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*Correspondence: sstevic@ptt.rs
Mathematical Institute of the
Serbian Academy of Sciences, Knez
Mihailova 36/III, Beograd, 11000,
Serbia
Operator Theory and Applications
Research Group, Department of
Mathematics, King Abdulaziz
University, P.O. Box 80203, Jeddah,
21589, Saudi Arabia

Abstract
We calculate the essential norm of some extensions of the generalized composition
operators between kth weighted-type spaces on the unit disk in the complex plane,
considerably extending some results in the literature.

MSC: Primary 47B38; secondary 47B33; 30H99

Keywords: essential norm; generalized composition operator; kth weighted-type
space; unit disk

1 Introduction
Let D be the open unit disk in the complex plane C, H(D) the class of all holomorphic
functions on D, and S(D) the class of all holomorphic self-maps of D.

Let μ(z) be a positive continuous function on D (weight) and k ∈N. The kth weighted-
type space denoted by W (k)

μ (D) = W (k)
μ is defined as follows:

W (k)
μ =

{
f ∈ H(D) : bW (k)

μ
(f ) < ∞}

,

where

bW (k)
μ

(f ) := sup
z∈D

μ(z)
∣∣f (k)(z)

∣∣. ()

The space was introduced in [] where the composition operators from the weighted
Bergman space to the space were studied. Some other concrete operators on the space
were later studied in [–].

If k = , then bW ()
μ

(·) is a norm on space W ()
μ , the so-called weighted-type space ([,

]). If k ∈ N, then it is easy to see that bW (k)
μ

(·) is a semi-norm on W (k)
μ . It is not a norm

on the space since from bW (k)
μ

(f ) =  it follows that f (k)(z) = , z ∈ D, and consequently
f (z) = pk–(z), where pk– is a polynomial of degree at most k – . However, it is a norm on
the quotient space W (k)

μ /Pk–, where Pk– is the space of all polynomials of degree less than
or equal k – . Indeed, let f + Pk– ∈ W (k)

μ /Pk–, and, based on the definition of a norm on
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a quotient space, let

‖f + Pk–‖W (k)
μ /Pk–

:= inf
g∈f +Pk–

bW (k)
μ

(g). ()

Then, if ‖f + Pk–‖W (k)
μ /Pk–

= , by using () and (), we have

 = inf
g∈f +Pk–

bW (k)
μ

(g) = inf
pk–∈Pk–

bW (k)
μ

(f + pk–)W (k)
μ

= bW (k)
μ

(f ),

from which it follows that f ∈ Pk–, that is, f + Pk– = Pk– = W (k)
μ /Pk–

.
On the other hand, there are some natural algebraic isomorphisms between some quo-

tient spaces and some spaces of holomorphic functions. Namely, we have

H(D)/Pk– ∼=a
{

f ∈ H(D) : f (j)() = , j = , k – 
}

=: Hk(D),

and

W (k)
μ /Pk– ∼=a

{
f ∈W (k)

μ : f (j)() = , j = , k – 
}

=: W (k)
μ,k(D).

Indeed, for each class g + Pk– ∈ H(D)/Pk– (or g + Pk– ∈ W (k)
μ /Pk–) there is a unique

fg ∈ g + Pk– such that f (j)
g () = , j = , k – . Namely, if g(z) =

∑∞
j= ajzj, then we can take

fg(z) =
∑∞

j=k ajzj, that is, fg = g + pg,k–, where pg,k–(z) =
∑k–

j= (–aj)zj, and the map

L(g + Pk–) := fg

is a linear bijection from H(D)/Pk– onto Hk(D), as well as from W (k)
μ /Pk– onto W (k)

μ,k(D).
Hence, we can identify the quotient spaces with the corresponding subspaces of holomor-
phic functions satisfying the conditions f (j)() = , j = , k – .

From () and () it follows that

‖f + Pk–‖W (k)
μ /Pk–

= bW (k)
μ

(f ),

this fact along with the above mentioned algebraic isomorphism shows that the spaces
(W (k)

μ /Pk–,‖ · ‖W (k)
μ /Pk–

) and (W (k)
μ,k(D), bW (k)

μ
(·)) are isometrically isomorphic, that is,

W (k)
μ /Pk– ∼= W (k)

μ,k(D). So, they can be identified, and we can regard it to be the same if
we say f ∈W (k)

μ /Pk– or f ∈W (k)
μ,k .

Let

‖f ‖W (k)
μ

=
k–∑

j=

∣∣f (j)()
∣∣ + sup

z∈D
μ(z)

∣∣f (k)(z)
∣∣, ()

where μ is a weight and k ∈ N (for k =  we use the standard convention
∑l–

j=l aj = ,
l ∈ Z). Then it is easy to see that () defines a norm on space W (k)

μ , and that (W (k)
μ ,‖ · ‖W (k)

μ
)

is a Banach space. The normed space is a natural generalization of the weighted-type,
Bloch-type and Zygmund-type spaces (see, e.g., [–]).

Let L : X → Y be a linear bounded operator, that is, it maps bounded sets of X into
bounded sets of Y . By ‖L‖X→Y , we denote the operator norm of L : X → Y , that is,
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‖L‖X→Y = sup‖x‖X≤ ‖L(x)‖Y . An operator K : X → Y is called compact if it maps bounded
subsets of X into relatively compact subsets of Y .

Essential norm of a bounded operator L : X → Y is defined by

‖L‖e,X→Y := inf
K∈K(X,Y )

‖L – K‖X→Y = inf
K∈K(X,Y )

sup
‖x‖X≤

∥∥L(x) – K(x)
∥∥

Y ,

that is, as the distance of operator L to the set of compact operators K(X, Y ).
Let

(Df )(z) = f ′(z)

be the standard differentiation operator on H(D). By Dk we will denote the composition
of (exactly) k differentiation operators, that is, if f ∈ H(D), then

Dkf = D
(
D

(· · · (D
︸ ︷︷ ︸

k-times

f ) · · · )).

Let

Ik(f )(z) :=
∫ z



∫ ζk


· · ·

∫ ζ


f (ζ) dζ dζ · · · dζk , ()

where k ∈N and f ∈ H(D).
It is clear that DkIkf = f for every f ∈ H(D), that is,

DkIk = IdH(D), ()

where IdX denotes the identity operator on space X.
It is also easy to see that

DjIk(f )() = , for j = , k – , ()

where we regard that D is the identity operator.
Beside this, by using the Newton-Leibnitz-type formula for holomorphic functions k

times, we have

IkDk(f )(z) =
∫ z



∫ ζk


· · ·

∫ ζ


f (k)(ζ) dζ dζ · · ·dζk

= f (z) –
k–∑

j=

f (j)()
j!

zj, ()

where k ∈N and f ∈ H(D), from which it follows that

IkDkf = f , ()

for every f ∈ H(D)/Pk–, that is, IkDk is the identity operator on H(D)/Pk–, and conse-
quently on its subspaces, such as are W (m)

μ /Pk–, where m ≥ k.



Stević Journal of Inequalities and Applications  (2017) 2017:220 Page 4 of 13

Let ϕ ∈ S(D). Then by Cϕ we denote the composition operator on H(D), which is defined
by Cϕ(f )(z) = f (ϕ(z)).

Let u ∈ H(D). Then by Mg is denoted the multiplication operator on H(D), which is
defined by Mg(f )(z) = g(z)f (z).

The product of operators Cϕ and Mg , that is,

(Mg ◦ Cϕ)(f )(z) = g(z)f
(
ϕ(z)

)
,

is called the weighted composition operator and is denoted by gCϕ .
These three operators have been considerably studied on various spaces of holomorphic

functions (see, for example, [, , , , ] and the references therein).
Let ϕ ∈ S(D), g ∈ H(D) and k ∈N. We define an operator on H(D) as follows:

Cg
ϕ,k(f )(z) :=

∫ z



∫ ζk


· · ·

∫ ζ


f (k)(ϕ(ζ)

)
g(ζ) dζ dζ · · ·dζk , ()

for f ∈ H(D). For k =  is obtained the generalized composition operator in [], which was
later studied or generalized, for example, in [, –]. For some related operators; see,
also [–] and the references therein.

Note that from () it immediately follows that

DjCg
ϕ,k(f )() = , for j = , k – . ()

Motivated by [, , ] here we calculate the essential norm of operator () between
two kth weighted-type spaces. For some related results see also [, ].

2 Main results
In this section we prove the main results in this paper.

Theorem  Assume that μ and ν are weights, k, m ∈N, and that the operator L : W (k)
μ →

W (m)
ν is bounded. Then

‖L‖e,W (k)
μ →W (m)

ν
= ‖L‖e,W (k)

μ /Pk–→W (m)
ν

. ()

Proof If k = , then we regard that W ()
μ /P– = W ()

μ , so that () obviously holds. Now as-
sume that k ∈ N. For each compact operator K : W (k)

μ →W (m)
ν , its restriction onW (k)

μ /Pk–,
that is, K : W (k)

μ /Pk– →W (m)
ν , is also a compact operator, from which along with the def-

inition of the essential norm of an operator, it easily follows that

‖L‖e,W (k)
μ /Pk–→W (m)

ν
≤ ‖L‖e,W (k)

μ →W (m)
ν

. ()

Let K : W (k)
μ /Pk– →W (m)

ν be a compact operator and f ∈W (k)
μ . Then by

K̃(f )(z) = K

(

f –
k–∑

j=

ajzj

)

,
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where aj = f (j)()/j!, j = , k – , is defined an extension of operator K on the whole space
W (k)

μ , that is, K̃ : W (k)
μ → W (m)

ν , which is obviously a compact operator. Denote the set of
such obtained operators K̃ by K̃.

Let L : W (k)
μ →W (m)

μ be a bounded operator, then the operator

L̃(f ) := L

( k–∑

j=

ajzj

)

=
k–∑

j=

ajL
(
zj),

where, as above, aj = f (j)()/j!, j = , k – , maps W (k)
μ into W (m)

μ , and is compact, since its
image is a finite-dimensional space.

We have

‖L‖e,W (k)
μ →W (m)

ν

= inf
K∈K(W (k)

μ ,W (m)
ν )

‖L – K‖W (k)
μ →W (m)

ν

≤ inf
K̃∈K(W (k)

μ ,W (m)
ν )∩K̃

‖L – K̃ – L̃‖W (k)
μ →W (m)

ν

= inf
K̃∈K(W (k)

μ ,W (m)
ν )∩K̃

sup
‖f ‖

W(k)
μ

≤

∥∥L(f ) – K̃(f ) – L̃(f )
∥∥
W (m)

ν

= inf
K∈K(W (k)

μ /Pk–,W (m)
ν )

sup
‖f ‖

W(k)
μ

≤

∥∥∥∥∥
L(f ) – K

(

f –
k–∑

j=

ajzj

)

– L

( k–∑

j=

ajzj

)∥∥∥∥∥
W (m)

ν

= inf
K∈K(W (k)

μ /Pk–,W (m)
ν )

sup
‖f ‖

W(k)
μ

≤

∥∥∥∥∥
(L – K)

(

f –
k–∑

j=

ajzj

)∥∥∥∥∥
W (m)

ν

≤ inf
K∈K(W (k)

μ /Pk–,W (m)
ν )

sup
{g∈W (k)

μ /Pk–:‖g‖
W(k)

μ
≤}

∥∥(L – K)(g)
∥∥
W (m)

ν

= inf
K∈K(W (k)

μ /Pk–,W (m)
ν )

‖L – K‖W (k)
μ /Pk–→W (m)

ν
= ‖L‖e,W (k)

μ /Pk–→W (m)
ν

. ()

From () and (), equality () follows. �

Theorem  Assume that μ and ν are weights, k, l, m ∈ N, m ≥ k, and that the operator
Cg

ϕ,k : W (m+l–)
μ →W (m)

ν is bounded. Then

∥∥Cg
ϕ,k

∥∥
e,W (m+l–)

μ →W (m)
ν

= ‖gCϕ‖e,W (m+l–k–)
μ →W (m–k)

ν
. ()

Proof First we prove the following inequality:

∥∥Cg
ϕ,k

∥∥
e,W (m+l–)

μ →W (m)
ν

≤ ‖gCϕ‖e,W (m+l–k–)
μ →W (m–k)

ν
. ()

We show that

∥∥Cg
ϕ,k

∥∥
e,W (m+l–)

μ /Pm+l–→W (m)
ν

≤ ‖gCϕ‖e,W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν
, ()



Stević Journal of Inequalities and Applications  (2017) 2017:220 Page 6 of 13

which by Theorem  is equivalent to () (recall that when m = k and l = , we naturally
regard that W (m+l–k–)

μ /Pm+l–k– = W ()
μ ).

Assume that f ∈W (m+l–k–)
μ /Pm+l–k–. Then, since

‖Ikf ‖W (m+l–)
μ

= ‖f ‖W (m+l–k–)
μ

< +∞ ()

and

Dj(Ikf )() = , for j = , m + l – , ()

it follows that Ikf ∈W (m+l–)
μ /Pm+l–, that is, operator Ik maps the spaceW (m+l–k–)

μ /Pm+l–k–

into W (m+l–)
μ /Pm+l–. Further, it is clear that Cg

ϕ,k : W (m+l–)
μ /Pm+l– → W (m)

ν is bounded,
and since for every h ∈W (m)

ν ,

bW (m–k)
ν

(
Dkh

)
= bW (m)

ν
(h) < ∞, ()

we see that Dk maps W (m)
ν into W (m–k)

ν . Moreover, we have

∥∥Dkh
∥∥
W (m–k)

ν
≤ ‖h‖W (m)

ν
, ()

where the strict inequality can occur here.
Hence, we see that the operator

DkCg
ϕ,kIk = gCϕ ()

maps the space W (m+l–k–)
μ /Pm+l–k– into W (m–k)

ν , and from (), () and the bounded-
ness of the operator Cg

ϕ,k : W (m+l–)
μ /Pm+l– → W (m)

ν , it follows that the operator gCϕ :
W (m+l–k–)

μ /Pm+l–k– →W (m–k)
ν is also bounded.

Due to () and (), we have

IkDkCg
ϕ,kIkDkf = Cg

ϕ,kf , ()

for every f ∈W (m+l–)
μ /Pm+l–. Indeed, since m ≥ k and l ∈N we have m + l –  ≥ k, so by ()

we have IkDkf = f , and further from () we get Cg
ϕ,kf ∈W (m)

μ /Pk–. By another application
of () is obtained ().

Let K : W (m+l–k–)
μ /Pm+l–k– →W (m–k)

ν be a compact operator and

K̃ := IkKDk . ()

Then the operator maps the space W (m+l–)
μ /Pm+l– into W (m)

ν and is compact, since the
space of compact operators is a both sided ideal into the space of bounded linear operators.
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Hence, by using ()-() and some simple estimates, we have

∥∥Cg
ϕ,kf – K̃ f

∥∥
W (m)

ν
=

∥∥IkDkCg
ϕ,kIkDkf – IkKDkf

∥∥
W (m)

ν

=
∥∥Ik

(
DkCg

ϕ,kIk – K
)
Dkf

∥∥
W (m)

ν

=
∥∥(gCϕ – K)Dkf

∥∥
W (m–k)

ν

≤ ‖gCϕ – K‖W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν

∥∥Dkf
∥∥
W (m+l–k–)

μ

≤ ‖gCϕ – K‖W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν
‖f ‖W (m+l–)

μ
. ()

By taking the supremum in () over the unit ball in W (m+l–)
μ /Pm+l–, and then tak-

ing the infimum in such obtained inequality over the set of all compact operators K :
W (m+l–k–)

μ /Pm+l–k– →W (m–k)
ν , we get ().

Now we prove the following inequality:

‖gCϕ‖e,W (m+l–k–)
μ →W (m–k)

ν
≤ ∥∥Cg

ϕ,k
∥∥

e,W (m+l–)
μ →W (m)

ν
. ()

To do this first note that since () holds for every f ∈ W (m+l–k–)
μ , the operator Ik :

W (m+l–k–)
μ → W (m+l–)

μ is bounded. From this, since Cg
ϕ,k : W (m+l–)

μ → W (m)
ν is bounded

by the assumption, and Dk : W (m)
μ →W (m–k)

ν is also bounded due to the inequality in (),
we see that the operator DkCg

ϕ,kIk = gCϕ : W (m+l–k–)
μ →W (m–k)

ν is bounded.
Note also that

Cg
ϕ,k = IkgCϕDk , ()

where Dk : W (m+l–)
μ →W (m+l–k–)

μ and Ik : W (m–k)
ν →W (m)

ν .
Let K : W (m+l–)

μ →W (m)
ν be a compact operator. Then the operator

DkKIk : W (m+l–k–)
μ →W (m–k)

ν

is compact too.
Using this facts and (), it follows that

∥∥gCϕ f – DkKIkf
∥∥
W (m–k)

ν
=

∥∥DkIkgCϕDkIkf – DkKIkf
∥∥
W (m–k)

ν

=
∥∥Dk(Cg

ϕ,k – K
)
Ikf

∥∥
W (m–k)

ν

≤ ∥∥(
Cg

ϕ,k – K
)
Ikf

∥∥
W (m)

ν

≤ ∥∥Cg
ϕ,k – K

∥∥
W (m+l–)

μ →W (m)
ν

‖Ikf ‖W (m+l–)
μ

≤ ∥∥Cg
ϕ,k – K

∥∥
W (m+l–)

μ →W (m)
ν

‖f ‖W (m+l–k–)
μ

. ()

By taking the supremum in () over the unit ball in W (m+l–k–)
μ , and then taking the

infimum in such obtained inequality over the set of all compact operators K : W (m+l–)
μ →

W (m)
ν , the inequality () is obtained. From () and () equality () follows. �
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Before we formulate our next results, we want to say that their proofs are related to the
one of Theorem , but we will give all the differences for the completeness.

Theorem  Assume that μ and ν are weights, k, l, m ∈ N, m ≥ k, and that the operator
Cg

ϕ,k : W (m)
μ →W (m+l–)

ν is bounded. Then

∥∥Cg
ϕ,k

∥∥
e,W (m)

μ →W (m+l–)
ν

= ‖gCϕ‖e,W (m–k)
μ →W (m+l–k–)

ν
. ()

Proof First we prove

∥∥Cg
ϕ,k

∥∥
e,W (m)

μ →W (m+l–)
ν

≤ ‖gCϕ‖e,W (m–k)
μ →W (m+l–k–)

ν
. ()

We show that

∥∥Cg
ϕ,k

∥∥
e,W (m)

μ /Pm–→W (m+l–)
ν

≤ ‖gCϕ‖e,W (m–k)
μ /Pm–k–→W (m+l–k–)

ν
, ()

which by Theorem  is equivalent to ().
Assume that f ∈W (m–k)

μ /Pm–k–. Then, since

‖Ikf ‖W (m)
μ

= ‖f ‖W (m–k)
μ

< ∞ ()

and

Dj(Ikf )() = , for j = , m – , ()

it follows that Ikf ∈ W (m)
μ /Pm–, that is, operator Ik maps space W (m–k)

μ /Pm–k– into
W (m)

μ /Pm–. Further, it is clear that Cg
ϕ,k : W (m)

μ /Pm– → W (m+l–)
ν is bounded, and since

for every h ∈W (m+l–)
ν ,

bW (m+l–k–)
μ

(
Dkh

)
= bW (m+l–)

μ
(h) < +∞ ()

we see that Dk : W (m+l–)
ν →W (m+l–k–)

ν . Moreover, we have

∥∥Dkh
∥∥
W (m+l–k–)

μ
≤ ‖h‖W (m+l–)

μ
. ()

Hence, we see that the operator () maps W (m–k)
μ /Pm–k– to W (m+l–k–), and from (),

() and the boundedness of Cg
ϕ,k : W (m)

μ /Pm– →W (m+l–)
ν it follows that the operator gCϕ :

W (m–k)
μ /Pm–k– → W (m+l–k–) is also bounded. Beside this, since m ≥ k, we see that ()

holds for every f ∈W (m)
μ /Pm–.

Let K : W (m–k)
μ /Pm–k– →W (m+l–k–)

ν be a compact operator. Then the operator

K̃ := IkKDk : W (m)
μ /Pm– →W (m+l–)

ν

is compact.
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From this, () and (), we have

∥∥Cg
ϕ,kf – K̃ f

∥∥
W (m+l–)

ν
=

∥∥IkDkCg
ϕ,kIkDkf – IkKDkf

∥∥
W (m+l–)

ν

=
∥∥Ik

(
DkCg

ϕ,kIk – K
)
Dkf

∥∥
W (m+l–)

ν

=
∥∥(gCϕ – K)Dkf

∥∥
W (m+l–k–)

ν

≤ ‖gCϕ – K‖W (m–k)
μ /Pm–k–→W (m+l–k–)

∥∥Dkf
∥∥
W (m–k)

μ /Pm–k–

≤ ‖gCϕ – K‖W (m–k)
μ /Pm–k–→W (m+l–k–)‖f ‖W (m)

μ
. ()

By taking the supremum in () over the unit ball in W (m)
μ /Pm–, and then taking

the infimum in such obtained inequality over the set of all compact operators K :
W (m–k)

μ /Pm–k– →W (m+l–k–)
ν , we get ().

Now we prove that

‖gCϕ‖e,W (m–k)
μ →W (m+l–k–)

ν
≤ ∥∥Cg

ϕ,k
∥∥

e,W (m)
μ →W (m+l–)

ν
. ()

Since () holds for every f ∈ W (m–k)
μ , we see that the operator Ik : W (m–k)

μ → W (m)
μ is

bounded. From this, since Cg
ϕ,k : W (m)

μ → W (m+l–)
ν is bounded by the assumption, and

Dk : W (m+l–)
ν → W (m+l–k–)

ν is also bounded due to the inequality in (), we see that
the operator DkCg

ϕ,kIk = gCϕ : W (m–k)
μ → W (m+l–k–)

ν is bounded. Note also that () holds,
where Dk : W (m)

μ →W (m–k)
ν and Ik : W (m+l–k–)

μ →W (m+l–)
ν .

Let K : W (m)
μ →W (m+l–)

ν be a compact operator. Then the operator

DkKIk : W (m–k)
μ →W (m+l–k–)

ν

is compact.
Using this fact along with () and (), we have

∥∥gCϕ f – DkKIkf
∥∥
W (m+l–k–)

ν
=

∥∥DkIkgCϕDkIkf – DkKIkf
∥∥
W (m+l–k–)

ν

=
∥∥Dk(Cg

ϕ,k – K
)
Ikf

∥∥
W (m+l–k–)

ν

≤ ∥∥(
Cg

ϕ,k – K
)
Ikf

∥∥
W (m+l–)

ν

≤ ∥∥Cg
ϕ,k – K

∥∥
W (m)

μ →W (m+l–)
ν

‖Ikf ‖W (m)
μ

≤ ∥∥Cg
ϕ,k – K

∥∥
W (m)

μ →W (m+l–)
ν

‖f ‖W (m–k)
μ

. ()

By taking the supremum in () over the unit ball inW (m–k)
μ , and then taking the infimum

in such obtained inequality over the set of all compact operators K : W (m)
μ →W (m+l–)

ν , we
get (). From () and () is directly obtained (), as desired. �

Theorem  Assume that μ and ν are weights, k, l, m ∈ N, m ≥ k, and that the operator
Cg

ϕ,k : W (m+l–)
μ /Pm+l– →W (m)

ν /Pm– is bounded. Then

∥∥Cg
ϕ,k

∥∥
e,W (m+l–)

μ /Pm+l–→W (m)
ν /Pm–

= ‖gCϕ‖e,W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν /Pm–k–
. ()
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Proof First we prove the following inequality:

∥∥Cg
ϕ,k

∥∥
e,W (m+l–)

μ /Pm+l–→W (m)
ν /Pm–

≤ ‖gCϕ‖e,W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν /Pm–k–
. ()

Assume that f ∈W (m+l–k–)
μ /Pm+l–k–. Then, since () and () hold, we see that the op-

erator Ik maps the space W (m+l–k–)
μ /Pm+l–k– into W (m+l–)

μ /Pm+l–. Further, by the assump-
tion Cg

ϕ,k : W (m+l–)
μ /Pm+l– → W (m)

ν /Pm– is bounded, and since for every h ∈ W (m)
ν /Pm–,

() holds and

Dj(Dkh
)
() = , j = , m – k – , ()

we have Dk : W (m)
ν /Pm– →W (m–k)

ν /Pm–k–. Moreover, we see that () holds.
Hence, we see that the operator () maps the space W (m+l–k–)

μ /Pm+l–k– into
W (m–k)

ν /Pm–k–, and from (), () and the boundedness of the operator Cg
ϕ,k :

W (m+l–)
μ /Pm+l– →W (m)

ν /Pm–, it follows that gCϕ : W (m+l–k–)
μ /Pm+l–k– →W (m–k)

ν /Pm–k–

is also bounded. Since m + l –  ≥ k, we see that () holds for every f ∈W (m+l–)
μ /Pm+l–.

Let K : W (m+l–k–)
μ /Pm+l–k– → W (m–k)

ν /Pm–k– be a compact operator and K̃ be defined
as in (), where Dk maps the space W (m+l–)

μ /Pm+l– into W (m+l–k–)
μ /Pm+l–k–, and Ik maps

the space W (m–k)
ν /Pm–k– into W (m)

ν /Pm–. Then, K̃ maps the space W (m+l–)
μ /Pm+l– into

W (m)
ν /Pm– and is compact.
From this and (), similar to (), is obtained

∥∥Cg
ϕ,kf – K̃ f

∥∥
W (m)

ν
≤ ‖gCϕ – K‖W (m+l–k–)

μ /Pm+l–k–→W (m–k)
ν /Pm–k–

‖f ‖W (m+l–)
μ

. ()

By taking the supremum in () over the unit ball in W (m+l–)
μ /Pm+l–, and then tak-

ing the infimum in such obtained inequality over the set of all compact operators K :
W (m+l–k–)

μ /Pm+l–k– →W (m–k)
ν /Pm–k–, we get ().

Now we prove that

‖gCϕ‖e,W (m+l–k–)
μ /Pm+l–k–→W (m–k)

ν /Pm–k–
≤ ∥∥Cg

ϕ,k
∥∥

e,W (m+l–)
μ /Pm+l–→W (m)

ν /Pm–
. ()

Since () holds for every f ∈ W (m+l–k–)
μ /Pm+l–k–, the operator Ik : W (m+l–k–)

μ /
Pm+l–k– → W (m+l–)

μ /Pm+l– is bounded. From this, since Cg
ϕ,k : W (m+l–)

μ /Pm+l– →
W (m)

ν /Pm– is bounded, and since Dk : W (m)
μ /Pm– → W (m–k)

ν /Pm–k– is also bounded
due to () and (), we see that the operator DkCg

ϕ,kIk = gCϕ : W (m+l–k–)
μ /Pm+l–k– →

W (m–k)
ν /Pm–k– is bounded. Beside this, note that Cg

ϕ,k = IkgCϕDk : W (m+l–)
μ /Pm+l– →

W (m)
ν /Pm–, where Dk : W (m+l–)

μ /Pm+l– → W (m+l–k–)
μ /Pm+l–k– and Ik : W (m–k)

ν /Pm–k– →
W (m)

ν /Pm–.
Let K : W (m+l–)

μ /Pm+l– →W (m)
ν /Pm– be a compact operator. Then the operator

DkKIk : W (m+l–k–)
μ /Pm+l–k– →W (m–k)

ν /Pm–k–

is compact too.
Hence, as in () we have

∥∥gCϕ f – DkKIkf
∥∥
W (m–k)

ν
≤ ∥∥Cg

ϕ,k – K
∥∥
W (m+l–)

μ /Pm+l–→W (m)
ν /Pm–

‖f ‖W (m+l–k–)
μ

. ()
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By taking the supremum in () over the unit ball in W (m+l–k–)
μ /Pm+l–k–, and then

taking the infimum in such obtained inequality over the set of all compact operators
K : W (m+l–)

μ /Pm+l– →W (m)
ν /Pm–, we get (). From () and () is obtained (). �

Theorem  Assume that μ and ν are weights, k, l, m ∈ N, m ≥ k, and that the operator
Cg

ϕ,k : W (m)
μ /Pm– →W (m+l–)

ν /Pm+l– is bounded. Then

∥∥Cg
ϕ,k

∥∥
e,W (m)

μ /Pm–→W (m+l–)
ν /Pm+l–

= ‖gCϕ‖e,W (m–k)
μ /Pm–k–→W (m+l–k–)

ν /Pm+l–k–
. ()

Proof First we prove that

∥∥Cg
ϕ,k

∥∥
e,W (m)

μ /Pm–→W (m+l–)
ν /Pm+l–

≤ ‖gCϕ‖e,W (m–k)
μ /Pm–k–→W (m+l–k–)

ν /Pm+l–k–
. ()

Assume that f ∈ W (m–k)
μ /Pm–k–. Recall that, since () and () hold, the operator Ik

boundedly maps space W (m–k)
μ /Pm–k– into W (m)

μ /Pm–. Since equality () holds for every
h ∈W (m+l–)

ν /Pm+l– and

Dj(Dkh
)
() = , , m + l – k – , ()

we see that Dk : W (m+l–)
ν /Pm+l– →W (m+l–k–)

ν /Pm+l–k–. Moreover, we see that () holds.
Using these two facts and the boundedness of the operator Cg

ϕ,k : W (m)
μ /Pm– →

W (m+l–)
ν /Pm+l–, we see that the operator () maps the spaceW (m–k)

μ /Pm–k– toW (m+l–k–)/
Pm+l–k–, and from (), () and the boundedness of the operator Cg

ϕ,k : W (m)
μ /Pm– →

W (m+l–)
ν /Pm+l–, it follows that the operator gCϕ : W (m–k)

μ /Pm–k– → W (m+l–k–)/Pm+l–k–

is also bounded. We also see that () holds for every f ∈W (m)
μ /Pm–.

Let K : W (m–k)
μ /Pm–k– →W (m+l–k–)

ν /Pm+l–k– be a compact operator. Then the operator

K̃ := IkKDk : W (m)
μ /Pm– →W (m+l–)

ν /Pm+l–

is compact.
Hence, as in () we have

∥∥Cg
ϕ,kf – K̃ f

∥∥
W (m+l–)

ν
≤ ‖gCϕ – K‖W (m–k)

μ /Pm–k–→W (m+l–k–)/Pm+l–k–
‖f ‖W (m)

μ
. ()

By taking the supremum in () over the unit ball in W (m)
μ /Pm–, and then taking

the infimum in such obtained inequality over the set of all compact operators K :
W (m–k)

μ /Pm–k– →W (m+l–k–)
ν /Pm+l–k–, we get ().

Now we prove that

‖gCϕ‖e,W (m–k)
μ /Pm–k–→W (m+l–k–)

ν /Pm+l–k–
≤ ∥∥Cg

ϕ,k
∥∥

e,W (m)
μ /Pm–→W (m+l–)

ν /Pm+l–
. ()

Since () holds for every f ∈ W (m–k)
μ /Pm–k– and by using (), we see that the oper-

ator Ik : W (m–k)
μ /Pm–k– → W (m)

μ /Pm– is bounded. From this, since Cg
ϕ,k : W (m)

μ /Pm– →
W (m+l–)

ν /Pm+l– is bounded by the assumption, and Dk : W (m+l–)
ν /Pm+l– → W (m+l–k–)

ν /
Pm+l–k– is also bounded due to the inequality in () and (), we see that the op-
erator DkCg

ϕ,kIk = gCϕ : W (m–k)
μ /Pm–k– → W (m+l–k–)

ν /Pm+l–k– is bounded. Beside this,
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note also that Cg
ϕ,k = IkgCϕDk : W (m)

μ /Pm– → W (m+l–)
ν /Pm+l–, where Dk : W (m)

μ /Pm– →
W (m–k)

ν /Pm–k– and Ik : W (m+l–k–)
μ /Pm+l–k– →W (m+l–)

ν /Pm+l–.
Let K : W (m)

μ /Pm– →W (m+l–)
ν /Pm+l– be a compact operator. Then the operator

DkKIk : W (m–k)
μ /Pm–k– →W (m+l–k–)

ν /Pm+l–k–

is also compact.
Hence, as in () we have

∥∥gCϕ f – DkKIkf
∥∥
W (m+l–k–)

ν
≤ ∥∥Cg

ϕ,k – K
∥∥
W (m)

μ /Pm–→W (m+l–)
ν /Pm+l–

‖f ‖W (m–k)
μ

. ()

By taking the supremum in () over the unit ball in W (m–k)
μ /Pm–k–, and then tak-

ing the infimum in such obtained inequality over the set of all compact operators K :
W (m)

μ /Pm– → W (m+l–)
ν /Pm+l–, we get (). From () and () is directly obtained (),

finishing the proof of the theorem. �
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16. Ueki, SI: On the Li-Stević integral type operators from weighted Bergman spaces into β -Zygmund spaces. Integral

Equ. Oper. Theory 74(1), 137-150 (2012)
17. Zhu, X: On an integral-type operator between H2 space and weighted Bergman spaces. Bull. Belg. Math. Soc. Simon

Stevin 18(1), 63-71 (2011)
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20. Stević, S, Ueki, SI: Integral-type operators acting between weighted-type spaces on the unit ball. Appl. Math.
Comput. 215, 2464-2471 (2009)

21. Yang, W, Yan, W: Generalized weighted composition operators from area Nevanlinna spaces to weighted-type
spaces. Bull. Korean Math. Soc. 48(6), 1195-1205 (2011)

22. Yang, W, Zhu, X: Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces.
Taiwan. J. Math. 16(3), 869-883 (2012)
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31. Galindo, P, Lindström, M, Stević, S: Essential norm of operators into weighted-type spaces on the unit ball. Abstr. Appl.

Anal. 2011, Article ID 939873 (2011)


	Essential norm of some extensions of the generalized composition operators between kth weighted-type spaces
	Abstract
	MSC
	Keywords

	Introduction
	Main results
	Competing interests
	Authors' contributions
	Publisher's Note
	References


