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1 Introduction
For x > 0, the classical Euler gamma function I'(x) and its logarithmic derivative, the so-
called psi function v (x) [1] are defined by

(%)
(%)

)

) = /0 Tt oy -

respectively.

A real-valued function f is said to be completely monotonic [2] on an interval I if f
has derivatives of all orders on I and (-1)"f"(x) > 0 for all # > 0 and x € I. The well-
known Bernstein theorem [3] states that a function f on [0, c0) is completely monotonic
if and only if there exists a bounded and non-decreasing function w(¢) such that f(x) =
fooo e dw(t) converges for all x € [0, 00).
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Recently, the gamma function have attracted the attention of many researchers. In par-
ticular, many remarkable inequalities and properties for I'(x) can be found in the literature
[4-14].

Due to I'(x + 1) = xI'(x) and I'(n + 1) = n!, we will only need to focus our attention on
['(x + 1) with x € (0,1). Gautschi [15] proved that the double inequality

s Fn+1) < -9V (1)

< [(n+5s) (L.1)

holds for all s € (0,1) and 7 € N.

Inequality (1.1) was generalized and improved by Kershaw [16] as follows:

1-s
X+ s < Fx+1) < ISV le+(145)/2]
2 I'(x+s)
forallx >0 and s € (0,1).
Elezovi¢, Giordano and Pecari¢ [17] established the double inequality

1 1 1-x
(E +,/Z +x) 2 <T(x+1) < 217%x* (1.2)

for the gamma function being valid for all x € (0,1), and asked for ‘other bounds for the
gamma function in terms of elementary functions’
Ivady [18] provided the bounds for gamma function in terms of very simple rational

functions as follows:

x2+1 x2+2

<I'x+1)<
1 xX+2

(1.3)

for all x € (0,1). Inequality (1.3) can be regarded as a simple estimation of the value of the
gamma function.
In [19], Zhao, Guo and Qi proved that the function

log'(x + 1)

¥ = Qk) = log(x? + 1) —log(x + 1)

is strictly increasing on (0, 1). The monotonicity of Q(x) on the interval (0,1) and the facts
that Q(0*) = y and Q(17) = 2(1 — y) lead to the conclusion that

22 +1\207) 22 +1\7
<Tx+1)< (1.4)
x+1 x+1
for all x € (0,1), where y = lim,_,»(3_y_; 1/k —logn) = 0.577... is the Euler-Mascheroni
constant.
Let
22 +1 x2 + 1\ 2
Ll(x) = ’ Lz(x) = ’ (15)
x+1 x+1

x> +2 22 +1\7
Uy (x) = <12’ Uy (x) = <x+1> . (L6)
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Then we clearly see that
Ly(x) < Ly(x) (1.7)
for all x € (0,1), and numerical computations show that

U;(1/4)=0.916...> U,(1/4) =0.910...,
(1.8)
U;(1/8)=0.948...> U,(1/8) =0.942....

Motivated by (1.3)-(1.8), it is natural to ask what the better parameters p and g on the
interval (1,2) are such that the double inequality
2 2

TP pre1)< 224
p X+q

holds for all x € (0,1). The main purpose of the article is to deal with this questions. Some
complicated computations are carried out using the Mathematica computer algebra sys-
tem.

2 Lemmas
In order to establish our main results we need several lemmas, which we present in this
section.

Lemma 2.1 (See [20, Theorem 1.25]) Let —co <a < b < 00, f,g: [a,b] — R be continu-
ous on [a, b) and differentiable on (a,b), and g'(x) # 0 on (a,b). If f'(x)/¢'(x) is increasing
(decreasing) on (a, b), then so are the functions

fx) - f(a) Sx) - f(b)
g —gla)  glx)-gb)

Iff'(x)/g'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (See [21, Lemma 7]) Let n € N and m € N U {0} with n > m, a; > 0 for all

0<i<mn a,a,>0and

m n
P,(t) = - Zaiti + Z a;t.
i=0

i=m+1

Then there exists ty € (0,00) such that P,(ty) = 0, P,(£) < 0 for t € (0,ty) and P,(t) > O for
te (t(), OO)

Lemma 2.3 (See [22, Corollary 3.1]) The inequality

V(x+1) L tog(a s xs )4 B pog (s 4 x s 2
EEUS gy OB\ TET R )T gy OB\ T 45

holds for all x > 0.
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Lemma 2.4 (See [23, Corollary 3.3(ii)]) The double inequality

1 23

x+3)+x+2) e

xt+ 28 ¢ Lx2 4 0 g <V brel)
7 7%+ 35

1\(2 n?
(x+ )" +x + —15(ﬂ2_9))
7n2-60 ,0 , 2m2-15 1
529 t 562-9)* T 5x2-9)

x% 4+ 2% +
holds for all x > 0.

Lemma 2.5 The inequalities

1 1

— <v'x+1) < , 2.1
X+ 12(x+%)3_W( )_x+% @1)
1 1
- <y"(x+1) < - + , 2.2
(x+%)2_l//( )= (x+3)2 4@+l (2:2)
2 1 )
- <y (x+1) < 2.3
(x+3)3 (x+%)5_w ( )_(x+%)3 2:3)
hold for all x > -1/2.
Proof Let x > —1/2, and R;(x) and R,(x) be defined by
1
Rl(x):l//(x+1)—10g<x+ 5), (2.4)
Ry(x) = = ( +1)+lo( +1>+ 1 (2.5)
x) =—P(x X+ = _, .
2 7 2) T 2 Iy
respectively. Then making use of the well-known formulas
00 e—t e—xt og) e—t _ e—xt
= ——-—)ds, 1 = ——dt
¥ (x) /0 ( . l—et) ogx /O -
we get
oo —t —(x+1)¢t 00 ,—t _ ,—(x+1/2)t
Rl(x)zf £ e dt—f R
0 t 1-et 0 t
) \/OO(% B le—tézt)e(x+l/2)t dt
0 (2.6)
B
o \t 2sinh(£/2)
i /oo sinh(¢/2) —t/2 2t gy
0 t sinh(£/2) ’
71 1 1 o
RQ(X) _ _/ - i e—(x+1/2)t dt + _/ te—(x+1/2)t dt
o \t 2sinh(¢/2) 24 Jo
(£ —24)sinh(2/2) + 126\ (1),
= VS At 2.7
/0 ( 247 sinh(z/2) )e @7)

where sinh(¢) = (e — e7*)/2 is the hyperbolic sine function.
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Note that
, (£ - 24)sinh(£/2) + 12t <= 2(n—-2)2n+1) [\
h(¢/2 = - ) 2.
O sinh(t/2) ——  h(/2) Z; o3 \2) 0 28)
t
sinh(¢/2) — 5 >0 (2.9)
fort>0.

It follows from (2.6)-(2.9) and the Bernstein theorem for complete monotonicity prop-
erty that the two functions R;(x) and R(x) are completely monotonic on the interval
(-1/2,00).

Therefore, Lemma 2.5 follows easily from (2.4), (2.5) and the complete monotonicity of
R;(x) and R, (x) on the interval (—1/2, 00) together with the facts that

[1 ( 1 >](”) (=1)"L(n 1) [ 1 ](’“ (=1)"(n + 1)!
oglx+= = , = .
S\F2 (v 1y wrP) T ey O
Lemma 2.6 The double inequality
241 2/(q+1) 2 2,1 1/q
(x + > <x +q<<x + ) (2.10)
x+1 xX+q x+1

holds for all x € (0,1) and g > 1.

Proof Letx € (0,1), g > 1, and H;(x) and Hy(x) be defined by
Hi(x) = log(x* + q) — log(x + g), Hy (%) = log(x* + 1) — log(x + 1), (2.11)

respectively. Then simple computations lead to

N RS Rt @1
H;(0%) = H,(0%) =0, (2.13)
H,(1") =H,(17) =0, (2.14)
Hi(x) (x+1)(x* +1)(** +2gx-q)
Hy(x)  (x+q)@2+q)x2+2x-1)"
i) " e e 219

where

Ax,q) = [8x5 +4x* + (1-x)° (4x2 + 3%+ 1)]q2 + 4’ [Zx‘L +4x® + (1 —x)z]q
—x4(x4 —4x® — 6x% — 4 + 1)
> Ax, 1)
= (L-x)2 + 327 +10x° + (24° - 1)2 +24x° + 8xt + 242 (2x — 1)?

> 0. (2.16)
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From (2.15) and (2.16) we clearly see that Hj(x)/Hj(x) is strictly increasing on
(0,2 —=1) U (+/2 = 1,1). We assert that the function H;(x)/Ha(x) is strictly increasing
on (0,1). Indeed, if x € (0,+/2 1), then H(x) #0, and Lemma 2.1 and (2.13) together with
the monotonicity of H;(x)/Hj(x) on (0, /2 = 1) lead to the conclusion that H; (x)/H,(x) is
strictly increasing on (0,+/2 — 1); if x € (+/2 — 1,1), then Hj(x) # 0, and Lemma 2.1 and
(2.14) together with the monotonicity of Hj(x)/H,(x) on (v/2 —1,1) lead to the conclusion
that Hj(x)/H,(x) is strictly increasing on (v/2 — 1,1).

Therefore, Lemma 2.6 follows easily from (2.11) and (2.12) together with the monotonic-
ity of the function H;(x)/H,(x) on (0,1). O

Let p>0,x € (0,1), and f(p; x), fi(p; %), fo(p; x) and f3(p; x) be defined by

2

f,x)=logl(x+1) - log(x +5>, (2.17)

X+

:M:w(x+l)— 2x + 1
ox

b
X2+p x+p

filp,x) (2.18)

3flpx) 4x? 2 1
x> AR R2+p)? 2+p (x+p)?

3f(p,x) 16x° 12x 2

B == VD G @ e ey

(2.19)

fZ(P,?C) =

(2.20)

Lemma 2.7 Let f5(p, x) be defined by (2.19). Then
£(@,1/3)<0 (2.21)

for p € [8/5,9/5].

Proof From (2.19) and the second inequality in Lemma 2.4 we have

/ 42 2 1
folp,1/3) = |:1,” (x+1)+ (2 + p)? T a2 +p - (x+p)? ]xl/3

1 2 72
(o + )" + 2+ 555)
<
7n2-60 272-15
x=1/3

4 3 2
x* +2x° + 529Xt 5(r2o9)

1
X+ 5(w2-9)

[ 4x? 2 1 ]

+ pa— —_

@ +p)? x2+p (x+p)? s
152372 -180)  9(162p° + 171p% + 24p — 1)

= - 2.22
2(15272 - 1,179) (Bp +1)2(9p +1)? (2.22)

Elaborated computations lead to

2(15272 -1,179) Bp+1)2(9p +1)?

54(729p* + 1,215p> + 243p* —27p — 8)
= >
Bp+1)39p +1)3

( 15(2372 -180)  9(162p% + 171p? + 24p — 1))’

0 (2.23)

for p € [8/5,9/5].
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From (2.22) and (2.23) we get

15(237%2 -180)  9(162p° + 171p® + 24p — 1)
f(p,1/3) < -
2(15272 —1,179) (Bp +1)2(9p +1)2 =95
15(2372% -180) 2,167,065
- - = -0.047...<0. 0
2(15272 - 1,179) 1,893,376
Lemma 2.8 Let f>(p,x) be defined by (2.19). Then
£2(9/5,7/50) > 0. (2.24)

Proof From (2.19) and the first inequality in Lemma 2.4 we have

45> 2 1

(*? +p)? a2 P - (x+p)? ]p_9/5,x_7/50

£(9/5,7/50) = |:1//(x +1)+

[ (+ 3 +x+2) 42 2 1 :|
a2+ Ha2 4 Bav 20 (2 4p)> x24p (4P ] g5.750
84,826,873,256,410,100
= >
15,239,152,138,614,823,989

O
Lemma 2.9 Let fi(p,x) be defined by (2.18). Then
£(9/5,%) <0

forx € (7/50,1/3).

Proof 1t follows from Lemma 2.3 and (2.18) that

5O < tog(x s s L) s B rog( 14 2 1 0.95)
%)< —log|l " +x+= |+ —loglx*+x+— ) - —— + .2
! 92 8 3) %92 %8 45) X2 +9/5  x+9/5

Elaborated computations lead to
1 ) 4\ 45 ) 14 2x 1 7
—loglx“+x+ — |+ —log|x" +x+ — | - +
92 3 92 45) x2+9/5 x+9/5

h(x)
T 2(5x + 9)2(5x2 + 9)2(3x2 + 3x + 4)(45x2 + 45x + 14)’

(2.26)

where

h(x) = 168,750x° +1,029,3754% + 3,923,625x + 7,884,000x° + 9,344,775x°

+5,316,100x* + 203,355x> — 2,426,940x% — 544,401x + 118,017,

1(7/50) 406,357,216,255,013 0 (2.27)
= — < ) .
156,250,000,000

H (x) =1,518,750x° + 8,235,000x" + 27,465,375x° + 47,304,000x° + 46,723,875x"

+21,264,400x° + 610,065 — 4,853,880x — 544,401, (2.28)

120,000,368
— <0

H(1/3)=- 43

(2.29)
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From Lemma 2.2, (2.28) and (2.29) we know that /(x) is strictly decreasing on (7/50,1/3),
then (2.27) leads to the conclusion that /(x) < 0 for x € (7/50,1/3).
Therefore,

1 4 45 14
fi(9/5,%) < |:§10g(x2 +x+ §> + 9 10g,<x2 +X+ E)

2x 1
-+
x2+9/5  x+9/5 ], 0
1 ) 11,197 45 ) 10,591 159,550

og —— + —log +
92 7,500 92 722,500 441,253

=-0.0026...<0

for x € (7/50,1/3) follows from (2.25) and (2.26) together with /(x) < O for x €
(7/50,1/3). O

Lemma2.10 Letp € [3/2,2] and f3(p, x) be defined by (2.20). Then there exists n(p) € (0,1)
such that f3(p,x) < 0 for x € (0,n(p)) and f3(p,x) > 0 for x € (n(p),1).

Proof Let

2px) = (+* +p)3ﬁ,(p,x) = («? +p)31/f”(x +1)+ % —4x° + 12px. (2.30)
Then simple computations lead to

gp0)=p "M +2,  g(p17)=(+1)*y"(2)+12p-2, (2.31)

(x2 +p)31ﬁ’”(x +1)+ 6x(x2 +p)21p”(x +1)

6(x* +p)®  12x(x* +p)?
T wept | e

9gp>x) _
ox

—12x% +12p. (2.32)

It follows from the first inequalities in (2.2) and (2.3) together with the identity
Y (x +1) = P (x) + (=1)"n!/x"* that

2 1 2

L P VA P A P VER (2.33)
YW+ =y (x+2)+ > 2 - L + 6 (2.34)
(x+1%* ~ (x+3/2)3 (x+3/2)5 (x+1)* ’
From (2.32)-(2.34) we have
8g(p7x) > (52 3 2 1 6
ox (x +p) [(x+ 3/2p3  (x+3/2)° " (x+1)4]
, 1 2
+03(x" + ) |:_(x 1322 (x+ 1)3]
6(x? +p)®  12x(x? + p)? )
Twr wer T

- (2x + 3)%(x + D*(x + p)*’
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where

6 16
apx) =) b =) bt (2.36)
k=0 k=7

with

bo = (785p* + 1,458p” —729)p°,

by =2(1,375p" + 679p° + 5,346p° +2,916p — 1,944)p>,

by = (3,992p° +5,093p* + 32,250p” + 41,310p” + 2,106p — 729)p?,

bs =2(1,544p° + 3,955p" + 27,270p> + 60,214p” + 30,186p + 1,701)p?,

by = (1,352p° + 6,520p° + 56,049p* + 187,562p> + 184,880p> + 38,070p + 2,187)p,
bs =2(160p° + 1,510p° + 16,743p* + 78,961p° + 128,815p> + 54,729p + 5,832)p,

be = 32p" +752p° + 8,088p° + 44,529p* + 135,746p° + 123,972p* +19,926p — 729,
b, = —80p° + 3,000p° + 47,018p* +106,872p% + 27,156p> + 9,720p + 5,346,

bg = 2,904p° + 60,104p* + 245,744p> + 259,818p* + 99,246p + 17,334,

by = 864p° + 31,572p* + 204,464p> + 360,816p” +195,790p + 34,398,

by = 96p° + 8,896p" + 96,576p° + 272,304p> + 216,076p + 46,726,

by = 1,264p* + 26,944p° + 126,120p* + 151,960p + 44,884,

by = 64p* + 4,096p° + 35,712p” + 69,752p + 30,400,

b3 = 256p° + 5,664p> + 20,320p + 14,180,

b = 384p” + 3,424p + 4,336,

b5 =256p + 784,

bis = 16,

a(p,1) = -199,181 — 732,767p — 813,801p> — 48,835p° + 408,665p*

+189,699p° + 24,733p° +12,319p7, (2.37)
90,546,875

From Lemma 2.2, (2.37) and (2.38) we clearly see that

gi(p,1)>0 (2.39)

for p € [3/2,1].

Making use of Lemma 2.2 again, and (2.36) and (2.39) together with the facts that b > 0
for p € [3/2,1] and k = 0,1,2,...,16 we know that g;(p,x) > 0 for p € [3/2,1] and x € (0,1).
Then inequality (2.35) leads to the conclusion that the function x — g(p,x) is strictly in-
creasing on (0,1) for p € [3/2,2].
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From (2.2) and the identity ¥ (x) = " (x + 1) + (=1)"*1n!/x"* we get

1 " o _ 2
—mfl/f(x+1)—1/f(x+2) 1)
1 1 2

=- + - .
— (x+3/2)% 4x+3/2)* (x+1)3

(2.40)

Taking x = 1 in the first inequality of (2.40) and x = 0 in the second inequality of (2.40),

one has
4 194
"2)>--, "1) <-—. 2.41
VRz-g  VOs-— (241)
It follows from (2.31) and (2.41) that
194 (3\° 73
,0" - = 2=-—x<0, 2.42
8(p.07) = 81X<2>+ ivh 242
- 4 3
g(p1 )Z—§(p+1) +12p -2 (2.43)
for p € [3/2,2].
Note that
4 3 "4
—§(p+1) +12p-2 =§(p+4)(2—p). (2.44)
Inequality (2.43) and equation (2.44) imply that
( 1-)>—é i 3+12><§—2—@>0 (2.45)
sS85 ="9\2 2 "7 18 '

for p € [3/2,2].
Therefore, Lemma 2.10 follows easily from (2.30), (2.42), (2.45) and the monotonicity
of the function x — g(p, x) on the interval (0, 1). O

Lemma 2.11 Let p € [8/5,9/5] and f,(p,x) be defined by (2.19). Then there exist
m), n2(p) € (0,1) with n1(p) < na(p) such that fr(p,x) > 0 for x € (0, m(p)) U (n2(p), 1) and
fa(p,x) < 0 for x € (m(p), n2(p))-

Proof 1t follows from (2.19) that

50,0 - 6n_22 (p ~ \/6(71212 6) + 6) (p N \/6(772_-; 6) — 6) .0, (2.46)
P 3 b4
A1) - (m2 - 6)p? +2(n? - 12)p + w2 o (2.47)

6(p +1)2

for p € [8/5,9/5].
From Lemma 2.10 and [8/5,9/5] C [3/2,2] we know that there exists n(p) € (0,1) such
that the function x — fo(p,x) is strictly decreasing on (0, 7(p)) and strictly increasing
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on (n(p),1). Then Lemma 2.7 leads to the conclusion that

f(p:n(p)) <folp1/3) < 0. (2.48)

Therefore, there exist 71(p) € (0, n(p)) and n2(p) € (n(p),1) such that f,(p,x) > 0 for x €
(0, m(p)) U (n2(p),1) and fo(p, x) < O for x € (n1(p), n2(p)) follow from (2.46)-(2.48) and the
piecewise monotonicity of the function x — f,(p, %) on the interval (0,1). O

3 Main results
Theorem 3.1 Letp >0 and py =y /(1-y) =1.365.... Then the inequality

2

Mx+1)> 2 (3.1)
x+
holds for all x € (0,1) if and only if p < po, and the inequality
2
Fes1) < L2 P0) (3.2)
X + pPo
holds for all x € (0,1) if and only if u > o, where
r 1
tho = w ~1.027... (3.3)
(xo +po)
and xy = 0.346.... is the unique solution of the equation
2 1
vx+1) - . =0 (3.4)

x2+py  x+po

on the interval (0,1).

Proof If inequality (3.1) holds for all x € (0,1), then p < p, follows easily from

2
log (% +1) —log(%%) 1
lim e y@r —— =y -2 >0

x—>1- 1-x 1+p 1+p

Next, we prove that inequality (3.1) holds for all x € (0,1) and p = py and (3.2) holds for
all x € (0,1) if and only if © > wo.
Let f(p,x), fi(p, %), f2(p, x) be defined by (2.17)-(2.19) and

(& + po)® (** +po)® 2p0 (& +po)
_ x) = > TPOS ) P A <N ) 3.5
g(x) 2 f2(po, %) o (x+1) 2 2t po)? (3.5)
Then elaborated computations lead to
f(pO’OJr) Zf(Po; 1_) = O’ (36)
11—y — 2
fl(PO’W) = # >0, fl(POrl_) =0, (3.7)

2 2 2 2
20 =00, g(1)= (m* - 6)py + 2(;1 12)po + .0, 3.8)
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Z) = O +po)*Y"(x+1)  2(pg — MY (x+1)

x2 x3

_2po [x% — 4a — 6pox? — 2P (3po + )x — (2po + 1)p3]

(x + po)>x®

. (3.9)

It follows from the second inequality in (2.1) and the first inequality in (2.2) together
with (3.9) that

@2 +po)*  2(pf—xh)
x2(x+1/2)2  (x+1/2)x3
2polat — 4 — 6pox? — 2po(3po + 1)x — (2po + 1)p3]
(x + po)3x®

gx) >

2
T x3(2x +1)2(x + po)

541(%),
where

ax) = 248 + 2(3po + 1)x’ + 2po(3po — 1)x° + 2po (p(z) —3po + 6)965
— po(10p5 — 18po — 15)x* — 2po(po + 2) (285 — 7po — 1)
—2p5(5p5 — 11po — 7)x* = 2p3(po + 1) (3pg — 4po — 1)x

- p3(20% - 2po - 1).

It is easy to verify that all the coefficients of the polynomial g;(x) are positive, which
implies that g(x) is strictly increasing on (0,1), then from (3.5) and (3.8) we know that
there exists n € (0,1) such that the function fi(po,x) is strictly decreasing on (0,7) and
strictly increasing on (,1).

It follows from (2.18) and (3.7) together with the piecewise monotonicity of the function
fi(po,x) on the interval (0, 1) that there exists xo € (0,1) such that f (po, x) is strictly increas-
ing on (0,x) and strictly decreasing on (xp,1) and % is the unique solution of equation
(3.4) on the interval (0,1).

Therefore, the desired results follow easily from (2.17), (3.3), (3.6) and the piecewise
monotonicity of the function f(po, x) on the interval (0,1) together with the fact that the
function p — (x? + p)/(x + p) is strictly increasing.

Numerical computations show that xg = 0.346... and g = (xo + po)T"(xo +1)/(x3 + po) =
1.027.... O

Theorem 3.2 The inequality

x2 +

X |

Fx+1) >

X+

X |=

holds for all x € (0,x*), and its reverse inequality

x2 +

X |=

Fx+1)<

X+

X |=
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holds for all x € (x*,1), where x* = 0.385... is the unique solution of the equation

Mx+1)-

X =

on the interval (0,1).

Proof Let f(p,x), fi(p,x) and fo(p,x) be, respectively, defined by (2.17), (2.18) and (2.19).
Then simple computations lead to

f(l,0*> =f<l,1‘> =0, (3.10)

14 Y

fl(l,0+) =0, ﬁ(l,l‘) _Lloy-y? > 0. (3.11)
Y 4 1+y

From Lemma 2.11 and 1/y = 1.732... € [8/5,9/5] we know that there exist
m1/y),n2(1/y) € (0,1) with n;(1/y) < n2(1/y) such that fi(1/y,x) is strictly increasing on
(0,m(1/y)) U (n2(1/y),1) and strictly decreasing on (n1(1/y), n2(1/y)). We claim that

Ay, m/y)) <0. (3.12)

Indeed, if f1(1/y,n2(1/y)) > 0, then the piecewise monotonicity of the function f(1/y, x)
on the interval (0,1) and (3.11) lead to the conclusion that f(1/y, ) is strictly increasing on
(0,1), which contradicts (3.10).

It follows from (3.11) and (3.12) together with the piecewise monotonicity of the function

fil/y,x) on the interval (0,1) that there exist nj(1/y) € (m(1/y),n2(1/y)) and n3(1/y) €
(n2(1/y),1) such that f(1/y,x) is strictly increasing on (0, 7y (1/y)) U (5(1/y),1) and strictly
decreasing on (] (1/y), n5(1/y)).

Therefore, Theorem 3.2 follows easily from (2.17) and (3.10) together with the piecewise
monotonicity of f(1/y,x) on (0,1). Numerical computations show that x* =0.385.... O

Theorem 3.3 The double inequality

Aa?+2) X+ 2
—— <Tx+1)< 5 (3.13)
X+ 5 X+ 5
holds for all x € (0,1) with the best possible constant
519 +9)'(to +1
po C @D g0y (3.14)
51’02 +9
where tp = 0.719... is the unique solution of the equation
2x 1
Yx+1) - ——5 + 5 =0 (3.15)
¥+z x+z

on the interval (0,1).

Page 13 of 17
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Proof Let f(p,x), fi(p,x) and fo(p,x) be, respectively, defined by (2.17), (2.18) and (2.19).

Then simple computations lead to

f<§»0*> =f<§»1‘) =0, (3.16)

9 5 9 9
ﬁ(§,0+>=§—'}/<0, ﬁ(g,l)zﬂ—y>0 (317)

It follows from Lemma 2.11 that there exist 1;(9/5),12(9/5) € (0,1) with 7,(9/5) <
12(9/5) such that £;(9/5,x) > 0 for x € (0,171(9/5)) U (12(9/5),1) and £,(9/5,x) < 0 for
x € (m(9/5),112(9/5)), and f1(9/5,%) is strictly increasing on (0,171(9/5)) U (12(9/5),1) and
strictly decreasing on (171(9/5), 12(9/5)). Then Lemmas 2.7-2.9 lead to the conclusion that
n1(9/5) € (7/50,1/3) and

£i(9/5,m(9/5)) < 0. (3.18)

From (2.18), (3.17), (3.18) and the piecewise monotonicity of f1(9/5,x) on (0, 1) we clearly
see that there exists 7y such that 7y is the unique solution of equation (3.15) on the interval
(0,1), and f(9/5,x) is strictly decreasing on (0, 79) and strictly increasing on (7o, 1).

Equation (3.16) and the piecewise monotonicity of the function f(9/5, x) on the interval
(0,1) lead to the conclusion that

f(9/5,7) <f(9/5,x) <0 (3.19)

for all x € (0,1).

Therefore, inequality (3.13) holds for all x € (0,1) follows from (2.17) and (3.19). We
clearly see that the parameter A given by (3.14) is the best possible constant such that
the first inequality in (3.13) holds for all x € (0,1). Numerical computations show that
70=0.719...and A =0.991.... O

Remark 3.4 From Theorems 3.1 and 3.3 we clearly see that the double inequality

x% + po X2+ py

<I'x+1)<
X+ po x+p1

(3.20)

holds forallx € (0,1) with pg = y/(1-y) =1.365...and p; = 9/5, the constant p, appears to
be the best possible, but this is not true for p;, and a slightly smaller value for p, is possible.
Unfortunately, we cannot find the best possible constant p; in the article; we leave this as

an open problem for the reader.

Remark 3.5 From the monotonicity of the function p — (x? + p)/(x + p) we clearly see
that both the upper and lower bounds for I'(x + 1) given in (3.20) are better than that
given in (1.3), and the first (second) inequality in Theorem 3.2 is the improvement of the
first (second) inequality in (1.3) for x € (0,x*) (x € (x*,1)), where x* = 0.385... is given by
Theorem 3.2.
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Remark 3.6 From Lemma 2.6,y + y2<1,1/y >1,y/(1-y)>1and (x*> + 1)/(x + 1) < 1 for
x € (0,1) one has

241\’ 2+1 2241\ /) 2241\ 20
> ly > > .
x+1 X+ = x+1 x+1
Therefore, the lower bound for I'(x + 1) given in (3.20) is better than that given in (1.4),
the first inequality in Theorem 3.2 is an improvement of the first inequality in (1.4) for

x € (0,x*) and the second inequality in Theorem 3.2 is an improvement of the second
inequality in (1.4) for x € (x*,1), where x* = 0.385... is given by Theorem 3.2.

Remark 3.7 It is not difficult to verify that

min (xz +1>y =[2(v/2-1] =0897...,

xc(O)\ x+1

min (2'7x") = 2¢72 = 0.958...,
x€(0,1)

2+

wio

<0.89

o

X+

for x € (0.44,0.45) and

x2 +

uiho

<0.95
X+

o

for x € (6o,61), where 6y = (0.95 — 4/0.5425)/2 = 0.106.... and 6; = (0.95 + 1/0.5425)/2 =
0.843.... Therefore, the upper bound (x? + 9/5)/(x + 9/5) for I'(x + 1) given in (3.20) is
better than that given in (1.4) for x € (0.44,0.45), and it is also better than that given in
(1.2) for x € (69, 61).

Remark 3.8 Let

11T\ x4+
— X _ -y
L3(9€)—<§+ 1+x> x*, Ly(x) = P

Then numerical computations show that

L5(1/8) = 0.846... < L4(1/8) = 0.926...,
L5(1/4) = 0.814... < L4(1/4) = 0.883...,
L5(3/8) = 0.811... < L3(3/8) = 0.865...,
L5(1/2) = 0.826... < L4(1/2) = 0.865...,
L5(5/8) = 0.794... < L4(5/8) = 0.882...,
L3(3/4) =0.891... < L4(3/4) = 0.911.. .,

L3(7/8)=0.913... < Ly4(7/8) =0.951....
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Therefore, there exists § € (0,1/8) such that the lower bound for I'(x + 1) given in (3.20)
is better than that given in (1.2) for x € (,1/8 + §) U (1/4 - §,1/4 + §) U (3/8 = §,3/8 + §) U
(1/2-8,1/2+8)U(5/8—8,5/8 +8) U (3/4 —8,3/4 + 8) U(7/8— 8,718 + 8).

4 Results and discussion

In this paper, we provide the accurate bounds for the classical gamma function in terms
of very simple rational functions, which can be used to estimate the value of the gamma
function in the area of engineering and technology.

5 Conclusion
In the article, we present several very simple and practical rational bounds for the gamma
function, which can be regarded as a simple estimation of the value of the gamma function.

The given results are improvements of some well-known results.
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