k —1, is defined an extension of operator K on the whole space
W,(Lk), that is, K: W}L") — W‘()m), which is obviously a compact operator. Denote the set of
such obtained operators K by K.

LetL;: W — W ) be a bounded operator, then the operator

k-1 k-1
Zl(f) =1 (Zajz/) = Zﬂle(Z/),
j=0 =0

where, as above, a; = f1(0)/j!, j = 0,k — 1, maps W/(Lk) into WI(["), and is compact, since its

image is a finite-dimensional space.

We have
LI,y pp0m
Skem(wfjkl)l,f o ’CllL K- L||W<k RV
= inf SUP ||L(f)—1~<(f)—z(f)HW5m>

Rekxov® wimnk i,

k-1 k-1
= inf sup L(f) -K|(f- Z ai? | -L Z a;?
*) - ,
KekKWy;’ IPx_1, win IlfH j=0 j=0 wim
k-1

= inf sup (L -K)\f- Z a7

1<e/¢(w,§’/n»k LI, 0 Wi
< inf sup || (L-K)(g) ” e

kekW® e wim) Y v

RV 1PV e W B rilell o <1)
m

= inf IZ =Ko 5, =Ll p, pm- (13)

KGK:(W,(,_)/]P’/( I,W(m ) /IF’ W eW, " IPr_1—> Wy

From (12) and (13), equality (11) follows. O

Theorem 2 Assume that u and v are weights, k,l,m € N, m > k, and that the operator
C (Wi D) — Wim) s bounded. Then

@,
IC k”ew i1y = 18C Il yyomstin ypymbo- (14)
Proof First we prove the following inequality:
1<kl ety = N8C Il ypymetton ypm- (15)
We show that

e k”ew”’*l e, e = MN8Cll, yomikv s (16)
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which by Theorem 1 is equivalent to (15) (recall that when m = k and [ = 1, we naturally
regard that W&”‘*l’k’”/]l”m”_k_z = W/SO)).
Assume that f € Wl(tm*l‘k‘l)/IP’m”_k_z. Then, since

Ik il = |[f||Wl<lm+sz71) < +00 (17)
and

D(Lif)(0)=0, forj=0,m+I1-2, (18)
it follows that Iif € Wg”*l‘l) /Pyu11-2, that is, operator [ maps the space Wl([”*l‘k‘l)/ Pii—k—2

into Wl([”*l’l)/}l’)m”,g. Further, it is clear that Ci,k : W/&m*l’l)/IP’m”,z — W is bounded,

and since for every 1 € W,

byyon (D) = by om (h) < 00, (19)

we see that D¥ maps W™ into W), Moreover, we have
k
|D h||W£mfk> < lIAllyy0m, (20)

where the strict inequality can occur here.

Hence, we see that the operator
D'CE Ik = ¢C, (21)

maps the space Wlim+l_k_l)/Pm+l_k_2 into Wsm‘k), and from (17), (20) and the bounded-
ness of the operator Ci,k : WI(L”‘”‘D/]P’W,,Z — W,(f”), it follows that the operator gC, :
WL’"*l‘k‘l)/Pmﬂ_k_z — WK s also bounded.

Due to (8) and (10), we have

LDCY (IkD'f = C8 L f, (22)

foreveryf € Wlam+l‘1)/Pm+l_2. Indeed, since m > k and [ € Nwe have m+[—1> k,so by (8)
we have I; D¥f = f, and further from (10) we get Ci’kf € W}[") /Py_1. By another application
of (8) is obtained (22).

Let K : W,SWZ*k*D IP ik —> ng’k) be a compact operator and

K := LKD", (23)

Then the operator maps the space Wl§m+l‘1)/Pm+l_2 into W) and is compact, since the

space of compact operators is a both sided ideal into the space of bounded linear operators.
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Hence, by using (21)-(23) and some simple estimates, we have

ICsf —1~(f||W = | D CE (LeD'f - IkKD"fHW
= ”Ik(DkCi,ka —1<)D f”W‘(,m)
= | &C, —1<)Dkf”W]()m—k)
<gC, - K|| kD g R ||Dka Wik

= 18C, = Kllyymet-sn = [IF 1l (el (24)

mrl—k-2—> YWy

By taking the supremum in (24) over the unit ball in WL’"*I‘I)/IF’W,H_Z, and then tak-
ing the infimum in such obtained inequality over the set of all compact operators K :
Wl(}’m+l_k_1)/Pm+[_k_2 — WS”’"‘), we get (16).

Now we prove the following inequality:

g
llgCy ”e,Wl(LmH—k—l)*)W‘(,m—k) =< || Cox || el (25)

*)Wl()m) .

To do this first note that since (17) holds for every f € W}S””l‘k‘l), the operator Ij :
WD — W1 s bounded. From this, since C7 , : W™D — W is bounded
by the assumption, and DX : Wl([”) — WK is also bounded due to the inequality in (20),
we see that the operator D Ci,klk =gC,: Wft”‘*l’k’l) — W is bounded.

Note also that

¢, = IigC, D", (26)

where D¥ : W;Wl 1) —>W’”+l k=1 and I : Wm0 — yyom
Let K : Wum*l‘l) — W) be a compact operator. Then the operator

k I-k- -k
DM KL : WD — im=h)

is compact too.
Using this facts and (5), it follows that

|eCof = D*KLif | pym0) = | D*1kgCoD* If = D*KIf | -0
= |D(C s = K)If |0
= [(Cou = KNS Ny
= Cox =Kl ypmein o Wi Wi
<|cs, —I(HW oty [l st (27)
By taking the supremum in (27) over the unit ball in W{"*/"*D, and then taking the

infimum in such obtained inequality over the set of all compact operators K : W (m+l=1)
Wlﬂ’" , the inequality (25) is obtained. From (15) and (25) equality (14) follows. O
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Before we formulate our next results, we want to say that their proofs are related to the

one of Theorem 2, but we will give all the differences for the completeness.

Theorem 3 Assume that p and v are weights, k,l,m € N, m > k, and that the operator
C3 s WU — WD is bounded. Then

4
1ol st = 18Cu b yypmsticn- (28)

Proof First we prove

g
|| Cox || e W mriD <11gC, ||6,Wl(tm—k)*>wl()m+l—k—l)~ (29)
We show that
g
o oW By oD S 8GN yop L yymeiien, (30)

which by Theorem 1 is equivalent to (29).
Assume that f € Wl(["‘k)/IF’m_k_l. Then, since

I 1xf lyygm = ILfIIW[(lmfm <00 (31)
and
D (Lif)(0)=0, forj=0,m—-1, (32)

it follows that if € Wﬁm)/]}”m,h that is, operator I maps space Wl([”‘k)/]}”m,k,l into
Wl([")/]P’m_l. Further, it is clear that Ci‘k : Wl([”)/IP’m_l — Wﬁ’”*l’l) is bounded, and since
for every h € Wim+=1,

b, (mei-k-1) (th) =b
m

W ms1-1) (M) < +00 (33)

Wy
we see that DX : W=D _ y)0m+l=k=1) ‘Moreover, we have

”th” pyimikD) < ”h”W}fHH)' (34)

Hence, we see that the operator (21) maps Wf{’“k)/IP’m_k_l to W=k "and from (31),
(34) and the boundedness of C}i,k : Wl([”) /P — W\(,””l‘l) it follows that the operator gC, :
W,(Lm‘k)/]P)m,k,l — WUmt=k=1) s also bounded. Beside this, since m > k, we see that (22)
holds for every f € W,&m)/IPm_l.

LetK: W;(L”“k)/IP’m_k_l — WUn+=k=1) be a compact operator. Then the operator

K = KD - WO B,y — WD

is compact.

Page 8 of 13
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From this, (21) and (22), we have

[ Cf,’kf—l?f”Wl()mn-n = ||IkaC§'kaDkf—IkI<Dkf||Wl(}m+l_1)
= [ 2(D*C§ i = K)DS | st
= | 6Cy ~ KIDf | pygmeracn

k
<1gCy - K”W,(Lm_k) 1Byt —> WK ”D S H W B,

= 118Co = Kllyyimp, ok Fllyyom- 35)

By taking the supremum in (35) over the unit ball in W,([")/IP’m_l, and then taking
the infimum in such obtained inequality over the set of all compact operators K :
W,i’”‘k)/]P’m_k_l — WOnH=k=1) e get (30).

Now we prove that

llgCy ”e’W;(‘m—k)_)W(erl—k—l) < “ Ci,k || W el (36)

v v

Since (31) holds for every f € Wl(t”"k), we see that the operator I : Wl(["‘k) — Wf[”) is
bounded. From this, since Ci,k : Wl([”) — W=D is bounded by the assumption, and
DF e WimsE) s yylm+lk=1) g also bounded due to the inequality in (34), we see that
the operator DX Ci,klk =gC,: Wl([”‘k) — WimH=k=1) js hounded. Note also that (26) holds,
where DF : Wi — W{m=R and I : Wk — yyfmed=1),

LetK: Wﬁ([”) — WUn+=1) be a compact operator. Then the operator

k —k I-k—
DFKI : WP — pims =k

is compact.
Using this fact along with (5) and (26), we have

|eCof = DKL || pmtvon = | DFLkgCp D Iif = D*KIKf | ymst-icvy
= | DM(C s = K)If | i
< (Cox =~ K)If I w1
<G =Koyt Mef 1

< || Ci,k - KH Wy et ”f”w,(tm—k)' (37)

By taking the supremum in (37) over the unit ball in Wlﬁm‘k), and then taking the infimum
in such obtained inequality over the set of all compact operators K : W/([”) — WD e
get (36). From (29) and (36) is directly obtained (28), as desired. O

Theorem 4 Assume that . and v are weights, k,l,m € N, m > k, and that the operator
Cf),k : ij”*l‘l) IPpiia — WY P, is bounded. Then

I< - (38)

w,k”e,w,‘f”"”/ﬂmm”,ﬁWL’”MPm,l = ”gC‘ﬂ”e,w,(f“"k‘”/nmml,k,ﬁwu B it’
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Proof First we prove the following inequality:

g
[Coalemgravim, i e, < N8 elopptmettonsp, o omirbie, (39)
Assume that f € Wl(["*l‘k‘l)/ P,141-k—2- Then, since (17) and (18) hold, we see that the op-
erator [y maps the space Wl([””‘k‘l)/IPer;_k_g into Wf[”*l‘l)/]P’m”_z. Further, by the assump-
tion Ci,k : Wft"‘*l’l)/]}pm,,l,z — W,(,’”)/]P’m,l is bounded, and since for every / € W,()’”)/]P’m,l,
(19) holds and

D(Dh)(0)=0, j=0,m-k-1, (40)

we have DX ; W‘(,”’)/Pm,l — Wﬁm‘k) /P,_k_1. Moreover, we see that (20) holds.

Hence, we see that the operator (21) maps the space W,Y”*l’k’l)/IP’m”_k_z into
Wb P, 4 1, and from (17), (20) and the boundedness of the operator Ci,k :
WL’”*I‘I)/IPW;_Z — WP, 4, it follows that gC,, : W&’”*l‘k‘l)/IP’mﬂ_k_z — WK,
is also bounded. Since m + [ —1 > k, we see that (22) holds for every f € WL”’”‘”/IP’W;,Z.

LetK: WI(L’”"Z’]"I)/IP’,,,J,;_,(_z — Wl()””k)/IPm_k_l be a compact operator and K be defined
asin (23), where DX maps the space Wl(["*l‘l)/ P41 into WL’”*l‘k‘l)/PmH_k_g, and [; maps
the space Wﬁ’”‘k)/]P’m_k_l into W\(,’”)/]Pm_l. Then, K maps the space WL’"*I‘I)/IP’WI_Z into
W\(,m) /P,,_1 and is compact.

From this and (21), similar to (24), is obtained

v

¢ ~
||C¢,kf—1(fn Wi < llgC, —K||W}(:mlfkfn/]P,W[_k_z_)W(mfk)/lp,m_k_1 ||f||Wl(Lm+171). (41)

By taking the supremum in (41) over the unit ball in W}[’”l’l)/]}"m”,g, and then tak-
ing the infimum in such obtained inequality over the set of all compact operators K :
Wlim+l_k_l)/Pm+l_k_2 — WK, 1, we get (39).

Now we prove that

lgCy ”e,w}["*l‘k‘“ PtV S I cho,k I WV, W By (42)

Since (17) holds for every f € WI(L”’”"“D/PWI_k_b the operator Iy : Wf{”*l‘k_l)/
Puick—s — W}S’””‘U/IF’W,”,z is bounded. From this, since Ci,k : Wl([”*l_l)/IP’erl,z —
Wﬁ’”)/]P’m_l is bounded, and since DF : W/Sm)/Pm_l — Wﬁm’k)/IP’m_k_l is also bounded
due to (20) and (40), we see that the operator DkCilka =gC,: Wg”*l‘k‘l)/Pmd_k_z —
Wﬂ’”‘k)/]P’m_k_l is bounded. Beside this, note that C(go’k = Ikng,Dk : WI(L”’”‘I)/IP’W[_Z —
WP [P,,1, where DF : WOV, o — WO IHKDIP, o and I : WP —
WP, .

Let K : Wf{"*l‘l)/PmH_g — W‘(,’”)/IF’m_l be a compact operator. Then the operator

DM KL : WD B,y — WP,

is compact too.
Hence, as in (27) we have

||gC¢f - Dk](kaH Wi < || Ci,k - K“ WD W, ”f”W’(im#—k—l). (43)
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By taking the supremum in (43) over the unit ball in Wﬁ”‘*l‘k‘l)/IP’mﬁ_k_z, and then
taking the infimum in such obtained inequality over the set of all compact operators
KW, — W™ [P, 1, we get (42). From (39) and (42) is obtained (38). [

Theorem 5 Assume that u and v are weights, k,l,m € N, m > k, and that the operator
Ci,k : Wl([”)/]Pm_l — WD P, o is bounded. Then

g _
I Cox [ W P WD, leColl W, W (44)
Proof First we prove that
g
<
|| C(p,k || W B W, o S lgC, ||evW[(Lm7k)/Pm—k—1_’W\()m”ikil)/lpmd—k—Z‘ (45)

Assume that f € Wl(["‘k)/ﬂ”m_k_l. Recall that, since (31) and (32) hold, the operator I
boundedly maps space Wl([”‘k)/ P, k-1 into ij”) /P,,_1. Since equality (33) holds for every
he W=D p, 5 and

D(D'h)(0)=0, O,m+I-k-2, (46)

we see that DF Wﬁ’”*l‘l)/IP’m”,z — Wsm*l‘k‘l)/IP’Wl,k,z. Moreover, we see that (34) holds.
Using these two facts and the boundedness of the operator Ci,k : Wp(tm)/Pm,l —
Wﬁ’”*l’l)/ IP,,,11_2, we see that the operator (21) maps the space Wl(["’k) /P,y to Wtl=k=1)
P,.41-k—2, and from (31), (34) and the boundedness of the operator Ci,k : Wl([”)/IF’m_l —
Wﬁ”’*l‘l) /Ppsi_2, it follows that the operator gC, : W’(["‘k)/]P’m_k_l — Wk P s
is also bounded. We also see that (22) holds for every f € Wl([”)/]}”m_l.
LetK: Wf[”‘k) IPp_r1 — W‘()’”*l‘k‘l)/IPer;_k_g be a compact operator. Then the operator

K = KD - WO B,y — WD P,

is compact.
Hence, as in (35) we have

||C§,kf - Kf”wémml) < llgC, _K”W,(Lm’k)/Pm_k_1—>W(””""‘1) s |V||WLm). 47)

IPyy1-k
By taking the supremum in (47) over the unit ball in W/([”)/IP’W_I, and then taking
the infimum in such obtained inequality over the set of all compact operators K :
WPy gy = WD P, 1o, we get (45).

Now we prove that

llgCy ”e’W;(‘m—k) By oWk S [ Ci,k I W B WD, (48)

Since (31) holds for every f € Wl(["‘k)/]P’m_k_l and by using (32), we see that the oper-
ator I : Wl([”‘k)/Pm_k_l — W,([”)/]P’m_l is bounded. From this, since Cf)'k : Wl([”)/IP’m_l —
W\(}m+l_1)/Pm+l_2 is bounded by the assumption, and Dk W‘()’”*Z‘D/Pm”_z — W\(,’””‘k‘”/
Pis1-k—2 is also bounded due to the inequality in (34) and (46), we see that the op-
erator DX Ci,klk =gC, : W&m’k)/Pm_k_l — W‘(,’”"l’k’l)/IP’m”_k_z is bounded. Beside this,
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note also that Ci,k = IkgC(,,Dk : Wl([")/]P’m_l — Wi=Dyp, o, where DX WI([”)/IP’m_l —
Wémik)/]}bm_k_l and Iy : Wl(im”fkfl)/@m”_k_z — W‘()m”fl)/Perl_z.
Let K : W/([")/IP’W,_I — Wﬁ”’*l‘l)/]P’m”_z be a compact operator. Then the operator

D*KI WPy — WD, s

is also compact.
Hence, as in (37) we have

“gcwf_DkKka”W‘()m*’*k*l) <| Ci,k _K”w{[”)/Pm,lawﬁ”‘”’”/ﬂmm”_z |V||W,({”’k)' (49)

By taking the supremum in (49) over the unit ball in WI(L”"k)/IPm_k_l, and then tak-
ing the infimum in such obtained inequality over the set of all compact operators K :
W/(L'")/IP’,,,_I — W]()m+l‘1)/]Pm+1_2, we get (48). From (45) and (48) is directly obtained (44),
finishing the proof of the theorem. g
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