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where k > 1 is any given integer. Based on the obtained result, we establish new
upper bounds for (1 + 1/x)*. As an application, we give a generalized Carleman-type
inequality.
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1 Introduction
Leta,>0forneN:={1,2,...}and 0< Y >, a, < 0. Then

[o¢] (o]
Z(ﬂltlz cea)<e Z a,. 1.1)
n=1 n=1

The constant e is the best possible. The inequality (1.1) was presented in 1922 in [1] by Car-
leman and it is called Carleman’s inequality. Carleman discovered this inequality during
his important work on quasi-analytical functions.

Carleman’s inequality (1.1) was generalized by Hardy [2] (see also [3, p.256]) as follows:
Ifa,>0,4,>0,A,=> 1 AmforneN,and 0 <> 77 Aa, < 0o, then

o0 o0
Z)»n(ai‘la§2..~gi‘l”)1/1\” < eZAnan. (1.2)
n=1 n=1

Note that inequality (1.2) is usually referred to as a Carleman-type inequality or weighted
Carleman-type inequality. In [2], Hardy himself said that it was Pélya who pointed out this
inequality to him.
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In [4-20], some strengthened and generalized results of (1.1) and (1.2) have been given
by estimating the weight coefficient (1 + 1/n)". For example, Yang [17] proved that, for
neN,

1 71 1 1) 1 ! 1.3
e( _2(n+§)><( 7) “( _2(n+1)>’ 13)

and then used it to obtain the following strengthened Carleman inequality:

Z(ﬂlﬂz ca )" < eZ( OS] )a,,. (1.4)

n=1

Xie and Zhong [15] proved that, for x > 1,

-7 LYY oo 8 (1.5)
- +-) <ell- , .
N T amr2) U 12x + 11

and then used it to improve the Carleman-type inequality (1.2) as follows. If 0 < A,,;1 < Ay,
Ap=Y 0 Amay>0forneN,and 0< ) 2 Aya, < oo, then

A (@ d? - a) M < e (1—7>A a,. 1.6
Z n+1( 1 “2 n) Z 12(12_:)*_11 n%n ( )

n=1 n=1

Taking A, =1 in (1.6) yields

oo
1/
;(alaz ca,)"" <eZ( o +11> an, (17)

which improves (1.4).
Recently, Mortici and Hu [14] proved that, for x > 1,

x+> 5 343 2,621
a— + —
x+1; 288x%  8,640x* 41,4724
1 1\" x+> 5 343 2,621 300,901
<—-|1+-]) < T + - + , (1.8)
e\' x) " x+1 288 8,640x* 41472x° 3,483,648x°

and then they used it to establish the following improvement of Carleman’s inequality:

o0
> (may - a,)"”
n=1

> ( 12n+5 5 343 2,621 300,901 )
3

— + —
12n+11 288n®  8,640n* 41,472n° " 3,483,648n°

which can be written as

Y (@may---a)" <ey (1-z,)a, (1.9)
n=1

n=1
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where

_ 104,509,4401° + 3,628,8001* — 4,971,4564° + 5,603,472n* — 5,945,0401 — 16,549,555

17,418,240n% (12n + 11) (1.10)

&n

For information as regards the history of Carleman-type inequalities, please refer to [21—
24].
It follows from (1.8) that

1 1\* x+3 1
~(1+=) =—75+0( 5 ) =x— oo (1.11)
e X x+ﬁ X

Using the Padé approximation method, in Section 3 we derive (1.11) and the following

approximation formula:

87 37
1 1\* *?+ x4+ 1
_ 100~ T 240
. 1+x = B, T +0| <) x—> o0 (1.12)
100% * 1200

Equation (1.12) motivates us to present the following inequality:

2 87 37
P R ok iR W OO 8(75n + 34) neN. (113)
n Wy By S 1,20012 + 1,644n + 457 )’ o

Following the same method used in the proof of Theorem 3.2, we can prove the inequality
(1.13). We here omit it.
According to Pélya’s proof of (1.1) in [25],

o0 o0 1 n

Z(ﬂlﬂz ceay)n < Z(l + —> A, (1.14)
n

n=1 n=1

and then the following strengthened Carleman’s inequality is derived directly from (1.13):

00 o0
8(75n + 34)
1/n
ST Y . 115
;( 142+ n) 2( 1,200n2+1,644n+457> " (119)

which improves (1.7).
Based on the Padé approximation method, we determine the coefficients a; and b; (1 <
j < k) such that

1 . 1 X xk+a1xk_1+"'+ﬂk o 1 (1 16)
LY. + , x— 00, .
. S P a2kl

where k > 1 is any given integer. Based on the obtained result, we establish new upper
bounds for (1 + 1/x)*. As an application, we give a generalization to the Carleman-type
inequality.

The numerical values given have been calculated using the computer program MAPLE
13.
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2 Auseful lemma
For later use, we introduce the following set of partitions of an integer » € N =N \ {0} :=
1,23,...):

Ay = {(kp k. k) € NG sy +2ky + - -+ + nk, = n}. (2.1)

In number theory, the partition function p(n) represents the number of possible partitions
of n € N (e.g, the number of distinct ways of representing # as a sum of natural numbers
regardless of order). By convention, p(0) = 1 and p(n) = 0 if n is a negative integer. For more
information on the partition function p(n), please refer to [26] and the references therein.

The first values of the partition function p(n) are (starting with p(0) =1) (see [27]):
1,1,2,3,5,7,11,15, 22, 30, 42, ....

It is easy to see that the cardinality of the set A, is equal to the partition function p(n).
Now we are ready to present a formula which determines the coefficients 4; in (2.2) with

the help of the partition function given by the following lemma.

Lemma 2.1 ([28]) The following approximation formula holds true:

1\” ¢
1+-) =e =z as x — 00, 2.2
( x) ZM (2.2)

where the coefficients c; (j € N) are given by

. 1 1\ 1\ 1\
60:1 and Cj=(—1)] Z m<5> <§) (]"'—1>’ (23)

(k1,k2 e s k]')e.A/

where the A; (for j € N) are given in (2.1).

3 Padé approximant related to asymptotics for the constant e
For later use, we introduce the Padé approximant (see [29-34]). Let f be a formal power

series
f(t)=C0+C1t+Czt2+"'. (31)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

Zf:o a;t

) 3.2
1+ quzl bjﬂ ( )

[p/q)s(t) =
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where p > 0 and g > 1 are two given integers, the coefficients 4; and b; are given by (see
[29-31, 33, 34])

agp = Co,
a1 = coby + a1,

ay = Cobz + Clbl + Cy,

(3.3)
ap=Coby + -+ cp1b1 +cp,
0=cp1+Cpb1+ -+ cpguby,
0= Cpig + Cprg-1b1 + -+ - + Cpby,
and the following holds:
(p/qlf(8) - f () = O(¢+7*1). (3.4)

Thus, the first p + g + 1 coefficients of the series expansion of [p/q]s are identical to those
of f. Moreover, we have (see [32])

Uy g(t) 17 gn @) - fo(0)

Cp—q+1 Cp—q+2 e Cp+1
C Cpil [N C
P P+ p+q
lp/qls () = , 3.5)
4 gl L 1
Cp—q+1  Cp—g+2 " Cp+1
Sp Cps1 " Cpig

with f,,(x) = ¢ + c1x + - - - + ¢,x", the nth partial sum of the series f (f, is identically zero for

n<0).
Let
fx) = 2(1 + i)x (3.6)

It follows from (2.2) that, as x — oo,

[ee]
¢ 1 1 7 2,447 959 238,043
)=y L=1-—+ - - + e, (37
S ]Zoxl 2% 24x® 1653  5760x* 2,304x5  580,608x6 3.7

with the coefficients ¢; given by (2.3). In what follows, the function f is given in (3.6).
We now give a derivation of equation (1.11). To this end, we consider

1 .
Do @
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Noting that

1 11 7
a=-s, &=, =

:L
co 2 2

holds, we have, by (3.3),

ap =1,
ay=by - %,
n_1
0=15—3b,
that is,
5 11
ag =1, a = —, b= —
0 T 12 T2
We thus obtain
I+ x+2
1)) = —5 = —
+ 2% X + v
and we have, by (3.4),
5
X+ 12

11
X+ 12

1 1\* 1
_<1+_) - :O(—3>, X — OQ.
e X X

Page 6 of 12

2,447

We now give a derivation of equation (1.12). To this end, we consider

[2/2)(x) =

Noting that (3.8) holds, we have, by (3.3),

(’10:1)

1
ﬂ1:b1—§,

1
24’

—_7 1y 1
0=—g5+ 3301 —3b2,

1
612=b2—2b1+

_2447 7, .1
0=356 — i1 + 3302
that is,
1 87 37 137
aop =1, ar = ——, a)=_—, 1= T~
100 240 100
‘We thus obtain
87 37 2, 87 ., 37
[2/2],(x) = 100x T 2202 _ ¥ t100% Tt 240
\f T 1+ BT 457~ o, 137, 457
100x ' 1,200x2 100 1,200

3.8
5,760 (38)
(3.9)
(3.10)

457

by = o7

1,200
(3.11)
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and we have, by (3.4),

1 1\* 2+ x4 32 1
_<l+_> X0t o =o(;), x> o0, (312)

2, 137, . 457
x X7+ 100% * 1200

Using the Padé approximation method and the expansion (3.7), we now present a general

result given by Theorem 3.1. As a consequence, we obtain (1.16).

Theorem 3.1 The Padé approximation of order (p,q) of the asymptotic formula of the
Sfunction f(x) = %(1 + %)x (at the point x = 00) is the following rational function:

L+ Y% ax Hrax 1+ +a
(p/qlr(x) = ’q—”ﬂ = x’“’( - bl — . ) (3.13)
1+ b 2+ bxd 4.+ by,
where p > 1 and q > 1 are two given integers, the coefficients a; and b; are given by
a = bl + (1,
a) = bz + Clbl + Cy,
ay=by+--+cp1by +Cp, (3.14)
0= Cp+1 + Cpbl + e+ Cp_q+1bq,
0 =Cpig + Cprg1b1 + - + Cpby,
¢j is given in (2.3), and the following holds:
1
f@) - [p/qlrx) =0 el B (3.15)
Moreover, we have
%,ﬂ?—q(x) xg%ﬁ;z—qﬂ(x) e _];a(x)
Cp—q+1 Cp—q+2 ot Cpnl
% Cp+1 o Cpig
(p/qlr(x) = N ; , (3.16)
L r=SNNT |
Cp—q+1  Cp—g+2 " Cp+1
‘p Cps1 "0 Cpig

with f,(x) = Z;I:O %, the nth partial sum of the asymptotic series (3.7).
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Remark 3.1 Using (3.16), we can also derive (3.9) and (3.11). Indeed, we have

How AW |1 1-4L

1 1
C1 Cy -3 2%
[1/1]f(x) = ; = ;
= 1 = 1
X X
11
a & T2 %
5
_ X + iV
= 1
X+ 5
and
1 1 11 1 1, 1
,Tzfo(x) ;fl(x) %) 2 ;( —@) l—ﬂ * 222
1 11 7
a ) ] 3 24 16
1 2,447
2/2 | ¢ €3 € | |2 16 5,760
[2/2]¢(x) = — = N n
2 x 1 2 oy 1
11 7
C1 Co C3 -3 2 16
11 7 2447
€ G G 24 T16 5760
2, 87, 37
_ Xt 100% Tt 240
=2 18, a5
X7+ 100% * 1200

Remark 3.2 Setting (p, q) = (k, k) in (3.15), we obtain (1.16).
Setting
(p; 4) = (3’ 3) and (19» 61) = (4‘r 4‘),

respectively, we obtain by Theorem 3.1, as x — 00,

x 3, 162713 2 13927 . 41501
L, 1Y o nn® *aeme® eae0 0 1 (3.17)
e x) T3y 2233 0 7SS 3950767 7 :
121,212 242,424% T 29,000,880
and
x x4 4 LI57406727 3 | 8452872239 o . 81587251465 . . 15842677
Loty . 634,301,284 7,611,615,408 319,687,847,136 © 1 924,376,320
e x) T gty LATA557369 3 381598901 5 | 170870,679559 1,724,393,461,795
634,301,284 7,611,615,408 319,687,847,136° 1 38,362,541,656,320
1
so(=). (3.18)
e

Equations (3.17) and (3.18) motivate us to establish the following theorem.

Theorem 3.2 Forx >0,

x 3, 162713,2 | 13927, 41501
141 cof 1201 T 26936% ¥ 786,240 (3.19)
x 33 1 223319 5 23755 3,950,767 :
121202 %" * 2220247 * 29,090,880
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x4 + 1,157,406,727 ,.3 , 8,452,872,239 ,.2 81,587,251,465 15,842,677
<e 634,301,284 7,611,615,408 319,687,847,136 924,376,320 (3 20)
P 1,474,557,369 ,.3 , 13,811,559,391 .o , 170,870,679,559 1,724,393,461,793 :
634,301,284 7,611,615,408 319,687,847,136 38,362,541,656,320

Proof We only prove the inequality (3.20). The proof of (3.19) is analogous. In order to
prove (3.20), it suffices to show that

F(x)<0 forx>0,

where
1
Fix)=xIn(1+—-) -1
x
b 4 L167406727 13 | 8452872239 2 81587,251465 15,842,677
“In 634,301,284 7,611,615,408 319,687,847,136 924,376,320
x4 4 LA74557,369 3 13811559391 3  170,870,679,559 1,724,393,461,793
634,301,284 7,611,615,408 319,687,847,136 38,362,541,656,320

Differentiation yields

/ _ 1 Pg(x)
F'(x) —ln(l + 9_6) - Po(x)’

where

Pg(x) = 4,534,960,145,139,175,220,907,601 + 89,156,435,404,854,709,617,164,400x
+753,611,422,427,554,143,580,166,880x*
+3,400,732,641,706,885,239,015,784,320x°
+8,959,898,009,119,992,740,647,591,680x*
+14,212,846,466,921,911,377,490,790,400x°
+13,355,464,865,044,929,241,744,281,600x°
+6,842,437,276,900,714,847,214,796,800x’

+ 1,4-71,684,602,332,887,248,995,94-2,400968
and

Py(x) = (38,362,541,656,320x4 +69,999,958,848,960x> + 42,602,476,084,560x>
+9,790,470,175,800x + 657,486,938,177) (38,362,541,656,320964
+89,181,229,677,1204% + 69,610,259,330,640x% + 20,504,481,547,080x

+1,724,393,461,793) (x + 1).
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Differentiating F’(x), we find

Qs(x)
Qo (%) '

F//(x) - _

where

Qs(x) =1,285,425,745,031,439,744,924,351,944,181,267,498,830,297,392,321
+28,378,097,964,665,213,870,448,253,775,917,974,735,833,555,915,520x
+247,639,239,538,550,650,618,428,925,475,351,177,418,903,828,519,36 0x>
+1,131,116,309,072,948,249,686,419,776,599,013,563,965,352,036,853,76 0x>
+2,998,129,273,934,033,621,834,452,343,529,577,599,070,175,646,117,120x*
+4,775,194,702,079,256,668,486,950,292,217,012,539,098,845,384,867,840x°
+4,503,188,365,939,207,771,317,966,173,833,346,921,724,385,791,590,400x°
+2,315,562,242,935,704,170,341,114,308,201,588,127,06 4,283,807,744,000x”

+500,009,489,498,922,911,594,629,442,997,057,334,195,586,408,448,000x3

and

Quo () = x(38,362,541,656,320x* + 69,999,958,848,960x” + 42,602,476,084,560x"
+9,790,470,175,800x + 657,486,938,177)2(38,362,541,656,320x4
+89,181,229,677,120x° + 69,610,259,330,640x2 + 20,504,481,547,080x

+1,724,393,461,793)" (x + 1)
Hence, F”(x) < 0 for x > 0, and we have
F'(x) > tlil})lol-"’(t) =0 = Fx)< tlinoloF(t) =0 forx>0.
The proof is complete. 0

The inequality (3.20) can be written as

(1 + i)x <e(1-&()), x>0, (3.21)
where

E(x) = 48(399,609,808,920x” + 562,662,150,960x
+223,208,570,235x + 22,227,219,242)/(38,362,541,656,320x*
+89,181,229,677,120x> + 69,610,259,330,640x> + 20,504,481,547,080x

+1,724,393,461,793). (3.22)
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4 A generalized Carleman-type inequality
Theorem 4.1 Let 0 < Ayy1 < Ay, Ay =Y m 1hm (Ay>1),a,>0 (mneN) and 0 <
Zzil Anly < Q. Then,f()r O<p<l,

= /
1/An
@it - a)
n=1
epi( 5<An)>p I Xn: ( . (-p)ip wn
< — 1- — Anab AP~ Me(cray , 4.1
| An e k=1

where £(x) is given in (3.22) and

An _ (An+1)A"

c’'=————.
" (Ay)Ant

Proof The inequality

= /
1/An
Z)\er (ailﬂgz o 'a;n)
n=1
1 &= 1 PAmlhm m A-p)/p
< Z(l o > A, AP (Z kk(ckak)p) (4.2)
m m

k=1

has been proved in Theorem 2.2 of [9] (see also [11, p.96]). From the above inequality and

(3.20), we obtain (4.1). The proof is complete. O
Remark 4.1 In Theorem 2.2 of [9], ck = % should be ¢} 52";—1)1, see [9, p.44,
line 3]. Likewise, ¢ = Au)™ 3 Theorem 3.1 of [11] should be c¢*» = (B oo [11,

(An)An-1 (Ap)An o

p-96, equation (9)].

Remark 4.2 Taking p =1 in (4.1) yields

e 1A e A
Z}»n+l(ﬂ11ﬂ;2 Y <eZ<1—€(T:>)Anan, (4.3)

n=1 n=1

which improves (1.6). Taking 1, =1 in (4.3) yields

Z(&l]ﬂz cea) " <e Z(l - E(n))a,,, (4.4)
n=1 n=1

which improves (1.9).
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