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Abstract
In this study, I introduce some new double sequence spaces B(Mu), B(Cp), B(Cbp), B(Cr)
and B(Lq) as the domain of four-dimensional generalized difference matrix B(r, s, t,u)
in the spacesMu, Cp, Cbp, Cr and Lq, respectively. I show that the double sequence
spaces B(Mu), B(Cbp) and B(Cr) are the Banach spaces under some certain conditions.
I give some inclusion relations with some topological properties. Moreover,
I determine the α-dual of the spaces B(Mu) and B(Cbp), the β(ϑ )-duals of the spaces
B(Mu), B(Cp), B(Cbp), B(Cr) and B(Lq), where ϑ ∈ {p,bp, r}, and the γ -dual of the spaces
B(Mu), B(Cbp) and B(Lq). Finally, I characterize the classes of four-dimensional matrix
mappings defined on the spaces B(Mu), B(Cp), B(Cbp), B(Cr) and B(Lq) of double
sequences.
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1 Introduction
We denote the set of all complex-valued double sequences by � which is a vector space
with coordinatewise addition and scalar multiplication. Any subspace of � is called a dou-
ble sequence space. A double sequence x = (xmn) of complex numbers is called bounded
if ‖x‖∞ = supm,n∈N |xmn| < ∞, where N = {, , , . . .}. The space of all bounded double se-
quences is denoted by Mu which is a Banach space with the norm ‖ · ‖∞. Consider the
double sequence x = (xmn) ∈ �. If for every ε >  there exists a natural number n = n(ε)
and l ∈C such that |xmn – l| < ε for all m, n > n, then the double sequence x is called con-
vergent in Pringsheim’s sense to the limit point l, and we write p-limm,n→∞ xmn = l, where
C denotes the complex field. The space of all convergent double sequences in Pringsheim’s
sense is denoted by Cp. Unlike single sequences, there are such double sequences which
are convergent in Pringsheim’s sense but unbounded. That is, the set Cp –Mu is not empty.
Actually, following Boos [], p., if we define the sequence x = (xmn) by

xmn =

⎧
⎨

⎩

n, m = , n ∈N;

, m ≥ , n ∈ N,

then it is obvious that p-limm,n→∞ xmn =  but ‖x‖∞ = supm,n∈N |xmn| = ∞, so x ∈ Cp –
Mu. Then we can consider the set Cbp of double sequences which are both convergent in
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Pringsheim’s sense and bounded, i.e., Cbp = Cp ∩ Mu. Hardy [] showed that a sequence
in the space Cp is said to be regular convergent if it is a single convergent sequence with
respect to each index and denoted the space of all such sequences by Cr . Moreover, by
Cbp and Cr, we denote the spaces of all double sequences converging to  contained in
the sequence spaces Cbp and Cr , respectively. Móricz [] proved that Cbp, Cbp, Cr and Cr are
Banach spaces with the norm ‖ · ‖∞. By Lq, we denote the space of absolutely q-summable
double sequences corresponding to the space �q of q-summable single sequences, that is,

Lq :=
{

x = (xkl) ∈ � :
∑

k,l

|xkl|q < ∞
}

( ≤ q < ∞)

which is a Banach space with the norm ‖ · ‖q defined by Başar and Sever []. Zeltser []
introduced the space Lu as a special case of the space Lq with q = . Let λ be a double se-
quence space converging with respect to some linear convergence rule ϑ-lim : λ → C.
The sum of a double series

∑
i,j xij with respect to this rule is defined by ϑ-

∑
i,j xij =

ϑ-limm,n→∞
∑m,n

i,j= xij. For short, throughout the text the summations without limits run
from  to ∞, for instance,

∑
i,j xij means that

∑∞
i,j= xij.

Here and in what follows, unless stated otherwise, we assume that ϑ denotes any of the
symbols p, bp or r.

The α-dual λα , the β(ϑ)-dual λβ(ϑ) with respect to the ϑ-convergence and the γ -dual
λγ of a double sequence space λ are respectively defined by

λα :=
{

a = (akl) ∈ � :
∑

k,l

|aklxkl| < ∞ for all x = (xkl) ∈ λ

}

,

λβ(ϑ) :=
{

a = (akl) ∈ � : ϑ-
∑

k,l

aklxkl exists for all x = (xkl) ∈ λ

}

,

λγ :=

{

a = (akl) ∈ � : sup
m,n∈N

∣
∣
∣
∣
∣

m,n∑

k,l=

aklxkl

∣
∣
∣
∣
∣

< ∞ for all x = (xkl) ∈ λ

}

.

It is easy to see for any two spaces λ and μ of double sequences that μα ⊂ λα whenever
λ ⊂ μ and λα ⊂ λγ . Additionally, it is known that the inclusion λα ⊂ λβ(ϑ) holds, while
the inclusion λβ(ϑ) ⊂ λγ does not hold since the ϑ-convergence of the double sequence of
partial sums of a double series does not imply its boundedness.

Let λ and μ be two double sequence spaces and A = (amnkl) be any four-dimensional
complex infinite matrix. Then we say that A defines a matrix mapping from λ into μ, and
we write A : λ → μ if for every sequence x = (xkl) ∈ λ the A-transform Ax = {(Ax)mn}m,n∈N
of x exists and it is in μ where

(Ax)mn = ϑ-
∑

k,l

amnklxkl for each m, n ∈ N. (.)

We define ϑ-summability domain λ
(ϑ)
A of A in a space λ of double sequences by

λ
(ϑ)
A =

{

x = (xkl) ∈ � : Ax =
(

ϑ-
∑

k,l

amnklxkl

)

m,n∈N
exists and is in λ

}

.
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We say with notation (.) that A maps the space λ into the space μ if λ ⊂ μ
(ϑ)
A , and we

denote the set of all four-dimensional matrices, transforming the space λ into the space μ,
by (λ : μ). Thus, A = (amnkl) ∈ (λ : μ) if and only if the double series on the right-hand side
of (.) converges in the sense of ϑ for each m, n ∈ N, i.e., Amn ∈ λβ(ϑ) for all m, n ∈ N and
every x ∈ λ, and we have Ax ∈ μ for all x ∈ λ, where Amn = (amnkl)k,l∈N for all m, n ∈N. We
say that a four-dimensional matrix A is Cϑ -conservative if Cϑ ⊂ (Cϑ )A, and is Cϑ -regular if
it is Cϑ -conservative and

ϑ-lim Ax = ϑ- lim
m,n→∞(Ax)mn = ϑ- lim

m,n→∞ xmn, where x = (xmn) ∈ Cϑ .

Adams [] defined that the four-dimensional infinite matrix A = (amnkl) is called a tri-
angular matrix if amnkl =  for k > m or l > n or both. We also say by [] that a triangular
matrix A = (amnkl) is said to be a triangle if amnmn 
=  for all m, n ∈ N. Moreover, by re-
ferring to Cooke [], Remark (a), p., we can say that every triangle matrix has a unique
inverse which is also a triangle.

Let r, s, t, u ∈ R \ {}. Then the four-dimensional generalized difference matrix B(r, s,
t, u) = {bmnkl(r, s, t, u)} is defined by

bmnkl(r, s, t, u) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

su, (k, l) = (m – , n – ),

st, (k, l) = (m – , n),

ru, (k, l) = (m, n – ),

rt, (k, l) = (m, n)

, otherwise

for all m, n, k, l ∈ N. Therefore, the B(r, s, t, u)-transform of a double sequence x = (xmn) is
given by

ymn :=
{

B(r, s, t, u)x
}

mn =
∑

k,l

bmnkl(r, s, t, u)xkl

= suxm–,n– + stxm–,n + ruxm,n– + rtxmn (.)

for all m, n ∈ N. Thus, we have the inverse B–(r, s, t, u) = F(r, s, t, u) = {fmnkl(r, s, t, u)} as
follows:

fmnkl(r, s, t, u) :=

⎧
⎨

⎩

(–s/r)m–k (–u/t)n–l

rt ,  ≤ k ≤ m,  ≤ l ≤ n,

, otherwise

for all m, n, k, l ∈ N. Therefore, we can obtain x = (xmn) by applying the inverse matrix
F(r, s, t, u) to (.) that

xmn =

rt

m,n∑

k,l=

(
–s
r

)m–k(–u
t

)n–l

ykl for all m, n ∈ N. (.)

Throughout the paper, we suppose that the terms of double sequence x = (xmn) and
y = (ymn) are connected with relation (.). If p-lim{B(r, s, t, u)x}mn = l, then the sequence
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x = (xmn) is said to be B(r, s, t, u) convergent to l. Note that in the case r = t =  and s = u = –
for all m, n ∈ N, the four-dimensional generalized difference matrix B(r, s, t, u) is reduced
to the four-dimensional difference matrix 
 = B(, –, , –).

2 Some new spaces of double sequences
In this section, we define the double sequence spaces B(Mu), B(Cp), B(Cbp), B(Cr) and B(Lq)
as the domain of four-dimensional generalized difference matrix B(r, s, t, u) in the double
sequence spaces Mu, Cp, Cbp, Cr and Lq, respectively, that is,

B(Mu) :=
{

x = (xmn) ∈ � : sup
m,n∈N

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣ < ∞

}
,

B(Cp) :=
{

x = (xmn) ∈ � : ∃l ∈C � p- lim
m,n→∞

∣
∣
{

B(r, s, t, u)x
}

mn – l
∣
∣ = 

}
,

B(Cbp) :=
{

x = (xmn) ∈ � : B(r, s, t, u)x ∈ Cbp
}

,

B(Cr) :=
{

x = (xmn) ∈ � : B(r, s, t, u)x ∈ Cr
}

,

B(Lq) :=
{

x = (xmn) ∈ � :
∑

m,n

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q < ∞

}

,  < q < ∞.

Then we give some topological properties and inclusion relations.

Theorem . The double sequence spaces B(Mu), B(Cbp) and B(Cr) are linear Banach
spaces with coordinatwise addition and scalar multiplication, and are linearly norm iso-
morphic to the spaces Mu, Cbp and Cr , respectively, with the norm

‖x‖B(Mu) = sup
k,l∈N

|suxk–,l– + stxk–,l + ruxk,l– + rtxkl|. (.)

Proof We only prove the theorem for the space B(Mu) since it can be shown in the same
way for the other spaces. It is easy to show the linearity of the space, so we omit the details.
Let us consider a Cauchy sequence xj = {xq

mn}m,n∈N ∈ B(Mu) in order to show that the space
B(Mu) is a Banach space with the norm ‖x‖B(Mu) defined by (.). Then, for a given ε > ,
there exists a positive integer N(ε) ∈N such that

∥
∥xj – xi∥∥

B(Mu) = sup
m,n∈N

∣
∣
{

B(r, s, t, u)xj}

mn –
{

B(r, s, t, u)xi}

mn

∣
∣

< ε for all i, j > N(ε). (.)

Then we have power to say that {(B(r, s, t, u)xj)mn}j∈N is a Cauchy sequence in Mu for each
m, n ∈N. Since Mu is complete, it converges, say

{
B(r, s, t, u)xj}

mn → {
B(r, s, t, u)x

}

mn as p → ∞.

By taking limit as p → ∞ on equality (.), we have that

∣
∣
{

B(r, s, t, u)xj}

mn –
{

B(r, s, t, u)x
}

mn

∣
∣ < ε for all m, n ∈N.
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Moreover, since {{B(r, s, t, u)xj}mn} ∈Mu, there exists a positive real number K such that

sup
m,n∈N

∣
∣
{

B(r, s, t, u)xj}

mn

∣
∣≤ K .

Hence, the following inequality

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣ ≤ ∣

∣
{

B(r, s, t, u)xj}

mn –
{

B(r, s, t, u)x
}

mn

∣
∣ +
∣
∣
{

B(r, s, t, u)xj}

mn

∣
∣

< ε + K

is satisfied. Therefore, by taking supremum over m, n ∈N for all the results obtained above
gives that B(r, s, t, u)x ∈Mu, that is, x ∈ B(Mu). We read from here that the space B(Mu)
is a linear Banach space with the norm ‖ · ‖B(Mu) defined by (.). Since the proof can
be given in the same way for the other spaces, we only show here that B(Mu) is linearly
isomorphic to the space Mu. With the notation of (.), define the transformation T from
B(Mu) to Mu by x → Tx = y = B(r, s, t, u)x. Then it is trivial that T is linear and injective.
Let y = (ykl) ∈Mu and define x = (xmn) via the sequence y by relation (.) for all m, n ∈N.
Therefore, we see by (.) that

{
B(r, s, t, u)x

}

mn = suxm–,n– + stxm–,n + ruxm,n– + rtxmn

= su
m–,n–∑

k,l=

(
–s
r

)m–k–(–u
t

)n–l– ykl

rt

+ st
m–,n∑

k,l=

(
–s
r

)m–k–(–u
t

)n–l ykl

rt

+ ru
m,n–∑

k,l=

(
–s
r

)m–k(–u
t

)n–l– ykl

rt

+ rt
m,n∑

k,l=

(
–s
r

)m–k(–u
t

)n–l ykl

rt

= ymn

for all m, n ∈ N, which leads us to the consequence that

‖x‖B(Mu) = sup
m,n∈N

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣ = sup

m,n∈N
|ymn| = ‖y‖∞ < ∞.

This means that x = (xmn) defined by (.) is in the space B(Mu), i.e., T is surjective and is
norm-preserving.

This concludes the proof of the theorem. �

Theorem . The inclusion Mu ⊂ B(Mu) strictly holds.

Proof Firstly, we show that the inclusion Mu ⊂ B(Mu) holds. For this, when we take a
double sequence x = (xmn) ∈ Mu, then there exists a positive real number K such that
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supm,n∈N |xmn| ≤ K . Therefore, one can easily see that

sup
m,n∈N

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣ = sup

m,n∈N
|suxm–,n– + stxm–,n + ruxm,n– + rtxmn|

≤ (|su| + |st| + |ru| + |rt|)K < ∞.

This means that the double sequence x = (xmn) ∈ B(Mu), that is, the inclusion Mu ⊂
B(Mu) holds.

Now, we prove that this inclusion is strict. That is, the set B(Mu) \ Mu is not empty.
Let us consider the double sequence x = (xmn) defined by xmn = (–)m+n(m + )(n + ) for
all m, n ∈ N. It is obvious that x is not in Mu. If we take r = t = s = u, then we obtain
{B(r, s, t, u)}-transform of x as

{
B(r, r, r, r)x

}

mn = r[(–)m+n–mn + (–)m+n–m(n + )

+ (–)m+n–(m + )n + (–)m+n(m + )(n + )
]

= (–)m+nr

which gives the fact that B(r, r, r, r)x ∈Mu. This completes the proof. �

Theorem . The inclusion Cp ⊂ B(Cp) strictly holds.

Proof For the first step of the proof, we show that the inclusion Cp ⊂ B(Cp) holds. Let
us take a sequence x = (xmn) ∈ Cp. Then there exists a complex number l such that
p-limm,n→∞ |xmn – l| = . Then we have by taking limit of the B(r, s, t, u)-transform of x
as m, n → ∞ in Pringsheim’s sense

p- lim
m,n→∞

{
B(r, s, t, u)x

}

mn = p- lim
m,n→∞(suxm–,n– + stxm–,n + ruxm,n– + rtxmn)

= su
(

p- lim
m,n→∞ xm–,n–

)
+ st

(
p- lim

m,n→∞ xm–,n

)

+ ru
(

p- lim
m,n→∞ xm,n–

)
+ rt

(
p- lim

m,n→∞ xmn

)
.

Since x ∈ Cp, then all the subsequences of x are also convergent. Thus, B(r, s, t, u)x ∈ Cp,
i.e., x ∈ B(Cp).

To prove the fact that the inclusion Cp ⊂ B(Cp) is strict, we should show that the set
B(Cp) \ Cp is not empty. Let us consider the double sequence x = (xmn) defined by xmn =
(mn)/(rt) for all m, n ∈N. If we take s = –r, u = –t, then we have

{
B(r, –r, t, –t)x

}

mn = rtxm–,n– – rtxm–,n – rtxm,n– + rtxmn

= rt
(m – )(n – )

rt
– rt

(m – )n
rt

– rt
m(n – )

rt
+ rt

mn
rt

= 

for all m, n ∈ N. Thus, one can easily observe that x = (xmn) /∈ Cp. But, p-limm,n→∞{B(r, s,
t, u)x}mn = , that is, x ∈ B(Cp). This step completes the proof. �
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Theorem . The inclusion Cbp ⊂ B(Cbp) strictly holds.

Proof This is a natural consequence of Theorems . and .. So, we omit the details. �

Theorem . The inclusion Lq ⊂ B(Lq) strictly holds, where  ≤ q < ∞.

Proof Let us take a double sequence x = (xmn) ∈Lq with  ≤ q < ∞. Then
∑

m,n |xmn|q < ∞.
Now, we have

[∑

m,n

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q
]/q

=
(∑

m,n
|suxm–,n– + stxm–,n + ruxm,n– + rtxmn|q

)/q

≤ |su|
(∑

m,n
|xm–,n–|q

)/q

+ |st|
(∑

m,n
|xm–,n|q

)/q

+ |ru|
(∑

m,n
|xm,n–|q

)/q

+ |rt|
(∑

m,n
|xmn|q

)/q

< ∞,

which says that B(r, s, t, u)x ∈Lq, i.e., x ∈ B(Lq).
In order to prove the fact that the inclusion is strict, we should define a double sequence

belonging to B(Lq) but not to Lq. Let us define the double sequence x = (xmn) by

xmn =
(

–s
r

)m(–u
t

)n 
rt

for all m, n ∈ N. If ( –s
r ) >  or ( –u

t ) > , or both, then it is obvious that x /∈Lq. But, under the
same restrictions, we have

∑

m,n

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q =

∑

m,n

∣
∣
∣
∣su
(

–s
r

)m–(–u
t

)n– 
rt

+ st
(

–s
r

)m–(–u
t

)n 
rt

+ ru
(

–s
r

)m(–u
t

)n– 
rt

+ rt
(

–s
r

)m(–u
t

)n 
rt

∣
∣
∣
∣

q

= .

This says that B(r, s, t, u)x ∈Lq, i.e., x ∈ B(Lq). This completes the proof. �

Theorem . Let  ≤ q < q < ∞. Then the inclusion B(Lq) ⊂ B(Lq ) holds.

Proof Let us take a double sequence x = (xmn) ∈ B(Lq) which implies that Bx ∈ Lq. Since
the inclusion Lq ⊂ Lq holds for  ≤ q < q < ∞, by Başar and Sever [], we have the fact
that Bx ∈Lq . Hence, x ∈ B(Lq ), as desired. �

Theorem . The set B(Cp) becomes a linear space with coordinatewise additions and
scalar multiplication which is linearly isomorphic to the space Cp, and B(Cp) is a complete
seminormed space with the seminorm

‖x‖B(Cp) = lim
k→∞

(
sup

m,n≥k

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣
)

.

Proof The proof of the theorem is similar to the proof of Theorem .. So, we omit the
details. �
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Theorem . The set B(Lq) is a linear space with coordinatewise addition and scaler mul-
tiplication, and the following statements hold.

(i) If  < q < , then B(Lq) is a complete q-normed space with the norm

‖x‖̂B(Lq) =
∑

m,n

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q

which is q-norm isomorphic to the space Lq.
(ii) If  ≤ q < ∞, then B(Lq) is a Banach space with the norm

‖x‖B(Lq) =
[∑

m,n

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q
]/q

which is norm isomorphic to the space Lq.

Proof (i) To show the linearity of the space B(Lq) which is a q-normed space with the
given norm is a routine verification. So, we omit the details. Let us take a Cauchy sequence
xi = {x(i)

mn}m,n∈N for every fixed i ∈N in the space B(Lq). Then, for a given ε > , there exists
a positive real number N(ε) >  such that

∥
∥xi – xj ˆ∥∥

B(Lq) =
∑

m,n

∣
∣
{

B(r, s, t, u)xi}

mn –
{

B(r, s, t, u)xj}

mn

∣
∣q < ε

is satisfied for all i, j ≥ N(ε). Then we conclude that {{B(r, s, t, u)xi}mn}i∈N is a Cauchy se-
quence for each fixed m, n ∈ N. It is known by Part (i) of Theorem . of Yeşilkayagil and
Başar [] that the space Lq is a complete q-normed space. Then the Cauchy sequence
{(Bxi)mn}i∈N is convergent in the space Lq, as i → ∞, that is, there exists a sequence
B(r, s, t, u)x ∈Lq such that

∣
∣
{

B(r, s, t, u)xi}

mn –
{

B(r, s, t, u)x
}

mn

∣
∣ < ε

for all m, n ∈ N. Furthermore, since the {{B(r, s, t, u)xi}mn} ∈ Lq for each fixed i ∈ N, there
exists a positive real number M >  such that

∑
m,n |{B(r, s, t, u)xi}mn|q ≤ M. Therefore, we

have

∑

m,n

∣
∣(Bx)mn

∣
∣q ≤

∑

m,n

(∣
∣
{

B(r, s, t, u)xi}

mn –
{

B(r, s, t, u)x
}

mn

∣
∣ +
∣
∣
{

B(r, s, t, u)xi}

mn

∣
∣
)q

≤
∑

m,n

∣
∣
{

B(r, s, t, u)xi}

mn –
{

B(r, s, t, u)x
}

mn

∣
∣q +

∑

m,n

∣
∣
{

B(r, s, t, u)xi}

mn

∣
∣q

< ε + M,

which means that B(r, s, t, u)x ∈ Lq, that is, x ∈ B(Lq). The last conclusion says that the
space B(Lq) is a complete q-normed space.

Now, we should define a transform from B(Lq) to Lq which is a norm-preserving bijec-
tion. Let us consider the transformation T used in the proof of the second part of Theo-
rem . with B(Lq) and Lq instead of B(Mu) and Mu, respectively. It is easy to see that



Tuǧ Journal of Inequalities and Applications  (2017) 2017:149 Page 9 of 22

T is linear and bijective. Let y = (ymn) ∈Lq and define x = (xmn) by relation (.). Then we
derive by taking summation over m, n ∈N on the following inequality:

∣
∣
{

B(r, s, t, u)x
}

mn

∣
∣q = |suxm–,n– + stxm–,n + ruxm,n– + rtxmn|q

=
∣
∣
∣
∣
su
rt

m–,n–∑

k,l=

(
–s
r

)m–k–(–u
t

)n–l–

ykl

+
st
rt

m–,n∑

k,l=

(
–s
r

)m–k–(–u
t

)n–l

ykl

+
ru
rt

m,n–∑

k,l=

(
–s
r

)m–k(–u
t

)n–l

ykl

+
rt
rt

m,n∑

k,l=

(
–s
r

)m–k(–u
t

)n–l

ykl

∣
∣
∣
∣

q

= |ymn|q

that ‖B(r, s, t, u)x‖̂B(Lq) = ‖y‖̂q, that is, x ∈ B(Lq). Thus, T is surjective. This concludes the
proof of Part (i).

Since Part (ii) can be proved in a similar way, we omit the details. �

3 The alpha-, beta- and gamma-duals of the new double sequence spaces
In this present section, we calculate the α-dual of the spaces B(Mu) and B(Cbp), the β(ϑ)-
duals of the spaces B(Mu), B(Cp), B(Cbp), B(Cr) and B(Lq) and the γ -dual of the spaces
B(Mu), B(Cbp) and B(Lq).

Theorem . The α-dual of the spaces B(Mu) and B(Cbp) is the space Lu.

Proof To prove the equality {B(Mu)}α = Lu, we should show that the inclusions Lu ⊂
{B(Mu)}α and {B(Mu)}α ⊂Lu hold. Let us take a sequence a = (amn) ∈Lu and x = (xmn) ∈
B(Mu). Then there exists a double sequence y = (ymn) ∈Mu with relation (.) that there
exists a positive real number M >  such that supm,n∈N |ymn| ≤ M . If |s/r|, |u/t| < , then we
have the following inequality:

∑

m,n
|amnxmn| =

∑

m,n
|amn|

∣
∣
∣
∣
∣

m,n∑

k,l=

(
–s
r

)m–k(–u
t

)n–l ykl

rt

∣
∣
∣
∣
∣

≤ 
|rt|

∑

m,n
|amn|

m,n∑

k,l=

∣
∣
∣
∣

(
–s
r

)m–k(–u
t

)n–l∣∣
∣
∣|ykl|

≤ M
|rt|

∑

m,n
|amn|

m,n∑

k,l=

∣
∣
∣
∣
–s
r

∣
∣
∣
∣

m–k∣∣
∣
∣
–u
t

∣
∣
∣
∣

n–l

=
M
|rt|

∑

m,n
|amn|

( – | s
r |m–k

 – | s
r |

)( – | u
t |n–l

 – | u
t |

)

=
M
|rt|

(


 – | s
r |
)(


 – | u

t |
)∑

m,n
|amn|

(

 –
∣
∣
∣
∣

s
r

∣
∣
∣
∣

m+)(

 –
∣
∣
∣
∣
u
t

∣
∣
∣
∣

n+)



Tuǧ Journal of Inequalities and Applications  (2017) 2017:149 Page 10 of 22

=
M
|rt|

(


 – | s
r |
)(


 – | u

t |
)∑

m,n
|amn|

< ∞

which says that a = (amn) ∈ {B(Mu)}α . Hence, the inclusion Lu ⊂ {B(Mu)}α holds.
Conversely, suppose that (amn) ∈ {B(Mu)}α \Lu. Then we have

∑
m,n |amnxmn| < ∞ for

all x = (xmn) ∈ B(Mu). We can easily say with the special case x = (xmn) = {(–)m+n} ∈
B(Mu) that

∑

m,n
|amnxmn| =

∑

m,n
|amn| = ∞.

This means that (amn) /∈ {B(Mu)}α , which contradicts the hypothesis. Therefore, (amn)
must belong to the space ∈Lu.

Since the proof can be given for the space B(Cbp) in a similar way, we omit the details.
�

The α- and γ -duals of a double sequence space are unique. But β(ϑ)-dual of a double
sequence space can be more than one according to the ϑ-convergence. In this part, we
give the β(ϑ)- and γ -duals of the new double sequence spaces. The conditions for the
characterization of the four-dimensional matrices transformed the spaces Cbp, Cr and Cp

into the space Cbp are well known (see [, ] and []).

Lemma . A four-dimensional matrix A = (amnkl) ∈ (Cbp : Cϑ ) if and only if the following
conditions hold:

sup
m,n∈N

∑

k,l

|amnkl| < ∞, (.)

∃akl ∈C � ϑ- lim
m,n→∞ amnkl = akl for all k, l ∈N, (.)

∃l ∈C � ϑ- lim
m,n→∞

∑

k,l

amnkl = l exists, (.)

∃k ∈N � ϑ- lim
m,n→∞

∑

l

|amnkl – akl| = , (.)

∃l ∈N � ϑ- lim
m,n→∞

∑

k

|amnkl – akl | = . (.)

In the case (.), a = (akl) ∈Lu and

ϑ- lim
m,n→∞[Ax]m,n =

∑

k,l

aklxkl +
(

l-
∑

k,l

akl

)

bp- lim
m,n→∞ xmn

holds for x ∈ Cbp

Lemma . A four-dimensional matrix A = (amnkl) ∈ (Cp : Cϑ ) if and only if (.)-(.) hold
and the following conditions also hold:

∀k ∈N,∃l ∈N � amnkl =  for all l > l and m, n ∈N, (.)

∀l ∈N,∃k ∈N � amnkl =  for all k > k and m, n ∈N. (.)
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In the case (.) ∃k, l ∈ N such that a = (akl) ∈ Lu and (akl )k∈N, (akl)l∈N ∈ ϕ, where ϕ

denotes the spaces of all finitely non-zero sequences and

ϑ- lim
m,n→∞[Ax]m,n =

∑

k,l

aklxkl +
∑

k

(

L-
∑

k,l

akl

)

p- lim
m,n→∞ xmn

holds for x = (xkl) ∈ Cp.

Lemma . A four-dimensional matrix A = (amnkl) ∈ (Cr : Cϑ ) if and only if (.)-(.) hold
and the following conditions also hold:

∃l ∈N � ϑ- lim
m,n→∞

∑

k

amnkl = ul , (.)

∃k ∈N � ϑ- lim
m,n→∞

∑

l

amnkl = vk . (.)

In the case (.), a = (akl) ∈Lu and (ul), (vk) ∈ � and

ϑ- lim
m,n→∞[Ax]m,n =

∑

k,l

aklxkl +
∑

k

(

vk-
∑

l

akl

)

xk +
∑

l

(

ul-
∑

k

akl

)

xl

+
(

L +
∑

k,l

akl-
∑

k

vk-
∑

l

ul

)

r- lim
m,n→∞ xmn

holds for x ∈ Cr .

Theorem . A four-dimensional matrix A = (amnkl) ∈ (Cbp : Mu) if and only if (.) holds.

Proof Let the four-dimensional matrix A = (amnkl) ∈ (Cbp : Mu). Then Ax exists and is in
Mu for all x = (xkl) ∈ Cbp. That is, Amn ∈Mu for each m, n ∈N. Therefore,

‖Ax‖∞ = sup
m,n∈N

∣
∣
∣
∣

∑

k,l

amnklxkl

∣
∣
∣
∣

≤ sup
m,n∈N

∑

k,l

|amnkl||xkl| < ∞.

Then condition (.) is sufficient.
Conversely, suppose that condition (.) is satisfied for all x = (xkl) ∈ Cbp. Then

∣
∣
∣
∣

∑

k,l

amnklxkl

∣
∣
∣
∣≤

∑

k,l

|amnkl||xkl|.

We have, after taking supremum over m, n ∈ N, that

sup
m,n∈N

∣
∣
∣
∣

∑

k,l

amnklxkl

∣
∣
∣
∣≤ sup

m,n∈N

∑

k,l

|amnkl|M < ∞.

Then it is derived from the last approaches that Ax ∈Mu. This completes the proof. �
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Lemma . ([]) Let A = (amnkl) be a four-dimensional matrix. Then the following state-
ments hold:

(i) For  < q ≤ , A ∈ (Lq : Mu) if and only if

sup
m,n,k,l∈N

|amnkl| < ∞. (.)

(ii) For  < q < ∞, A ∈ (Lq : Mu) if and only if

sup
m,n∈N

∑

k,l

|amnkl|q′
< ∞, where


q

+

q′ = . (.)

Lemma . ([]) Let A = (amnkl) be a four-dimensional matrix. Then the following state-
ments hold:

(i) For  < q ≤ , A ∈ (Lq : Cbp) if and only if conditions (.) and (.) hold with ϑ = bp.
(ii) For  < q < ∞, A ∈ (Lq : Cbp) if and only if conditions (.) and (.) hold with

ϑ = bp.

Lemma . ([]) A four-dimensional matrix A = (amnkl) ∈ (Mu : Cbp) if and only if con-
ditions (.)-(.) hold and the following conditions also hold:

∃akl ∈C � bp- lim
m,n→∞

∑

k,l

|amnkl – akl| = , (.)

bp- lim
m,n→∞

n∑

l=

amnkl exists for each k ∈N, (.)

bp- lim
m,n→∞

m∑

k=

amnkl exists for each l ∈N, (.)

∑

k,l

|amnkl| converges. (.)

Lemma . ([]) A four-dimensional matrix A = (amnkl) ∈ (Mu : Mu) if and only if con-
dition (.) holds.

Lemma . ([]) A four-dimensional matrix A = (amnkl) ∈ (Mu : Cp) if and only if con-
ditions (.), (.) and (.) hold.

Let us define the sets dk(r, s, t, u) with k ∈ {, , . . . , } as follows:

d(r, s, t, u) =

{

a = (akl) ∈ � : sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

q′

< ∞
}

,

d(r, s, t, u) =

{

a = (akl) ∈ � : ∃βkl ∈ C � ϑ- lim
m,n→∞

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l

aji = βkl

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :



Tuǧ Journal of Inequalities and Applications  (2017) 2017:149 Page 13 of 22

∃l ∈C � ϑ- lim
m,n→∞

∑

k,l

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
= l exists

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∃l ∈N � ϑ- lim
m,n→∞

∑

k

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l
aji – βkl

∣
∣
∣
∣
∣

= 

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∃k ∈N � ϑ- lim
m,n→∞

∑

l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l

aji – βkl

∣
∣
∣
∣
∣

= 

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∀k ∈N,∃l ∈ N �
m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
=  ∀l > l and ∀m, n ∈N

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∀l ∈N,∃k ∈ N �
m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
=  ∀k > k and ∀m, n ∈ N

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � : sup
m,n∈N

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

q′

< ∞
}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∃l ∈N � ϑ- lim
m,n→∞

∑

k

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
= ul

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∃k ∈N � ϑ- lim
m,n→∞

∑

l

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
= vk

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∃βkl ∈ C � ϑ- lim
m,n→∞

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
– βkl

∣
∣
∣
∣
∣

= 

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :

∀k ∈N,ϑ- lim
m,n→∞

n∑

l=

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
exists

}

,
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d(r, s, t, u) =

{

a = (akl) ∈ � :

∀l ∈N,ϑ- lim
m,n→∞

m∑

k=

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
exists

}

,

d(r, s, t, u) =

{

a = (akl) ∈ � :
∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

converges

}

.

Theorem . The following statements hold:
(i) {B(Mu)}γ = d(r, s, t, u) with q′ = .

(ii) {B(Lq)}γ =
{ d(r, s, t, u),  ≤ q < ∞;

d(r, s, t, u),  < q < .

(iii) {B(Cbp)}γ = d(r, s, t, u) with q′ = .

Proof (iii) Let us suppose that a = (amn) ∈ � and x = (xmn) ∈ B(Cbp). Then we have y = Bx ∈
Cbp. Therefore, we have the following equality for the m, nth partial sum of

∑
k,l aklxkl :

m,n∑

k,l=

aklxkl =
m,n∑

k,l=

akl

m,n∑

j,i=

(
–s
r

)k–j(–u
t

)l–i yji

rt

=
m,n∑

k,l=

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt
ykl

= (Dy)mn, (.)

where the four-dimensional matrix D = (dmnkl) is defined by

dmnkl =

⎧
⎨

⎩

∑m,n
j,i=k,l(

–s
r )j–k( –u

t )i–l aji
rt ,  ≤ k ≤ m,  ≤ l ≤ n;

, otherwise

for all k, k, m, n ∈N. Then we can say that ax ∈ BS whenever x = (xmn) ∈ B(Cbp) if and only
if Dy ∈ Mu whenever y = (ymn) ∈ Cbp. This means that a = (amn) ∈ {B(Cbp)}γ if and only if
D ∈ (Cbp : Mu). Thus, one can easily see that the conditions of Theorem . hold, that is,

sup
m,n∈N

∑

k,l

∣
∣
∣
∣
∣

m,n∑

j,i=k,l

(
–s
r

)j–k(–u
t

)i–l aji

rt

∣
∣
∣
∣
∣

< ∞,

which is the set d(r, s, t, u) with q′ = . This completes the proof of Part (iii).
The proofs of Parts (i) and (ii) can be shown in a similar way by using Lemmas .

and ., respectively, instead of Lemma .. Thus, we omit the details. �

Theorem . The following statements hold:
(i) {B(Cbp)}β(ϑ) =

⋂
i= di(r, s, t, u) with q′ = .

(ii) {B(Cp)}β(ϑ) =
⋂

i= di(r, s, t, u) ∩ d(r, s, t, u) ∩ d(r, s, t, u) with q′ = .
(iii) {B(Cr)}β(ϑ) =

⋂
i= di(r, s, t, u) ∩ d(r, s, t, u) ∩ d(r, s, t, u) with q′ = .

(iv) {B(Lq)}β(bp) = d(r, s, t, u) ∩ d(r, s, t, u) for  < q < ∞.
(v) {B(Lq)}β(bp) = d(r, s, t, u) ∩ d(r, s, t, u) with q′ =  for  < q ≤ .

(vi) {B(Mu)}β(bp) = d(r, s, t, u) ∩ d(r, s, t, u)
⋂

i= di(r, s, t, u).
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(vii) {B(Mu)}β(p) = d(r, s, t, u) ∩ d(r, s, t, u) ∩ d(r, s, t, u).

Proof Suppose that a = (amn) ∈ � and x = (xmn) ∈ B(Cbp). Then there exists a sequence
y = (ymn) ∈ Cbp with Bx = y. Therefore, since (.) holds, one can conclude that ax ∈ CSϑ

whenever x = (xmn) ∈ B(Cbp) if and only if Dy ∈ Cϑ whenever y = (ymn) ∈ Cbp. It gives us that
a = (amn) ∈ {B(Cbp)}β(ϑ) if and only if D ∈ (Cbp : Cϑ ). Hence, the conditions of Lemma .
are satisfied with dmnkl instead of amnkl . That is,

sup
m,n∈N

∑

k,l

|dmnkl| < ∞,

∃βkl ∈C � ϑ- lim
m,n→∞ dmnkl = βkl for all k, l ∈N,

∃l ∈C � ϑ- lim
m,n→∞

∑

k,l

dmnkl = l exists,

∃k ∈N � ϑ- lim
m,n→∞

∑

l

|dmnkl – βkl| = ,

∃l ∈N � ϑ- lim
m,n→∞

∑

k

|dmnkl – βkl | = ,

which give the β(ϑ)-dual of the space B(Cbp) is
⋂

i= di(r, s, t, u). This completes the proof
of Part (i). Since Parts (ii)-(vii) can be proved in a similar way by using Lemmas ., .,
., . and ., respectively, to avoid the repetition of similar statements, we omit their
proofs. �

4 Characterization of some classes of four-dimensional matrices
In this section, we characterize some four-dimensional matrix classes which are related
to the double sequence spaces derived as the domain of the four-dimensional general-
ized difference matrix in the spaces Mu, Cp, Cbp, Cr and Lq by using the concept of four-
dimensional dual summability methods for double sequences introduced and studied by
Başar [] and Yeşilkayagil and Başar [].

Now, let us suppose that the four-dimensional matrices A = (amnkl) and E = (emnkl) trans-
form the sequences x = (xmn) and y = (ymn) which are connected with relation (.) to the
double sequences s = (smn) and z = (zmn), respectively, that is,

smn = (Ax)mn =
∞∑

k,l=

amnklxkl for all m, n ∈N, (.)

zmn = (Ey)mn =
∞∑

k,l=

emnklykl for all m, n ∈N. (.)

It is obvious that the method B is applied to the B(r, s, t, u)-transform of the sequence x,
while the method A is directly applied to the elements of the sequence x. Then we can say
that the methods A and E are essentially different.

Let us assume that the usual matrix product EB(r, s, t, u) exists, which is a much weaker
hypothesis than the conditions on the matrix E belonging to any class of matrices, in gen-
eral. We can say in this case that the matrices A and E in (.) and (.) are the dual
summability methods if s is reduced to z or viceversa under the application of the usual
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summation by parts. This leads us to the fact that EB(r, s, t, u) exists and is equal to A,
and Ax = {EB(r, s, t, u)x} = E{B(r, s, t, u)x} = Ey formally holds if one side exists. This state-
ment is equivalent to the relation between the elements of the matrices A = (amnkl) and
E = (emnkl)

amnkl = suemn,m–,n– + stemn,m–,n + ruemnm,n– + rtemnmn or equivalently

emnkl =
∞∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt
(.)

for all m, n, k, l ∈ N. It is trivial that relation (.) between the elements of the matrices
A = (amnkl) and E = (emnkl) can be stated by the matrix product as follows:

A = EB(r, s, t, u) or equivalently E = AF(r, s, t, u).

For the sake of brevity in notation, we may also write here and after for all m, n, k, l ∈ N

that

e(m, n) =
m,n∑

k,l=

∞∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt
(.)

and


kl
amnkl = amnkl – amn,k+,l,


kl
amnkl = amnkl – amnk,l+,


kl
amnkl = 
kl


(

kl

amnkl
)

= 
kl

(

kl

amnkl
)
.

Now, we may give the following theorem by using equality (.) between the methods
A and E.

Theorem . Suppose that the elements of four-dimensional infinite matrices A = (amnkl)
and E = (emnkl) are connected with relation (.). Then A ∈ (B(λ) : μ) if and only if Amn ∈
[B(λ)]β(ϑ) for all m, n ∈N and E ∈ (λ : μ), where λ,μ ∈ {Mu,Cp,Cbp,Cr ,Lq}.

Proof Suppose that A ∈ (B(λ) : μ). Then Ax exists and is in μ for all x = (xmn) ∈ B(λ), which
implies the fact that Amn ∈ [B(λ)]β(ϑ) for all m, n ∈N. Thus, we have the following equality
derived from the partial sum of the series

∑
k,l amnklxkl with relations (.):

m,n∑

k,l=

amnklxkl =
m,n∑

k,l=

[ m,n∑

i,j=k,l

(
–s
r

)i–k(–u
t

)j–l amnij

rt

]

ykl (.)

for all m, n ∈ N. Then, by taking ϑ-limit on (.) as m, n → ∞, we have Ax = Ey. Hence,
Ey ∈ μ whenever y ∈ λ , i.e., E ∈ (λ : μ).

Conversely, suppose that Amn ∈ [B(λ)]β(ϑ) for all m, n ∈ N and E ∈ (λ : μ), and let
v = (vkl) ∈ B(λ) with u = Bv. Then Av exists. Therefore, one can derive from the (ξ ,)th
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rectangular partial sum of the series
∑

k,l amnklvkl for all m, n, ξ , ∈N that

ξ ,∑

k,l=

amnklvkl =
ξ ,∑

k,l=

amnkl

k,l∑

i,j=

fklijuij =
ξ ,∑

k,l=

(
ξ ,∑

i,j=k,l

amnijfijkl

)

ukl,

which gives by letting p-limit as ξ , → ∞ that

∑

k,l

amnklvkl =
∑

k,l

emnklukl for all m, n ∈N.

That is, Av = Eu, which leads to the fact A ∈ (B(λ) : μ), as desired. �

By changing the role of the spaces B(λ) and μ in Theorem ., we have the following
lemma.

Lemma . ([], Theorem .) Let λ and μ be as in Theorem ., and let the elements of
the four-dimensional matrices A = (amnkl) and G = (gmnkl) be connected with the relation

gmnkl =
m,n∑

i,j=

bmnij(r, s, t, u)aijkl for all m, n, k, l ∈ N. (.)

Then A ∈ (μ : B(λ)) if and only if G ∈ (μ : λ).

Corollary . Let A = (amnkl) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) A ∈ (B(Cp) : Cϑ ) if and only if (.)-(.), (.) and (.) hold with emnkl instead of
amnkl .

(ii) A ∈ (B(Cbp) : Cϑ ) if and only if (.)-(.), (.) and (.) hold with emnkl instead of
amnkl .

(iii) A ∈ (B(Cr) : Cϑ ) if and only if (.)-(.), (.) and (.) hold with emnkl instead of
amnkl .

(iv) A ∈ (B(Lq) : Cbp) if and only if (.) and (.) hold for  < q < ∞ with emnkl instead
of amnkl .

(v) A ∈ (B(Lq) : Cbp) if and only if (.) and (.) hold for  < q ≤  with emnkl instead
of amnkl .

(vi) A ∈ (B(Lq) : Mu) if and only if (.) holds for  < q <  with emnkl instead of amnkl .
(vii) A ∈ (B(Lq) : Mu) if and only if (.) holds for  < q < ∞ with emnkl instead of amnkl .

(viii) A ∈ (B(Mu) : Cbp) if and only if (.), (.), (.), (.),(.) and (.) hold with
emnkl instead of amnkl .

(ix) A ∈ (B(Mu) : Cp) if and only if (.), (.) and (.) hold with emnkl instead of amnkl .
(x) A ∈ (B(Cbp) : Mu) if and only if (.) holds with emnkl instead of amnkl .

Corollary . Let E = (emnkl) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) A ∈ (Cp : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with gmnkl instead of
amnkl .
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(ii) A ∈ (Cbp : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with gmnkl instead of
amnkl .

(iii) A ∈ (Cr : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with gmnkl instead of
amnkl .

(iv) A ∈ (Lq : B(Cbp)) if and only if (.) and (.) hold for  < q ≤  with gmnkl instead
of amnkl .

(v) A ∈ (Lq : B(Cbp)) if and only if (.) and (.) hold for  < q < ∞ with gmnkl instead
of amnkl .

(vi) A ∈ (Lq : B(Mu)) if and only if (.) holds for  < q <≤  with gmnkl instead of
amnkl .

(vii) A ∈ (Lq : B(Mu)) if and only if (.) holds for  < q < ∞ with gmnkl instead of amnkl .
(viii) A ∈ (Mu : B(Cbp)) if and only if (.), (.), (.), (.),(.) and (.) hold with

gmnkl instead of amnkl .
(ix) A ∈ (Mu : B(Cp)) if and only if (.), (.) and (.) hold with gmnkl instead of amnkl .
(x) A ∈ (Cbp : B(Mu)) if and only if (.) holds with gmnkl instead of amnkl .

Theorem . Suppose that the elements of the four-dimensional matrices A = (amnkl) and
H = (hmnkl) are connected with the relation

hmnkl =
m,n∑

i,j=k,l

bmnij(r, s, t, u)eijkl for all m, n, k, l ∈N, (.)

where the four-dimensional matrix E = (emnkl) is defined as in (.). Then A ∈ (B(λ) : B(μ))
if and only if H ∈ (λ : μ), where λ,μ ∈ {Mu,Cp,Cbp,Cr ,Lq}.

Proof Suppose that A ∈ (B(λ) : B(μ)). Then Ax exists and is in B(μ) for all x = (xmn) ∈
B(λ) and {B(Ax)}mn ∈ μ for all m, n ∈ N. Furthermore, we can say that the relation Bx =
y ∈ λ implies B(AB–y) ∈ μ. By using relations (.) between the matrices A = (amnkl) and
H = (Hmnkl) and relation (.) between x = (xmn) and y = (ymn), we can write the following
equality derived from the partial sum of the series

∑
kl hmnklykl :

m,n∑

k,l=

hmnklykl =
m,n∑

k,l=

m,n∑

i,j=k,l

bmnij(r, s, t, u)eijklykl (.)

for all m, n, k, l ∈ N. When we apply the ϑ-limit on equality (.) as m, n → ∞, we have
Ax = Hy. So, Hy ∈ μ whenever y ∈ λ says that H ∈ (λ : μ). This completes the proof. �

Corollary . Let A = (amnkl) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) A ∈ (B(Cp) : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with hmnkl instead
of amnkl .

(ii) A ∈ (B(Cbp) : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with hmnkl instead
of amnkl .

(iii) A ∈ (B(Cr) : B(Cϑ )) if and only if (.)-(.), (.) and (.) hold with hmnkl instead
of amnkl .

(iv) A ∈ (B(Lq) : B(Cbp)) if and only if (.) and (.) hold for  < q ≤  with hmnkl

instead of amnkl .
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(v) A ∈ (B(Lq) : B(Cbp)) if and only if (.) and (.) hold for  < q < ∞ with hmnkl

instead of amnkl .
(vi) A ∈ (B(Lq) : B(Mu)) if and only if (.) holds for  < q ≤  with hmnkl instead of

amnkl .
(vii) A ∈ (B(Lq) : B(Mu)) if and only if (.) holds for  < q < ∞ with hmnkl instead of

amnkl .
(viii) A ∈ (B(Mu) : B(Cbp)) if and only if (.), (.), (.), (.),(.) and (.) hold

with hmnkl instead of amnkl .
(ix) A ∈ (B(Mu) : B(Cp)) if and only if (.), (.) and (.) hold with hmnkl instead of

amnkl .
(x) A ∈ (B(Cbp) : B(Mu)) if and only if (.) holds with hmnkl instead of amnkl .

Corollary . Let A = (amnkl) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) A ∈ (B(Cp) : CSϑ ) if and only if (.)-(.), (.) and (.) hold with e(m, n) instead
of amnkl .

(ii) A ∈ (B(Cbp) : CSϑ ) if and only if (.)-(.), (.) and (.) hold with e(m, n) instead
of amnkl .

(iii) A ∈ (B(Cr) : CSϑ ) if and only if (.)-(.), (.) and (.) hold with e(m, n) instead
of amnkl .

(iv) A ∈ (B(Lq) : CSbp) if and only if (.) and (.) hold for  < q < ∞ with e(m, n)
instead of amnkl .

(v) A ∈ (B(Lq) : CSbp) if and only if (.) and (.) hold for  < q ≤  with e(m, n)
instead of amnkl .

(vi) A ∈ (B(Lq) : BS) if and only if (.) holds for  < q <  with e(m, n) instead of amnkl .
(vii) A ∈ (B(Lq) : BS) if and only if (.) holds for  < q < ∞ with e(m, n) instead of

amnkl .
(viii) A ∈ (B(Mu) : CSbp) if and only if (.), (.), (.), (.),(.) and (.) hold

with e(m, n) instead of amnkl .
(ix) A ∈ (B(Mu) : CSp) if and only if (.), (.) and (.) hold with e(m, n) instead of

amnkl .
(x) A ∈ (B(Cbp) : BS) if and only if (.) holds with e(m, n) instead of amnkl .

We may also give the following results derived from Theorems (.), (.) and (.) of
Altay and Başar [] by using relation (.).

Corollary . Suppose that the elements of the four-dimensional matrices A = (amnkl) and
G = (gmnkl) are connected with relation (.). Then A = (amnkl) ∈ (CSbp : B(Cp)) if and only
if conditions (.) and (.) hold with 
kl

gmnkl instead of amnkl and the following conditions
hold:

lim
l→∞


kl
gmnkl =  for every fixed k ∈N for all m, n ∈N, (.)

lim
k→∞


kl
gmnkl =  for every fixed l ∈N for all m, n ∈N, (.)

∃gkl ∈ C � bp- lim
m,n→∞

∑

l

∣
∣
kl

gmnkl
∣
∣ =
∑

k

|gkl|. (.)
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Corollary . Suppose that the elements of the four-dimensional matrices A = (amnkl) and
G = (gmnkl) are connected with relation (.). Then A = (amnkl) ∈ (CSr : B(Cp)) if and only if
condition (.) holds with 
kl

gmnkl instead of amnkl and the following conditions hold:

(gmnk)k∈N, (gmnl)l∈N ∈ bv for all m, n ∈N, (.)

∃L ∈ N � 
kl
gmnkl =  for all k ∈N whenever m, n, l > L, (.)

∃K ∈N � 
kl
gmnkl =  for all l ∈N whenever m, n, k > K , (.)

∃gkl ∈ C � p- lim
m,n→∞

∑

l

∣
∣
kl

gmnkl
∣
∣ =
∑

k

|gkl|. (.)

Corollary . Suppose that the elements of the four-dimensional matrices A = (amnkl)
and G = (gmnkl) are connected with relation (.). Then A = (amnkl) ∈ (CSr : B(Cr)) if and
only if condition (.) holds with 
kl

gmnkl instead of amnkl and (.) holds, and the following
conditions also hold:

r- lim
m,n→∞
kl

gmnkl = gkl for all l ∈N, (.)

r- lim
m,n→∞

∑

k


kl
gmnkl = ul for all l ∈N, (.)

r- lim
m,n→∞

∑

l


kl
gmnkl = uk for all k ∈ N, (.)

r- lim
m,n→∞

∑

k,l


kl
gmnkl = u. (.)

Theorem . A = (amnkl) ∈ (B(Cp) : Cp; p) if and only if

p- lim
m,n→∞ emnkl =  for all k, l ∈ N, (.)

p- lim
m,n→∞

∑

k,l

emnkl = , (.)

p- lim
m,n→∞

∑

k

|emnkl| =  for all l ∈N, (.)

p- lim
m,n→∞

∑

l

|emnkl| =  for all k ∈N, (.)

∃v ∈C � p- lim
m,n→∞

∑

k,l

|emnkl| = v for all l ∈N, (.)

sup
K∈N

∑

k,l>K

|emnkl| < ∞. (.)

Corollary . Let A = (amnkl) be a four-dimensional infinite matrix. Then the following
statements hold.

(i) A ∈ (Cp : B(Cp); p) if and only if (.)-(.) hold with fmnkl instead of amnkl .
(ii) A ∈ (B(Cp) : B(Cp); p) if and only if (.)-(.) hold with hmnkl instead of amnkl .

(iii) A ∈ (B(Cp) : CSp; p) if and only if (.)-(.) hold with e(m, n) instead of amnkl .
(iv) A ∈ (CSp : B(Cp); p) if and only if (.)-(.) hold with 
kl

gmnkl instead of amnkl .
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5 Conclusion
Zeltser [], in her PhD thesis, studied both the theory of topological double sequence
spaces and the summability theory of double sequences.

Altay and Başar [] have recently studied the double series spaces BS , BS(t), CSϑ and
BV whose sequences of partial sums are in the spaces Mu, Mu(t), Cϑ and Lu, respectively,
where ϑ ∈ {p, bp, r}. They studied some topological properties of those spaces and com-
puted the α-duals of the spaces BS , CSbp and BV and the β(ϑ)-duals of the spaces CSbp

and CSr of double series. Furthermore, they gave the conditions which characterize the
classes of four-dimensional matrix transformations defined on the spaces CSbp, CSp and
CSr .

Başar [], Chapter , p., studied the fundamental results on double sequences and
related topics. Başar and Sever [] deeply studied the Banach space Lq of absolutely q-
summable double sequences and examined the topological properties. Moreover, they
determined the α-, β(ϑ)- and γ -duals of Lq, where  ≤ q < ∞ and ϑ ∈ {p, bp, r}.

The concept of matrix domain was examined by several researchers on some single se-
quence spaces by using some special matrices. Recently some significant studies have been
done by several mathematicians for double sequence spaces and four-dimensional matri-
ces (see [–]). In this work, I have studied the domain of four-dimensional generalized
difference matrix B(r, s, t, u) on some double sequence spaces and examined some topolog-
ical properties. Furthermore, I determined the α-, β(ϑ)- and γ -duals of some new double
sequence spaces and characterized some classes of four-dimensional matrix transforma-
tions related to the new double sequence spaces. As a natural continuation of Yeşilkayagil
and Başar [], one can obtain certain new topological properties concerning the space
B(Cf ) of all almost B summable double sequences.
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23. Yeşilkayagil, M, Başar, F: Some topological properties of the spaces of almost null and almost convergent double

sequences. Turk. J. Math. 40(3), 624-630 (2016)


	Four-dimensional generalized difference matrix and some double sequence spaces
	Abstract
	MSC
	Keywords

	Introduction
	Some new spaces of double sequences
	The alpha-, beta- and gamma-duals of the new double sequence spaces
	Characterization of some classes of four-dimensional matrices
	Conclusion
	Acknowledgements
	Competing interests
	Author's contributions
	Article information
	Publisher's Note
	References


