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Abstract
The split feasibility problem (SFP) is finding a point x ∈ C such that Ax ∈ Q, where C
and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2, and
A : H1 → H2 is a bounded linear operator. Byrne’s CQ algorithm is an effective
algorithm to solve the SFP, but it needs to compute ‖A‖, and sometimes ‖A‖ is
difficult to work out. López introduced a choice of stepsize λn, λn =

ρnf (xn)
‖∇f (xn)‖2 ,

0 < ρn < 4. However, he only obtained weak convergence theorems. In order to
overcome the drawbacks, in this paper, we first provide a regularized CQ algorithm
without computing ‖A‖ to find the minimum-norm solution of the SFP and then
obtain a strong convergence theorem.
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1 Introduction
Let H and H be real Hilbert spaces and let C and Q be nonempty closed convex subsets
of H and H, and let A : H → H be a bounded linear operator. Let N and R denote the
sets of positive integers and real numbers.

In , Censor and Elfving [] came up with the split feasibility problem (SFP) in finite-
dimensional Hilbert spaces. In infinite-dimensional Hilbert spaces, it can be formulated
as

Find x ∈ C such that Ax ∈ Q, (.)

where C and Q are nonempty closed convex subsets of H and H, and A : H → H is a
bounded linear operator. Suppose that SFP (.) is solvable, and let S denote its solution
set. The SFP is widely applied to signal processing, image reconstruction and biomedical
engineering [–].

So far, some authors have studied SFP (.) [–]. Others have also found a lot of al-
gorithms to study the split equality fixed point problem and the minimization problem
[–]. Byrne’s CQ algorithm is an effective method to solve SFP (.). A sequence {xn},
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generated by the formula

xn+ = PC
(
xn – λnA∗(I – PQ)Axn

)
, ∀n ≥ , (.)

where the parameters λn ∈ (, 
‖A‖ ), PC : H → C, and PQ : H → Q, is a set of orthogonal

projections.
As is well-known, Cencor and Elfving’s algorithm needs to compute A–, and Byrne’s

CQ algorithm needs to compute ‖A‖. However, they are difficult to calculate.
Consider the following convex minimization problem:

min
x∈C

f (x), (.)

where

f (x) =


∥
∥(I – PQ)Ax

∥
∥, (.)

∇f (x) = A∗(I – PQ)Ax, (.)

f (x) is differentiable and the gradient ∇f is L-Lipschitz with L > .
The gradient-projection algorithm [] is the most effective method to solve (.). A se-

quence {xn} is generated by the recursive formula

xn+ = PC(I – λn∇f )xn, ∀n ≥ , (.)

where the parameter λn ∈ (, 
L ). Then we know that Byrne’s CQ algorithm is a special case

of the gradient-projection algorithm.
In Byrne’s CQ algorithm, λn depends on the operator norm ‖A‖. However, it is difficult

to compute. In , Yang [] considered λn as follows:

λn :=
ρn

‖∇f (xn)‖ ,

where ρn >  and satisfies

∞∑

n=

ρn = ∞,
∞∑

n=

ρ
n < ∞.

In , López [] introduced λn as follows:

λn :=
ρnf (xn)

‖∇f (xn)‖ ,

where  < ρn < . However, López’s algorithm only has weak convergence.
In , Yao [] introduced a self-adaptive method for the SFP and obtained a strong

convergence theorem. However, the algorithm is difficult to work out.
In general, there are two types of algorithms to solve SFPs. One is the algorithm which

depends on the norm of the operator. The other is the algorithm without a priori knowl-
edge of the operator norm. The first type of algorithm needs to calculate ‖A‖, but ‖A‖
is not easy to work out. The second type of algorithm also has a drawback. It always has
weak convergence. If we want to obtain strong convergence, we have to use the compos-
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ited iterative method, but then the algorithm is difficult to calculate. In order to overcome
the drawbacks, we propose a new regularized CQ algorithm without a priori knowledge
of the operator norm to solve the SFP and we obtain a strong convergence theorem.

Consider the following regularized minimization problem:

min
x∈C

fβ (x) := f (x) +
β


‖x‖, (.)

where the regularization parameter β > . A sequence {xn} is generated by the formula

xn+ = PC
(
I – λn(∇f + βnI)

)
xn, ∀n ≥ , (.)

where ∇f (xn) = A∗(I – PQ)Axn,  < βn < , and λn = ρnf (xn)
‖∇f (xn)‖ ,  < ρn < . Then, under suit-

able conditions, the sequence {xn} generated by (.) converges strongly to a point z ∈ S,
where z = PS() is the minimum-norm solution of SFP (.).

2 Preliminaries
In this part, we introduce some lemmas and some properties that are used in the rest of
the paper. Throughout this paper, let H and H be real Hilbert spaces, A : H → H be
a bounded linear operator and I be the identity operator on H or H. If f : H → R is a
differentiable functional, then the gradient of f is denoted by ∇f . We use the sign ‘→’ to
denote strong convergence and use the sign ‘⇀’ to denote weak convergence.

Definition . (See []) Let D be a nonempty subset of H , and let T : D → H . Then T is
firmly nonexpansive if

‖Tx – Ty‖ +
∥∥(I – T)x – (I – T)y

∥∥ ≤ ‖x – y‖, ∀x, y ∈ D.

Lemma . (See []) Let T : H → H be an operator. Then the following are equivalent:
(i) T is firmly nonexpansive,

(ii) I – T is firmly nonexpansive,
(iii) T – I is nonexpansive,
(iv) ‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ,
(v)  ≤ 〈Tx – Ty, (I – T)x – (I – T)y〉.

Recall PC : H → C is an orthogonal projection, where C is a nonempty closed convex
subset of H . Then to each point x ∈ H , the unique point PCx ∈ C satisfies the following
property:

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

PC also has the following characteristics.

Lemma . (See []) For a given x ∈ H ,
(i) z = PCx ⇐⇒ 〈x – z, z – y〉 ≥ , ∀y ∈ C,

(ii) z = PCx ⇐⇒ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C,
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈ H .
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Lemma . (See []) Let f be given by (.). Then
(i) f is convex and differential,

(ii) ∇f (x) = A∗(I – PQ)Ax, ∀x ∈ H ,
(iii) f is w-lsc on H ,
(iv) ∇f is ‖A‖-Lipschitz: ‖∇f (x) – ∇f (y)‖ ≤ ‖A‖‖x – y‖, ∀x, y ∈ H .

Lemma . (See []) Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – αn)an + αnδn, n ≥ ,

where {αn}∞n= is a sequence in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= αn = ∞,

(ii) lim supn→∞ δn ≤  or
∑∞

n= αn|δn| < ∞.
Then limn→∞ an = .

Lemma . (See []) Let {γn}n∈N be a sequence of real numbers such that there exists a
subsequence {γni}i∈N of {γn}n∈N such that γni < γni+ for all i ∈ N. Then there exists a non-
decreasing sequence {mk}k∈N of N such that limk→∞ mk = ∞ and the following properties
are satisfied by all (sufficiently large) numbers k ∈N:

γmk ≤ γmk +, γk ≤ γmk +.

In fact, mk is the largest number n in the set {, . . . , k} such that the condition

γn ≤ γn+

holds.

3 Main results
In this paper, we always assume that f : H → R is a real-valued convex function, where
f (x) = 

‖(I – PQ)Ax‖, the gradient ∇f (x) = A∗(I – PQ)Ax, C and Q are nonempty closed
convex subsets of real Hilbert spaces H and H, and A : H → H is a bounded linear
operator.

Algorithm . Choose an initial guess x ∈ H arbitrarily. Assume that the nth iterate
xn ∈ C has been constructed and ∇f (xn) �= . Then we calculate the (n + )th iterate xn+

via the formula

xn+ = PC
(
xn – λn

(
A∗(I – PQ)Axn + βnxn

))
, ∀n ≥ , (.)

where λn is chosen as follows:

λn =
ρnf (xn)

‖∇f (xn)‖

with  < ρn < . If ∇f (xn) = , then xn+ = xn is a solution of SFP (.) and the iterative
process stops. Otherwise, we set n := n +  and go to (.) to evaluate the next iterate xn+.
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Theorem . Suppose that S �= ∅ and the parameters {βn} and {ρn} satisfy the following
conditions:

(i) {βn} ⊂ (, ), limn→∞ βn = ,
∑∞

n= βn = ∞,
(ii) ε ≤ ρn ≤  – ε for some ε >  small enough.

Then the sequence {xn} generated by Algorithm . converges strongly to z ∈ S, where
z = PS().

Proof Let x∗ ∈ S. Since minimization is an exactly fixed point of its projection mapping,
we have x∗ = PCx∗ and Ax∗ = PQAx∗.

By (.) and the nonexpansivity of PC , we derive

∥
∥xn+ – x∗∥∥ =

∥
∥PC

(
xn – λn

(
A∗(I – PQ)Axn + βnxn

))
– PCx∗∥∥

≤ ∥
∥( – λnβn)xn – λnA∗(I – PQ)Axn – x∗∥∥

=
∥∥
∥∥λnβn

(
–x∗) + ( – λnβn)

(
xn –

λn

 – λnβn
A∗(I – PQ)Axn – x∗

)∥∥
∥∥



= λnβn
∥
∥x∗∥∥ + ( – λnβn)

∥∥
∥∥xn –

λn

 – λnβn
A∗(I – PQ)Axn – x∗

∥∥
∥∥



– λnβn( – λnβn)
∥∥
∥∥xn –

λn

 – λnβn
A∗(I – PQ)Axn

∥∥
∥∥



≤ λnβn
∥∥x∗∥∥ + ( – λnβn)

∥∥∥
∥xn –

λn

 – λnβn
A∗(I – PQ)Axn – x∗

∥∥∥
∥



. (.)

Since PQ is firmly nonexpansive, from Lemma ., we deduce that I – PQ is also firmly
nonexpansive. Hence, we have

〈
A∗(I – PQ)Axn, xn – x∗〉 =

〈
(I – PQ)Axn, Axn – Ax∗〉

=
〈
(I – PQ)Axn – (I – PQ)Ax∗, Axn – Ax∗〉

≥ ∥∥(I – PQ)Axn
∥∥

= f (xn). (.)

Note that ∇f (xn) = A∗(I – PQ)Axn. From (.), we obtain

∥
∥∥
∥xn –

λn

 – λnβn
A∗(I – PQ)Axn – x∗

∥
∥∥
∥



=
∥∥xn – x∗∥∥ +

λ
n

( – λnβn)

∥∥A∗(I – PQ)Axn
∥∥ –

λn

 – λnβn

〈
A∗(I – PQ)Axn, xn – x∗〉

=
∥
∥xn – x∗∥∥ +

λ
n

( – λnβn)

∥
∥∇f (xn)

∥
∥ –

λn

 – λnβn

〈∇f (xn), xn – x∗〉

≤ ∥
∥xn – x∗∥∥ +

λ
n

( – λnβn)

∥
∥∇f (xn)

∥
∥ –

λn

 – λnβn
f (xn)

=
∥
∥xn – x∗∥∥ +


( – λnβn) · ρ

nf (xn)

‖∇f (xn)‖ · ∥∥∇f (xn)
∥
∥

–
ρnf (xn)

( – λnβn)‖∇f (xn)‖ · f (xn)
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=
∥
∥xn – x∗∥∥ +

ρ
nf (xn)

( – λnβn)‖∇f (xn)‖ –
ρnf (xn)

( – λnβn)‖∇f (xn)‖

=
∥
∥xn – x∗∥∥ – ρn

(
 –

ρn

 – λnβn

)
· f (xn)

( – λnβn)‖∇f (xn)‖ . (.)

By condition (ii), without loss of generality, we assume that ( – ρn
–λnβn

) >  for all n ≥ .
Thus from (.) and (.), we obtain

∥
∥xn+ – x∗∥∥ ≤ λnβn

∥
∥x∗∥∥ + ( – λnβn)

(∥
∥xn – x∗∥∥

– ρn

(
 –

ρn

 – λnβn

)
· f (xn)

( – λnβn)‖∇f (xn)‖

)

= λnβn
∥∥x∗∥∥ + ( – λnβn)

∥∥xn – x∗∥∥

– ρn

(
 –

ρn

 – λnβn

)
· f (xn)

‖∇f (xn)‖

≤ λnβn
∥
∥x∗∥∥ + ( – λnβn)

∥
∥xn – x∗∥∥

≤ max
{∥∥x∗∥∥,

∥
∥xn – x∗∥∥}. (.)

Hence, {xn} is bounded.
Let z = PS. From (.), we deduce

 ≤ ρn

(
 –

ρn

 – λnβn

)
f (xn)

‖∇f (xn)‖

≤ λnβn‖z‖ + ( – λnβn)‖xn – z‖ – ‖xn+ – z‖. (.)

We consider the following two cases.
Case . One has ‖xn+ – z‖ ≤ ‖xn – z‖ for every n ≥ n large enough.
In this case, limn→∞ ‖xn – z‖ exists as finite and hence

lim
n→∞

(‖xn+ – z‖ – ‖xn – z‖) = . (.)

This, together with (.), implies that

ρn

(
 –

ρn

 – λnβn

)
f (xn)

‖∇f (xn)‖ → .

Since lim infn→∞ ρn( – ρn
–λnβn

) ≥ ε (where ε >  is a constant), we get

f (xn)

‖∇f (xn)‖ → .

Noting that ‖∇f (xn)‖ is bounded, we deduce immediately that

lim
n→∞ f (xn) = . (.)



Tian and Zhang Journal of Inequalities and Applications  (2017) 2017:207 Page 7 of 10

Next, we prove that

lim sup
n→∞

〈–z, xn – z〉 ≤ . (.)

Since {xn} is bounded, there exists a subsequence {xni} satisfying xni ⇀ ẑ and

lim sup
n→∞

〈–z, xn – z〉 = lim
i→∞〈–z, xni – z〉.

By the lower semicontinuity of f , we get

 ≤ f (ẑ) ≤ lim inf
i→∞ f (xni ) = lim

n→∞ f (xn) = .

So

f (ẑ) =


∥∥(I – PQ)Aẑ

∥∥ = .

That is, ẑ is a minimizer of f , and ẑ ∈ S. Therefore

lim sup
n→∞

〈–z, xn – z〉 = lim
i→∞〈–z, xni – z〉

= 〈–z, ẑ – z〉
≤ . (.)

Then we have

‖xn+ – z‖ =
∥∥PC

(
xn – λnA∗(I – PQ)Axn – λnβnxn

)
– PCz

∥∥

≤ ∥∥( – λnβn)xn – λnA∗(I – PQ)Axn – z
∥∥

=
∥∥
∥∥λnβn(–z) + ( – λnβn)

(
xn –

λn

 – λnβn
A∗(I – PQ)Axn – z

)∥∥
∥∥



= (λnβn)‖z‖

+ ( – λnβn)
∥∥
∥∥xn –

λn

 – λnβn
A∗(I – PQ)Axn – z

∥∥
∥∥



+ ( – λnβn)λnβn

〈
xn –

λn

 – λnβn
A∗(I – PQ)Axn – z, –z

〉

≤ ( – λnβn)‖xn – z‖ + (λnβn)‖z‖

+ ( – λnβn)λnβn〈xn – z, –z〉 + λ
nβn

〈∇f (xn), z
〉

≤ ( – λnβn)‖xn – z‖

+ λnβn
(
λnβn‖z‖ + ( – λnβn)〈xn – z, –z〉 + λn

∥∥∇f (xn)
∥∥ · ‖z‖).

Note that ‖∇f (xn)‖ is bounded, and that λn‖∇f (xn)‖ = ρnf (xn)
‖∇f (xn)‖ · ‖∇f (xn)‖. Thus

λn‖∇f (xn)‖ →  by (.). From Lemma ., we deduce that

xn → z.
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Case . There exists a subsequence {‖xnj – z‖} of {‖xn – z‖} such that

‖xnj – z‖ < ‖xnj+ – z‖ for all j ≥ .

By Lemma ., there exists a strictly nondecreasing sequence {mk} of positive integers
such that limk→∞ mk = +∞ and the following properties are satisfied by all numbers k ∈N:

‖xmk – z‖ ≤ ‖xmk + – z‖, ‖xk – z‖ ≤ ‖xmk + – z‖. (.)

We have

‖xn+ – z‖ =
∥
∥PC

(
xn – λnA∗(I – PQ)Axn – λnβnxn

)
– PCz

∥
∥

≤ ∥∥( – λnβn)xn – λnA∗(I – PQ)Axn – z
∥∥

=
∥∥
∥∥λnβn(–z) + ( – λnβn)

(
xn –

λn

 – λnβn
A∗(I – PQ)Axn – z

)∥∥
∥∥

≤ λnβn
∥
∥(–z)

∥
∥ + ( – λnβn)

∥∥
∥∥xn –

λn

 – λnβn
A∗(I – PQ)Axn – z

∥∥
∥∥

≤ λnβn‖z‖ + ( – λnβn)‖xn – z‖.

Consequently,

 ≤ lim
k→∞

(‖xmk + – z‖ – ‖xmk – z‖)

≤ lim sup
n→∞

(‖xn+ – z‖ – ‖xn – z‖)

≤ lim sup
n→∞

(
λnβn‖z‖ + ( – λnβn)‖xn – z‖ – ‖xn – z‖)

= lim sup
n→∞

λnβn
(‖z‖ – ‖xn – z‖)

= .

Hence,

lim
k→∞

(‖xmk + – z‖ – ‖xmk – z‖) = . (.)

By a similar argument to that of Case , we prove that

lim sup
k→∞

〈–z, xmk – z〉 ≤ ,

‖xmk + – z‖ ≤ ( – λmk βmk )‖xmk – z‖ + λmk βmk σmk , (.)

where

σmk = λmk βmk ‖z‖ + ( – λmk βmk )〈xmk – z, –z〉 + λmk

∥
∥∇f (xmk )

∥
∥ · ‖z‖.

In particular, from (.), we get

λmk βmk ‖xmk – z‖ ≤ ‖xmk – z‖ – ‖xmk + – z‖ + λmk βmk σmk . (.)
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Since ‖xmk – z‖ ≤ ‖xmk + – z‖, we deduce that

‖xmk – z‖ – ‖xmk + – z‖ ≤ .

Then, from (.), we have

λmk βmk ‖xmk – z‖ ≤ λmk βmk σmk .

Then

lim sup
k→∞

‖xmk – z‖ ≤ lim sup
k→∞

σmk ≤ . (.)

Then, from (.), we deduce that

lim sup
k→∞

‖xmk + – z‖ = . (.)

Thus, from (.) and (.), we conclude that

lim sup
k→∞

‖xk – z‖ ≤ lim sup
k→∞

‖xmk + – z‖ = .

Therefore, xn → z. This completes the proof. �

4 Conclusion
Recently, the SFP has been studied extensively by many authors. However, some algo-
rithms need to compute ‖A‖, and this is not an easy thing to work out. Others do not need
to compute ‖A‖, but the algorithms always have weak convergence. If we want to obtain
strong convergence theorems, the algorithms are complex and difficult to calculate. We
try to get over the drawbacks. In this article, we use the regularized CQ algorithm with-
out computing ‖A‖ to find the minimum-norm solution of the SFP, where λn = ρnf (xn)

‖∇f (xn)‖ ,
 < ρn < . Then, under suitable conditions, the explicit strong convergence theorem is
obtained.
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