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Abstract
This paper proposes a new nonlinear stochastic SIVS epidemic model with double
epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate
the threshold dynamics of the stochastic SIVS epidemic model. By using the
technique of a series of stochastic inequalities, we obtain sufficient conditions for the
persistence in mean and extinction of the stochastic system and the threshold which
governs the extinction and the spread of the epidemic diseases. Finally, this paper
describes the results of numerical simulations investigating the dynamical effects of
stochastic disturbance. Our results significantly improve and generalize the
corresponding results in recent literatures. The developed theoretical methods and
stochastic inequalities technique can be used to investigate the high-dimensional
nonlinear stochastic differential systems.
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1 Introduction
Mathematical inequalities are widely used in many fields of mathematical analysis, es-
pecially differential systems [–]. Recently, the inequality technique was applied to
stochastic differential systems [–], impulsive differential systems [–], and impul-
sive stochastic differential systems [], thus some new results have been obtained.

As an important factor threatening the safety of human life and property, the investiga-
tion of epidemic has received extensive attention from experts in various fields [–].
Generally speaking, medical researchers often use observation and experimental meth-
ods to study the behavior of epidemics. Recently, however, a number of experts in the
field of mathematics have also been interested in the study of epidemics. They have used
mathematical methods to analyze the spread and control of epidemics [–]. Kermack
and McKendrick’s pioneering work on the development of an epidemic disease is one of
the typical examples. They established an SIS compartment model and proposed the fa-
mous threshold theory, which has laid a solid foundation for the study of the dynamics of
infectious diseases [].
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The SIS model based on the deterministic ordinary differential equation is given by

⎧
⎨

⎩

Ṡ(t) = A – βS(t)I(t) – uS(t) + rI(t),

İ(t) = βS(t)I(t) – (u + α + r)I(t).
()

In system (), βS(t) represents the number of people infected by a patient within a unit
time at t. But in reality, the number of people who can be exposed to a patient at a time is
limited. To this end, some authors have introduced a saturated infection rate to study the
dynamic behavior of the disease [–]. In addition, all creatures on the earth are infected
by a variety of environmental noises, of course, the disease is no exception. Motivated by
this, some scholars have studied the infection system with environmental noises (such as
Brownion noise, Markov noise and Lévy noise) [–]. Meanwhile, populations may be
affected by different kinds of infectious diseases at the same time. Therefore, it is of great
significance to study the epidemic model with multiple diseases [–].

Recently, Meng et al. [] considered a novel nonlinear stochastic SIS epidemic model
with double epidemic hypothesis as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = (A – uS(t) – βS(t)I(t)
a+I(t) – βS(t)I(t)

a+I(t) + rI(t) + rI(t)) dt

– σS(t)I(t)
a+I(t) dB(t) – σS(t)I(t)

a+I(t) dB(t),

dI = ( βS(t)I(t)
a+I(t) – (u + α + r)I(t)) dt + σS(t)I(t)

a+I(t) dB(t),

dI = ( βS(t)I(t)
a+I(t) – (u + α + r)I(t)) dt + σS(t)I(t)

a+I(t) dB(t).

()

They obtained the threshold of system () for the extinction and the persistence in mean
of the epidemic diseases. Based on system (), recently, Zhang et al. [] proposed an SIS
system with double epidemic diseases driven by Lévy jumps as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = (A – uS(t) – βS(t)I(t)
a+I(t) – βS(t)I(t)

a+I(t) + rI(t) + rI(t)) dt

+ σS(t) dB(t) +
∫

Z
γ(u)S(t–)Ñ(dt, du),

dI = ( βS(t)I(t)
a+I(t) – (u + α + r)I(t)) dt

+ σI(t) dB(t) +
∫

Z
γ(u)I(t–)Ñ(dt, du),

dI = ( βS(t)I(t)
a+I(t) – (u + α + r)I(t)) dt

+ σI(t) dB(t) +
∫

Z
γ(u)I(t–)Ñ(dt, du).

()

In model (), the authors discussed in detail the conditions for persistence in mean and
extinction of each epidemic disease. Therefore, they discussed the persistence in mean of
susceptible individuals under different conditions. The above two studies provide a theo-
retical basis for the study of infectious diseases. But they just discussed the persistence in
mean and extinction of epidemic diseases under different conditions. In real life, however,
when an epidemic outbreak occurs, we do not sit idly but take measures to control the
spread of the epidemic disease. There are many ways to suppress the spread of a disease,
for instance, cut off transmission routes, pay attention to food hygiene, vaccination and so
on [, ]. Vaccination is an effective method of preventing infectious diseases and many
scientists have explored the effect of vaccination on diseases [–].
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Motivated by the above works, in this paper, we propose a stochastic SIVS model with
double epidemic diseases and Lévy jumps under vaccination as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = (( – q)� – (u + p)S(t) – βS(t)I(t)
α+I(t) – βS(t)I(t)

α+I(t)

+ rI(t) + rI(t) + δV (t)) dt

+ σS dB(t) +
∫

Z
γ(u)S(t–)Ñ(dt, du),

dI = ( βS(t)I(t)
α+I(t) – (u + d + r)I(t)) dt

+ σI dB(t) +
∫

Z
γ(u)I(t–)Ñ(dt, du),

dI = ( βS(t)I(t)
α+I(t) – (u + d + r)I(t)) dt

+ σI dB(t) +
∫

Z
γ(u)I(t–)Ñ(dt, du),

dV = [q� + pS(t) – (u + δ)V (t)] dt + σV dB(t)

+
∫

Z
γ(u)V (t–)Ñ(dt, du),

()

where S(t), I(t), I(t), V (t), respectively, stand for the density of susceptible, infective A,
infective B and vaccinated individuals at time t, � is a constant input of new numbers into
the population, q means a fraction of vaccinated for the newborn, βi is the infection rate
coefficient from Ii(t) (i = , ) to S(t), respectively. u represents the natural death rate of
S(t), I(t), I(t), V (t), p is the proportional coefficient of vaccinated for the susceptible, ri,
di is the recovery rate and disease-caused death rate of Ii(t), i = , , respectively. δ stands
for the rate of losing their immunity for vaccinated individuals, α and α are the so-called
half-saturation constants, respectively. B(t) = (B(t), B(t), B(t), B(t)) is a standard Brow-
nian motion with intensity σi >  (i = , , , ).

Throughout this paper, let (�,F , {F}t≥,P) be a complete probability space with a fil-
tration {Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous
while F contains all P-null sets). Function Bi(t) (i = , , , ) is a Brownian motion
defined on the complete probability space �, the intensity of Bi(t) is σi (i = , , , ).
Ñ(dt, du) = N(dt, du) – λ(du) dt, N is a Poisson counting measure on (, +∞) × Z, λ is
the characteristic measure of N on a measurable subset Z, λ(Z) < +∞, γi (i = , , , ) is
bounded and continuous with respect to λ and is B(Z)×Ft-measurable. For an integrable
function X(t) on [, +∞), we define 〈X(t)〉 = 

t
∫ t

 X(s) ds.
The main purpose of this paper is to investigate the threshold dynamics of the stochas-

tic SIVS epidemic model. In this paper, by using the Lyapunov method and the technique
of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in
mean and extinction of the stochastic system and the threshold which governs the extinc-
tion and the spread of the epidemic diseases. Our results significantly improve and gen-
eralize the corresponding results in recent literatures. The developed theoretical meth-
ods and stochastic inequalities technique can be used to investigate the high-dimensional
nonlinear stochastic differential systems. In Section , we firstly give some lemmas and
recall some necessary notations and definitions. Furthermore, we obtain the main results
for stochastic disease-free dynamics and stochastic endemic dynamics which imply the
extinction and the spread of the epidemic diseases. Finally, this paper gives the conclu-
sions and numerical simulations investigating the dynamical effects of stochastic distur-
bance.
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2 Main results
The main purpose of this paper is to investigate the threshold dynamics of the stochas-
tic SIVS epidemic model. In this section, by using the technique of a series of stochastic
inequalities, we obtain sufficient conditions for the persistence in mean and extinction of
the stochastic system and the threshold which governs the extinction and the spread of
epidemic diseases.

2.1 Preliminary knowledge
For the sake of notational simplicity, we define

bi =


σ 

i +
∫

Z

[
γi(u) – ln

(
 + γi(u)

)]
λ(du), i = , , , ;

Ri =
βi(u + δ – uq)�

u + uδ + up
– αi(u + di + ri + bi), i = , ;

γ̌ (u) = max
{
γ(u),γ(u),γ(u),γ(u)

}
;

γ̂ (u) = min
{
γ(u),γ(u),γ(u),γ(u)

}
;

φ =
∫

Z

[(
 + γ̌ (u)

)� –  – γ̂ (u)
]
v(du);

σ = max{σ,σ,σ,σ}.

Throughout this paper, suppose that the following two assumptions hold.

Assumption . The following hold:
(i)  + γi(u) > ;

(ii)
∫

Z
[γi(u) – ln( + γi(u))]λ(du) < ∞, i = , , , , u ∈ Z.

Remark . This assumption means that the intensities of Lévy noises are not infi-
nite.

Assumption . Suppose that there exists some � >  such that the following inequality
holds:

b = u –
� – 


σ  –

φ

�
> .

Definition . ([])
(i) The species X(t) is said to be extinctive if limt→+∞ X(t) = ;

(ii) The species X(t) is said to be persistent in mean if limt→+∞〈X(t)〉∗ > .

The following elementary inequality will be used frequently in the sequel.

Lemma . (Burkholder-Davis-Gundy inequality []) Let g ∈ L(R+; Rd×m). For any t ≥
, define

x(t) =
∫ t


g(s) dB(s), A(t) =

∫ 

t

∣
∣g(s)

∣
∣ ds.
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Then, for every p > , there exist two positive constants cp, Cp such that

cpE
∣
∣A(t)

∣
∣p/ ≤ E

(
sup

≤s≤t|x(s)|p

)
≤ CpE

∣
∣A(t)

∣
∣p/, t ≥ ,

where cp, Cp only depend on p.

Lemma . (Chebyshev inequality []) For any c > , p > , X ∈ Lp, the following in-
equality holds:

P
{

w :
∣
∣X(w)

∣
∣ ≥ c

} ≤ c–pE|X|p.

Lemma . (Hölder inequality []) For any ai, bi ∈ R and k ≥ , if p, q >  and 
p + 

q = ,
the following inequality holds:

∣
∣
∣
∣
∣

k∑

i=

aibi

∣
∣
∣
∣
∣
≤

( k∑

i=

|ai|p
)/p( k∑

i=

|bi|q
)/q

.

Lemma . (Doob’s martingale inequality []) Let X be a submartingale taking nonneg-
ative real values, either in discrete or continuous time. That is, for all times s and t with
s < t,

Xs ≤ E[Xt|Fs].

Then, for any constant C > ,

P
[

sup
≤t≤T

Xt ≥ C
]

≤ E[|XT |]
C

,

where P denotes the probability measure on the sample space � of the stochastic process
X : [, T] × � → [, +∞) and E denotes the expected value with respect to the probability
measure P.

Lemma . ([, ]) Assume that X(t) ∈ R+ is an Itô’s-Lévy process of the form

dX(t) = F
(
X

(
t–)

, t–)
dt + G

(
X

(
t–)

, t–)
dB(t) +

∫

Z

H
(
X

(
t–)

, t–, u
)
Ñ(dt, du),

where F : Rn × R+ × S → Rn, G : Rn × R+ × S → Rn and H : Rn × R+ × S × Z → Rn are
measurable functions.

Given V ∈ C,(Rn × R+ × S; R+), we define the operator LV by

LV (X, t) = Vt(X, t) + VX(X, t)F(X, t) +



trace
[
GT (X, t)VXX(X, t)G(X, t)

]

+
∫

Z

{
V

(
X + H(X, t)

)
– V (X, t) – VX(X, t)H(X, t, u)

}
λ(du),

where

Vt(X, t) =
∂VX(X, t)

∂t
,
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VX(X, t) =
(

∂VX(X, t)
∂X

, . . . ,
∂VX(X, t)

∂Xn

)

,

VXX(X, t) =
(

∂VX(X, t)
∂Xi∂Xj

)

n×n
.

Then the generalized Itô’s formula with Lévy jumps is given by

dV (X, t) = LV (X, t) dt + VX(X, t)G(X, t) dB(t) +
∫

Z

{
V

(
X + H(X, t)

)
– V (X, t)

}
Ñ(dt, du).

Lemma . ([]) Let X(t) ∈ C(� × [, +∞), R+). We have the following conclusions.
(i) If there exist T > , λ > , λ, m, ni such that when t ≥ T ,

ln X(t) ≤ λt – λ

∫ t


X(s) ds + mB(t) +

j∑

i=

ni

∫ t



∫

Z

ln
(
 + γi(u)

)
̃(ds, du) a.s.,

then
⎧
⎨

⎩

〈X〉∗ ≤ λ
λ

a.s., if λ ≥ ;

limt→+∞ X(t) =  a.s., if λ < .

(ii) If there exist T > , λ > , λ > , m, ni such that when t ≥ T ,

ln X(t) ≥ λt – λ

∫ t


X(s) ds + mB(t) +

j∑

i=

ni

∫ t



∫

Z

ln
(
 + γi(u)

)
̃(ds, du) a.s.,

then 〈X〉∗ ≥ λ
λ

a.s.

Lemma . For any initial value (S(), I(), I(), V ()) ∈ R
+, the solution (S(t), I(t), I(t),

V (t)) of model () has the following property:

lim
t→∞

S(t) + I(t) + I(t) + V (t)
t

=  a.s.

Moreover,

lim
t→∞

S(t)
t

= , lim
t→∞

I(t)
t

= ,

lim
t→∞

I(t)
t

= , lim
t→∞

V (t)
t

=  a.s.

lim
t→∞

ln S(t)
t

≤ , lim
t→∞

ln I(t)
t

≤ ,

lim
t→∞

ln I(t)
t

≤ , lim
t→∞

ln V (t)
t

≤  a.s.

Proof Define

X = S + I + I + V , Q(X) = X�.
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Applying the generalized Itô’s formula to Q(X), we have

dQ(X) ≤ LQdt + �X�–(σI dB(t) + σI dB(t) + σS dB(t) + σV dB(t)
)

+ X�

∫

Z

[(
 + γ̌ (u)

)� – γ̂
]
Ñ(dt, du), ()

where

LQ ≤ �X�–(� – uX – dI – dI) +
�(� – )


X�–σ X + φX�

≤ �X�–
[

�X –
(

u –
� – 


σ  –

φ

�

)

X
]

.

Choose a positive constant � >  that satisfies

b = u –
� – 


σ  –

φ

�
> .

For any constant k satisfying k ∈ (, b�), one has

dektQ
(
X(t)

) ≤ L
[
ektQ

(
X(t)

)]
dt + ekt�X�–[σI(s) dB(s) + σI(s) dB(s)

+ σS(s) dB(s) + σV (s) dB(s)
]

+ ekt�X�

∫

Z

[(
 + γ̌ (u)

)� – γ̂
]
Ñ(dt, du).

Integrating from  to t and taking expectation on both sides of (), we have

EektQ
(
X(t)

) ≤ Q
(
X()

)
+ E

[∫ t



[
keksQ

(
X(s)

)
+ eksLQ

(
X(s)

)]
ds

]

.

Easily, one has

kektQ
(
X(t)

)
+ ektLQ

(
X(t)

) ≤ kektX�(t) + �ektX�–(t)
[
–bX(t) + �X(t)

]

≤ �ekt sup
X∈R+

{

X�–
[

–
(

b –
k
�

)

X + �X
]

+ 
}

:= �ektH .

Therefore

E
(
X�

) ≤ X�()
ekt +

�H
k

≤ X�() + �H := M. ()

By Lemma ., applying the Burkholder-Davis-Gundy inequality, integrating equation ()
from  to t, and for an arbitrarily small positive constant δ, one has

E

[
sup

kδ≤t≤(k+)δ

(
X�(t)

)]
≤ E

(
X(kδ)

)� + Y + Y

≤ M + Y + Y,
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where

Y = E

{

sup
kδ≤t≤(k+)δ

∣
∣
∣
∣

∫ t

kδ

�X�–(s)
[
–bX(s) + �X(s)

]
ds

∣
∣
∣
∣

}

≤ c�E

[

sup
kδ≤t≤(k+)δ

∣
∣
∣
∣

∫ t

kδ

X�(s) ds
∣
∣
∣
∣

]

≤ c�E

[∫ (k+)δ

kδ

X�(s) ds
]

≤ c�δE
[

sup
kδ≤t≤(k+)δ

X�(s) ds
]
, k = , , . . .

and

Y = E

{

sup
kδ≤t≤(k+)δ

∣
∣
∣
∣

∫ t

kδ

�X�–(s)
[
σI(s) dB(s) + σI(s) dB(s) + σS(s) dB(s)

+ σV (s) dB(s)
]

+
∫ t

kδ

X�(s)
∫

Z

[(
 + γ̌ (u)

)� – γ̂
]
Ñ(dt, du)

∣
∣
∣
∣

}

≤ C�E

[∫ (k+)δ

kδ

�X(�–)(σ 
 I

 + σ 
 I

 + σ 
 S + σ 

 V )
ds

] 


+ C�E
{∫ (k+)δ

kδ

X�

∫

Z

[(
 + γ̌ (u)

)� – γ̂ (u)
]v(du) ds

} 


≤ C�δ



[

�σ +
∫

Z

[(
 + γ̌ (u)

)� – γ̂ (u)
]v(du)

]

E

[
sup

kδ≤t≤(k+)δ
X�

]
, k = , , . . . ,

where c�, C� > .
So we have

E

[
sup

kδ≤t≤(k+)δ

(
X�(t)

)]
≤ E

(
X(kδ)

)� + c�δE
[

sup
kδ≤t≤(k+)δ

X�(s) ds
]

+ C�δ



[

�σ +
∫

Z

[(
 + γ̌ (u)

)� – γ̂ (u)
]v(du)

]

×E

[
sup

kδ≤t≤(k+)δ
X�

]
.

Choose a positive constant δ that satisfies

c�δ + C�δ



[

�σ +
∫

Z

[(
 + γ̌ (u)

)� – γ̂ (u)
]v(du)

]

≤ 


.

Combining it with equation (), one has

E

[
sup

kδ≤t≤(k+)δ

(
X�(t)

)]
≤ E

(
X(kδ)

)� ≤ M.

Applying the arbitrariness of κX >  and Lemma . for Chebyshev’s inequality, one ob-
tains

P

{
sup

kδ≤t≤(k+)δ
X�(t) > (kδ)+κX

}
≤ E[supkδ≤t≤(k+)δ X�(t)]

(kδ)+κX

≤ M
(kδ)+κX , k = , , . . . .
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Applying the Borel-Cantelli lemma [], for almost all ω ∈ �, one has

sup
kδ≤t≤(k+)δ

X�(t) ≤ (kδ)+κX ()

holds for all but finitely many k. Therefore, for any positive constant k ≥ k and almost all
ω ∈ �, there is k(ω) such that equation () holds.

Thus, for almost all ω ∈ �, once conditions k ≥ k and kδ ≤ t ≤ (k + )δ hold, then we
have

ln X�(t)
ln t

≤ ( + κX) ln(kδ)
ln(kδ)

=  + κX . ()

Taking the limit superior on both sides of equation () and applying the arbitrariness of
κX > , one has

lim sup
t→∞

ln X�(t)
ln t

≤  a.s.

Easily, for any � satisfying  < � <  + (u–φ)
σ , one has u > �–

 σ  + φ. Therefore

lim sup
t→∞

ln X�(t)
ln t

≤ 
�

a.s.

That is to say, for any constant τ satisfying  < τ <  – 
�

, there is a constant N = N(ω), and
once condition t ≥ N holds, then we have

ln X(t) ≤
(


�

+ τ

)

ln t.

Therefore

lim
t→∞

X(t)
t

= lim
t→∞

S(t) + I(t) + I(t) + V (t)
t

=  ≤ lim sup
t→∞

t

� +τ

t
=  a.s.

So

lim
t→∞

S(t)
t

= , lim
t→∞

I(t)
t

= ,

lim
t→∞

I(t)
t

= , lim
t→∞

V (t)
t

=  a.s.

and

lim
t→∞

ln S(t)
t

≤ , lim
t→∞

ln I(t)
t

≤ ,

lim
t→∞

ln I(t)
t

≤ , lim
t→∞

ln V (t)
t

≤  a.s.

This completes the proof. �
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Lemma . For any initial value (S(), I(), I(), V ()) ∈ R
+, the solution (S(t), I(t), I(t),

V (t)) of model () has the following property:

lim
t→∞

∫ t
 I(s) dB(s)

t
= , lim

t→∞

∫ t


∫

Z
γ(u)I(s)Ñ(ds, du)

t
=  a.s.,

lim
t→∞

∫ t
 I(s) dB(s)

t
= , lim

t→∞

∫ t


∫

Z
γ(u)I(s)Ñ(ds, du)

t
=  a.s.,

lim
t→∞

∫ t
 S(s) dB(s)

t
= , lim

t→∞

∫ t


∫

Z
γ(u)S(s)Ñ(ds, du)

t
=  a.s.,

lim
t→∞

∫ t
 V (s) dB(s)

t
= , lim

t→∞

∫ t


∫

Z
γ(u)V (s)Ñ(ds, du)

t
=  a.s.

Proof Define

X(t) =
∫ t


I(s) dB(s), Y(t) =

∫ t



∫

Z

γ(u)I(s)Ñ(ds, du),

X(t) =
∫ t


I(s) dB(s), Y(t) =

∫ t



∫

Z

γ(u)I(s)Ñ(ds, du),

X(t) =
∫ t


S(s) dB(s), Y(t) =

∫ t



∫

Z

γ(u)S(s)Ñ(ds, du),

X(t) =
∫ t


V (s) dB(s), Y(t) =

∫ t



∫

Z

γ(u)V (s)Ñ(ds, du).

Applying Lemma . for the Burkholder-Davis-Gundy inequality and Lemma . for
Hölder’s inequality, one has

E

[
sup

≤s≤t

∣
∣X(s)

∣
∣�

]
≤ C�E

[∫ t


I

 (θ ) dθ

] �
 ≤ C�E

[∫ t



∣
∣I

 (θ )
∣
∣ dθ

] �


,

E

[
sup

≤s≤t

∣
∣Y(s)

∣
∣�

]
≤ C�E

[∫ t



∫

Z

I
 (θ )γ 

 (u) dθ

] �


≤ C�

(∫

Z

γ 
 (u)v(du)

) �

E

[∫ t



∣
∣I(θ )

∣
∣ dθ

] �


for  < � <  + (u–φ)
σ . Here C� = [ ��+

(�–)�– ]
�
 >  is a constant.

Applying equation (), we have

E

[
sup

k≤t≤(k+)

∣
∣X(s)

∣
∣�

]
≤ MC�(k + )

�
 ≤ + �

 MC�k
�
 .

For any constant κX > , applying Lemma . for Doob’s martingale inequality, one ob-
tains

P

{
ω : sup

k≤t≤(k+)

∣
∣X(t)

∣
∣� > k+κX + �


}

≤ E[supk≤t≤(k+)|X(k + )|�]

k+κX + �


≤ + �
 MC�k

�


k+κX + �


≤ + �
 MC�

k+κX
, k = , , . . . .
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Applying the Borel-Cantelli lemma, one has

ln |X(t)|�
ln t

≤ ( + κX + �

 ) ln k
ln k

=  + κX +
�


. ()

Taking the limit superior on both sides of equation () and applying the arbitrariness of
κX > , one has

lim sup
t→∞

ln |X(t)|
ln t

≤ 


+

�

a.s.

That is to say, for any constant τ satisfying  < τ < 
 – 

�
, there is a constant N = N(ω), and

once t ≥ N , w ∈ �τ holds, then we have

ln
∣
∣X(t)

∣
∣ ≤

(



+

�

+ τ

)

ln t. ()

Dividing both sides of equation () by t and taking the limit superior, we have

lim sup
t→∞

|X(t)|
t

≤ lim sup
t→∞

t

 + 

� +τ

t
= .

Combining it with lim inft→∞ |X(t)|
t ≥ , one has

lim
t→∞

|X(t)|
t

= lim
t→∞

X(t)
t

=  a.s.

Similarly, one obtains

lim
t→∞

ln X(t)
t

= , lim
t→∞

ln X(t)
t

= ,

lim
t→∞

ln X(t)
t

= , lim
t→∞

ln Y(t)
t

= ,

lim
t→∞

ln Y(t)
t

= , lim
t→∞

ln Y(t)
t

= , lim
t→∞

ln Y(t)
t

= .

This completes the proof. �

Lemma . For any initial value (S(), I(), I(t), V ()) ∈ R
+, model () has a unique pos-

itive solution (S(t), I(t), I(t), V (t)) ∈ R
+ on t ≥  with probability .

Proof The proof is similar to Refs. [, ] by defining Q(S, I, I, V ) = S –  – ln S + I –  –
ln I + I –  – ln I + V –  – ln V , and hence is omitted. �

2.2 Stochastic disease-free dynamics
Theorem . Suppose that conditions R <  and R <  hold. Then, for any initial value
(S(), I(), I(), V ()) ∈ R

+, the solution (S(t), I(t), I(t), V (t)) of model () has the follow-
ing property:

lim
t→∞ Ii(t) = , i = , , lim

t→∞
〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

,
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lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

.

That is to say, the two epidemic diseases go to extinct almost surely.

Proof By equation (), one has

d
(

S + I + I +
δ

u + δ
V

)

=
(u + δ – uq)�

u + δ
–

u + uδ + up
u + δ

S –
∑

i=

(u + di)Ii

+ σS dB(t) +
∫

Z

γ(u)S
(
t–)

Ñ(dt, du)

+
∑

i=

[

σiIidBi(t) +
∫

Z

γi(u)Ii
(
t–)

Ñ(dt, du)
]

+
δ

u + δ

(

σV dB(t) +
∫

Z

γ(u)V
(
t–)

Ñ(dt, du)
)

. ()

Dividing both sides of equation () by t and integrating over the time interval  to t yield

〈
S(t)

〉
=

u + δ

u + uδ + up

[
(u + δ – uq)�

u + δ
–

∑

i=

(u + di)
〈
Ii(t)

〉
– �(t)

]

, ()

where

�(t) =

t

{

S(t) – S() +
∑

i=

(
Ii(t) – Ii()

)
+

δ

u + δ

(
V (t) – V ()

)

–
∑

i=

∫ t



[

σiIi dBi(s) +
∫

Z

γi(u)Ii(s)Ñ(dt, du)
]

–
∫ t



[

σS dB(s) +
∫

Z

γ(u)S(s)Ñ(dt, du)
]

–
δ

u + δ

∫ t



[

σV dB(s) +
∫

Z

γ(u)V (s)Ñ(dt, du)
]}

.

Applying Lemmas . and ., we obtain that

lim
t→+∞�(t) =  a.s. ()

Applying the generalized Itô’s formula in Lemma . to α ln I(t) + I(t) yields

d
[
α ln I(t) + I(t)

]
=

[
βS – (u + d + r)I – α(u + d + r) – αb

]
dt

+ (α + I)σ dB(t) +
∫

Z

[
α ln

(
 + γ(u)

)

+ Iγ(u)
]
Ñ(dt, du). ()
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Dividing both sides of equation () by t, integrating over the time interval  to t and
taking the limit, one obtains that

α ln I(t) + I(t)
t

=
α ln I() + I()

t
+ β

〈
S(t)

〉
– (u + d + r)

〈
I(t)

〉

– α(u + d + r) – αb +

t

∫ t



(
α + I(s)

)
σ dB(s)

+

t

∫ t



∫

Z

[
α ln

(
 + γ(u)

)
+ I(s)γ(u)

]
Ñ(dt, du). ()

Combining equations () and (), one obtains

α ln I(t)
t

=
β(u + δ – uq)�

u + uδ + up
– α(u + d + r + b) –

β(u + δ)(u + d)
u + uδ + up

〈
I(t)

〉

–
(

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r)
)

〈
I(t)

〉
+

α ln I() + I()
t

–
I(t)

t
–

β(u + δ)
u + uδ + up

�(t) +

t

∫ t



(
α + I(s)

)
σ dB(s)

+

t

∫ t



∫

Z

[
α ln

(
 + γ(u)

)
+ I(s)γ(u)

]
Ñ(dt, du)

=
β(u + δ – uq)�

u + uδ + up
– α(u + d + r + b) –

β(u + δ)(u + d)
u + uδ + up

〈
I(t)

〉

–
(

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r)
)

〈
I(t)

〉
+ �(t), ()

where

�(t) =
α ln I() + I()

t
–

I(t)
t

–
β(u + δ)

u + uδ + up
�(t)

+

t

∫ t



(
α + I(s)

)
σ dB(s)

+

t

∫ t



∫

Z

[
α ln

(
 + γ(u)

)
+ I(s)γ(u)

]
Ñ(dt, du).

Similarly, applying the generalized Itô’s formula in Lemma . to α ln I(t) + I(t) yields

α ln I(t)
t

=
β(u + δ – uq)�

u + uδ + up
– α(u + d + r + b) –

β(u + δ)(u + d)
u + uδ + up

〈
I(t)

〉

–
(

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r)
)

〈
I(t)

〉
+ �(t), ()

where

�(t) =
α ln I() + I()

t
–

I(t)
t

–
β(u + δ)

u + uδ + up
�(t)

+

t

∫ t



(
α + I(s)

)
σ dB(s)

+

t

∫ t



∫

Z

[
α ln

(
 + γ(u)

)
+ I(s)γ(u)

]
Ñ(dt, du).
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Applying Lemmas . and ., we obtain that

lim
t→+∞�i(t) = , i = ,  a.s. ()

By taking the limit superior of both sides of equation () and equation (), respectively,
one has

lim sup
t→∞

α ln I(t)
t

≤ β(u + δ – uq)�
u + uδ + up

– α(u + d + r + b) = R < ,

lim sup
t→∞

α ln I(t)
t

≤ β(u + δ – uq)�
u + uδ + up

– α(u + d + r + b) = R < .

That is to say,

lim
t→∞ Ii(t) = , i = ,  a.s. ()

Applying () and () into equation (), we obtain that

lim
t→∞

〈
S(t)

〉
=

u + δ

u + uδ + up

[
(u + δ – uq)�

u + δ
–

∑

i=

(u + di) lim
t→∞

〈
Ii(t)

〉
– lim

t→∞�(t)

]

=
(u + δ – uq)�
u + uδ + up

. ()

By equation (), one has

d(S + I + I + V ) =
[
� – uS – uV – (u + d)I – (u + d)I

]
dt

+
∑

i=

[

σiIi dBi(t) +
∫

Z

γi(u)Ii
(
t–)

Ñ(dt, du)
]

+ σS dB(t) +
∫

Z

γ(u)S
(
t–)

Ñ(dt, du)

+ σV dB(t) +
∫

Z

γ(u)V
(
t–)

Ñ(dt, du). ()

Dividing both sides of equation () by t, integrating over the time interval t =  to t and
taking the limit, one obtains that

lim
t→∞

〈
V (t)

〉
=

�

u
– lim

t→∞
〈
S(t)

〉
–

∑

i=

u + di

u
lim

t→∞
〈
Ii(t)

〉

– lim
t→∞

S(t) – S() +
∑

i=(Ii(t) – Ii()) + V (t) – V ()
ut

+

u

lim
t→∞


t

∫ t



{ ∑

i=

[

σiIi(s) dBi(s) +
∫

Z

γ(u)I
(
s–)

Ñ(ds, du)
]

+ σS(s) dB(s) +
∫

Z

γ(u)S
(
s–)

Ñ(ds, du)

+ σV (s) dB(s) +
∫

Z

γ(u)V
(
s–)

Ñ(ds, du)

}

ds. ()
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Applying (), (), Lemmas . and ., we have

lim
t→∞

〈
V (t)

〉
=

�

u
–

(u + δ – uq)�
u + uδ + up

=
(p + uq)�

u + uδ + up
.

This completes the proof. �

2.3 Stochastic endemic dynamics
Theorem . For any initial value (S(), I(), I(), V ()) ∈ R

+, the solution (S(t), I(t),
I(t), V (t)) of model () has the following property:

(i) If R >  and R < , then the epidemic disease I(t) is persistent in mean and I(t)
goes extinct, i.e. limt→∞〈I(t)〉 = R

ϒ
> , limt→∞ I(t) =  a.s. Moreover,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

(ii) If R <  and R > , then the epidemic disease I(t) goes extinct and I(t) is persistent
in mean, i.e. limt→∞〈I(t)〉 = , limt→∞ I(t) = R

ϒ
>  a.s. Moreover,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

Proof Case (i): From equation () we have

α ln I(t)
t

=
β(u + δ – uq)�

u + uδ + up
– α(u + d + r + b)

–
[

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r)
]

〈
I(t)

〉

–
β(u + δ)(u + d)

u + uδ + up
〈
I(t)

〉
+ �(t)

= R – ϒ
〈
I(t)

〉
– ϒ

〈
I(t)

〉
+ �(t), ()

where

ϒ =
β(u + δ)(u + d)

u + uδ + up
+ (u + d + r), ϒ =

β(u + δ)(u + d)
u + uδ + up

.

From Theorem ., when R <  one has

lim
t→∞ I(t) =  a.s. ()

Therefore, there exists an arbitrarily small constant ε >  such that when t is large enough,
we have I(t) < ε. Applying this into equation () leads to

R – ϒ
〈
I(t)

〉
+ �(t) ≥ α ln I(t)

t
≥ R – ϒ

〈
I(t)

〉
– ϒε + �(t).
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Applying Lemma . and the arbitrariness of ε, we obtain

lim
t→∞

〈
I(t)

〉
=

R

ϒ
a.s. ()

Applying (), () and () into equation (), we obtain that

lim
t→∞

〈
S(t)

〉
=

u + δ

u + uδ + up

[
(u + δ – uq)�

u + δ
–

∑

i=

(u + di) lim
t→∞

〈
Ii(t)

〉
– lim

t→∞�(t)

]

=
(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
. ()

Applying (), (), (), Lemmas . and . into equation (), we have

lim
t→∞

〈
V (t)

〉
=

�

u
–

(u + δ – uq)�
u + uδ + up

+
(u + δ)(u + d)
u + uδ + up

R

ϒ
–

u + d

u
R

ϒ

=
(p + uq)�

u + uδ + up
–

(u + d)p
u(u + δ + p)

R

ϒ
.

Case (ii): From equation () we have

α ln I(t)
t

=
β(u + δ – uq)�

u + uδ + up
– α(u + d + r + b) –

β(u + δ)(u + d)
u + uδ + up

〈
I(t)

〉

–
[

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r)
]

〈
I(t)

〉
+ �(t)

= R – ϒ
〈
I(t)

〉
– ϒ

〈
I(t)

〉
+ �(t), ()

where

ϒ =
β(u + δ)(u + d)

u + uδ + up
, ϒ =

β(u + δ)(u + d)
u + uδ + up

+ (u + d + r).

From Theorem ., when R <  one has

lim
t→∞ I(t) =  a.s. ()

Therefore, there exists an arbitrarily small constant ε >  such that when t is large enough,
we have I(t) < ε. Applying this into equation () leads to

R – ϒ
〈
I(t)

〉
+ �(t) ≥ α ln I(t)

t
≥ R – ϒ

〈
I(t)

〉
– ϒε + �(t).

Applying Lemma . and the arbitrariness of ε, we obtain

lim
t→∞

〈
I(t)

〉
=

R

ϒ
a.s. ()
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Applying equations (), (), () into equation (), we obtain that

lim
t→∞

〈
S(t)

〉
=

u + δ

u + uδ + up

[
(u + δ – uq)�

u + δ
–

∑

i=

(u + di) lim
t→∞

〈
Ii(t)

〉
– lim

t→∞�(t)

]

=
(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
. ()

Applying (), (), (), Lemmas . and . into equation (), we have

lim
t→∞

〈
V (t)

〉
=

�

u
–

(u + δ – uq)�
u + uδ + up

+
(u + δ)(u + d)
u + uδ + up

R

ϒ
–

u + d

u
R

ϒ

=
(p + uq)�

u + uδ + up
–

(u + d)p
u(u + δ + p)

R

ϒ
.

This completes the proof. �

Theorem . Suppose that conditions R >  and R >  hold. Let (S(t), I(t), I(t), V (t)) be
the solution of model () with the initial value (S(), I(), I(), V ()) ∈ R

+.
(i) If ϒR < ϒR, then the epidemic disease I(t) is persistent in mean and I(t) goes

extinct, i.e. limt→∞〈I(t)〉 = R
ϒ

> , limt→∞ I(t) =  a.s. Moreover,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

(ii) If ϒR < ϒR, then the epidemic disease I(t) goes extinct and I(t) is persistent in
mean, i.e. limt→∞〈I(t)〉 = , limt→∞ I(t) = R

ϒ
>  a.s. Moreover,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

(iii) If ϒR > ϒR, ϒR > ϒR, then the epidemic diseases I and I are persistent
in mean. Moreover,

lim
t→∞

〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
, lim

t→∞
〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
a.s.,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
ϒR – ϒR

ϒϒ – ϒϒ

–
(u + d)

u(u + δ + p)
ϒR – ϒR

ϒϒ – ϒϒ
a.s.
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Proof Case (i): Note that

lim sup
t→+∞

ln I(t)
t

≤ ,

there exists an arbitrarily small constant ε >  such that when t is large enough, we have

ln I(t)
t

< ε.

From equation () and equation (), when t is large enough, one has

ϒα ln I(t)
t

= ϒR – ϒR – (ϒϒ – ϒϒ)
〈
I(t)

〉
+ ϒα

ln I(t)
t

+ ϒ�(t) – ϒ�(t)

≤ ϒR – ϒR – (ϒϒ – ϒϒ)
〈
I(t)

〉
+ ϒαε

+ ϒ�(t) – ϒ�(t). ()

Since ϒR < ϒR and ϒϒ > ϒϒ, taking the limit superior of both sides of equa-
tion (), applying equation () and the arbitrariness of ε, we have

lim sup
t→+∞

ln I(t)
t

≤ ϒR – ϒR

ϒα
< .

That is to say,

lim
t→∞ I(t) =  a.s.

By using the method of Case (ii) in Theorem ., one obtains the persistence in mean of
I(t), S(t) and V (t), and hence is omitted.

Case (ii): The proof of Case (ii) is similar to the proof of Case (i) in this subsection and
hence is omitted.

Case (iii): Since ϒR > ϒR and ϒϒ > ϒϒ, using Lemma . and the arbitrari-
ness of ε for equation (), one obtains that

lim sup
t→+∞

〈
I(t)

〉 ≤ ϒR – ϒR

ϒϒ – ϒϒ
a.s. ()

Similarly, when ϒR > ϒR, we have

lim sup
t→+∞

〈
I(t)

〉 ≤ ϒR – ϒR

ϒϒ – ϒϒ
a.s. ()

From equation (), there exists an arbitrarily small constant ε >  such that when t is
large enough, we have

〈
I(t)

〉 ≤ ϒR – ϒR

ϒϒ – ϒϒ
+ ε. ()
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Applying equation () into equation (), one obtains that

α ln I(t)
t

= R – ϒ
〈
I(t)

〉
– ϒ

〈
I(t)

〉
+ �(t)

≥ R – ϒ
〈
I(t)

〉
– ϒε – ϒ

ϒR – ϒR

ϒϒ – ϒϒ
+ �(t).

By using Lemma . and the arbitrariness of ε, we obtain that

lim inf
t→+∞

〈
I(t)

〉 ≥ ϒR – ϒR

ϒϒ – ϒϒ
a.s. ()

Similarly, one obtains

lim inf
t→+∞

〈
I(t)

〉 ≥ ϒR – ϒR

ϒϒ – ϒϒ
a.s. ()

Applying equations (), (), () and () leads to

lim
t→+∞

〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
, lim

t→+∞
〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
a.s. ()

Applying () and () into equation (), we obtain that

lim
t→∞

〈
S(t)

〉
=

u + δ

u + uδ + up

[
(u + δ – uq)�

u + δ
–

∑

i=

(u + di) lim
t→∞

〈
Ii(t)

〉
– lim

t→∞�(t)

]

=
(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ
. ()

Applying (), (), Lemmas . and . into equation (), we have

lim
t→∞

〈
V (t)

〉
=

�

u
–

(u + δ – uq)�
u + uδ + up

+
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ

–
u + d

u
ϒR – ϒR

ϒϒ – ϒϒ
+

(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ

–
u + d

u
ϒR – ϒR

ϒϒ – ϒϒ

=
(p + uq)�

u + uδ + up
–

(u + d)p
u(u + δ + p)

ϒR – ϒR

ϒϒ – ϒϒ

–
(u + d)p

u(u + δ + p)
ϒR – ϒR

ϒϒ – ϒϒ
.

This completes the proof. �

3 Conclusions and numerical simulations
In this paper, we propose a novel stochastic epidemic system with double epidemic dis-
eases under vaccination. By using stochastic differential equation theory, we study the
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persistence in mean and extinction of the two diseases. Compared with the existing work
in Refs. [] and [], the model constructed in this paper also considers the efficiency of
vaccination. When all the coefficients related to the vaccination are , system () is similar
to systems () and () in Refs. [] and [], in addition, our conclusion is consistent with
them. That is to say, systems () and () in Refs. [] and [] are a special case of our
system (). The theoretical results of this article can be used as a reference for the control
of infectious diseases.

To sum up, we have the following conclusions:

I. Stochastic disease-free dynamics
When R <  and R <  hold, we have

lim
t→∞ Ii(t) = , i = , , lim

t→∞
〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

.

That is to say, the two epidemic diseases go to extinct almost surely.
II. Stochastic endemic dynamics

(i) If one of the following conditions holds:
• R > , R < ,
• R, R > , ϒR < ϒR,

then we have

lim
t→∞

〈
I(t)

〉
=

R

ϒ
> , lim

t→∞ I(t) =  a.s.,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

That is to say, the epidemic disease I(t) is persistent in mean and I(t) is extinct.
(ii) If one of the following conditions hold:

• R < , R > ,
• R, R > , ϒR < ϒR,

then we have

lim
t→∞

〈
I(t)

〉
= , lim

t→∞ I(t) =
R

ϒ
>  a.s.,

lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

R

ϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
R

ϒ
a.s.

That is to say, the epidemic disease I(t) is extinct and I(t) is persistent in mean.
(iii) If ϒR > ϒR, ϒR > ϒR hold, then we have

lim
t→∞

〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
, lim

t→∞
〈
I(t)

〉
=

ϒR – ϒR

ϒϒ – ϒϒ
a.s.,
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lim
t→∞

〈
S(t)

〉
=

(u + δ – uq)�
u + uδ + up

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ

–
(u + δ)(u + d)
u + uδ + up

ϒR – ϒR

ϒϒ – ϒϒ
a.s.,

lim
t→∞

〈
V (t)

〉
=

(p + uq)�
u + uδ + up

–
(u + d)p

u(u + δ + p)
ϒR – ϒR

ϒϒ – ϒϒ

–
(u + d)

u(u + δ + p)
ϒR – ϒR

ϒϒ – ϒϒ
a.s.

That is to say, the epidemic diseases I and I are persistent in mean.

In [, ], Meng and Chang et al. obtained the lower boundedness of the persistence in
mean for I and I as follows:

lim inf
t→+∞

〈
I(t) + I(t)

〉 ≥ m∗,

where m∗ is a positive constant. However, this paper proves that I and I have their own
limit, that is,

lim
t→+∞

〈
I(t)

〉
= m∗

 , lim
t→+∞

〈
I(t)

〉
= m∗

,

where m∗
 = ϒR–ϒR

ϒϒ–ϒϒ
and m∗

 = ϒR–ϒR
ϒϒ–ϒϒ

. Thus this paper contains and significantly
improves the results for persistence in mean in [, ]. The developed theoretical meth-
ods can be used to investigate the high-dimensional nonlinear stochastic differential sys-
tems.

To numerically illustrate our results, we employ a numerical method from [] with
©Matlabb to the following discrete equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+ = Sn + [( – q)� – (u + p)Sn – βSnI,n
α+I,n

– βSnI,n
α+I,n

+ rI,n + rI,n + δVn]�t

+ σSn�Wk + Snγ�k ,

I,n+ = I,n + [ βSnI,n
α+I,n

– (u + d + r)I,n]�t + σI,n�Wk + I,nγ�k ,

I,n+ = I,n + [ βSnI,n
α+I,n

– (u + d + r)I,n]�t + σI,n�Wk + I,nγ�k ,

Vn+ = Vn + [q� + pSn – (u + δ)Vn]�t + σVn�Wk + Vnγ�k ,

where �t = ., �Wik � W (tk+) – W (tk) (i = , , , ) obeys the Gaussian distribution
N(,�t), �ik � (tk+) – (tk) obeys the Poisson distribution with intensity λ.

To this end, we set � = , q = ., u = ., p = ., β = ., β = ., α = , α = ,
r = ., r = ., δ = ., d = ., d = ..

Figure (a) is the time sequence diagram of system () with σi = γi = , i = , , , ; Fig-
ure (b) is the corresponding phase diagram of I(t) and I(t). In this case, the two epidemic
diseases are persistent.

In Figure , we choose σ = ., σ = ., σ = ., σ = ., γ = ., γ = ., γ = .,
γ = .. In this case, R = –. < , R = –. < . We see that in the time sequence
diagram Figure (a) and the corresponding phase diagram Figure (b), the two epidemic
diseases are extinct.
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Figure 1 Time sequence diagram and phase diagram of model (4) without stochastic effects.

Figure 2 Time sequence diagram and phase diagram of model (4) for extinction of two epidemic
diseases.

In Figure , we choose σ = ., σ = ., σ = ., σ = ., γ = ., γ = ., γ = .,
γ = .. In this case, R = . > , R = –. < . We see that in the time sequence
diagram Figure (a) and the corresponding phase diagram Figure (b), the epidemic dis-
ease I(t) is persistent in mean and I(t) is extinct.

In Figure , we choose σ = ., σ = ., σ = ., σ = ., γ = ., γ = ., γ = .,
γ = .. In this case, R = –. < , R = . > . We see that in the time sequence
diagram Figure (a) and the corresponding phase diagram Figure (b), the epidemic dis-
ease I(t) is persistent in mean and I(t) is extinct.

In Figure , we choose σ = ., σ = ., σ = ., σ = ., γ = ., γ = ., γ = .,
γ = .. In this case, R = . > , R = . > . We see that in the time sequence
diagram Figure (a) and the corresponding phase diagram Figure (b), the two epidemic
diseases are persistent in mean.

Obviously, the numerical simulation results are consistent with the conclusion of our
theorems.
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Figure 3 Time sequence diagram and phase diagram of model (4) for extinctions of disease 2 and
persistence of disease 1.

Figure 4 Time sequence diagram and phase diagram of model (4) for extinctions of disease 1 and
persistence of disease 2.

Figure 5 Time sequence diagram and phase diagram of model (4) for persistence of two diseases.
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