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Abstract
In this paper, we present a QP-free algorithm for nonlinear semidefinite
programming. At each iteration, the search direction is yielded by solving two
systems of linear equations with the same coefficient matrix; l1 penalty function is
used as merit function for line search, the step size is determined by Armijo type
inexact line search. The global convergence of the proposed algorithm is shown
under suitable conditions. Preliminary numerical results are reported.
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1 Introduction
Consider the following nonlinear semidefinite programming (NLSDP for short):

min f (x)

s.t. A(x) � ;

hj(x) = , j ∈ E = {, , . . . , l},
(.)

where f : Rn → R, hj (j ∈ E) : Rn → Rl and A : Rn → Sm are continuously differentiable
functions, not necessarily convex. Sm is a space whose elements are real symmetric ma-
trices of size m × m. � denotes the negative semidefinite order, that is, A � B if and only
if A – B is a negative semidefinite matrix.

NLSDP (.) has a broad range of applications such as eigenvalue problems, control
problems, optimal structural design, truss design problems (see [–]). So it is desired
to develop numerical methods for solving NLSDP (.).

In recent years, NLSDPs have been attracting a great deal of research attention [, –].
As is well known, NLSDP (.) is an extension of nonlinear programming, some efficient
numerical methods for the latter are generalized to solve NLSDP. For example, Correa and
Ramirez [] proposed an algorithm which used the sequential linear SDP method. Fares
et al. [] applied the sequential linear SDP method to robust control problems. Freund
et al. [] also studied a sequential SDP method. Kanzow et al. [] presented a successive
linearization method with a trust region-type globalization strategy.
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In addition, Kovara and Stingl [] developed a computer code PENNON for solving
NLSDP (.), where the augmented Lagrangian function method was used. Sun et al. []
and Luo et al. [, ] proposed an augmented Lagrangian method for NLSDP (.), re-
spectively. Sun et al. [] analyzed the rate of local convergence of the augmented La-
grangian method for NLSDPs. Yamashita et al. recently proposed a primal-dual interior
point method for NLSDP (.) (see []). The algorithm is globally convergent and lo-
cally superlinearly convergent under suitable conditions. Very recently Aroztegui [] pro-
posed a feasible direction interior point algorithm for NLSDP (.) with only semidefinite
matrix constraint.

As we know, QP-free (also called SSLE) method is a kind of efficient methods for stan-
dard nonlinear programs (see []-[]). In this paper, motivated from QP-free method for
standard nonlinear programs, based on techniques of perturbation and penalty function,
we propose a globally convergent QP-free algorithm for NLSDP (.). The construction
of systems of linear equations (SLE for short) is a key point. Based on KKT conditions
of NLSDP (.) and techniques of perturbation, we construct two SLEs skillfully. At each
iteration, the search direction is yielded by solving two SLEs with the same coefficient ma-
trix; An exact penalty function is used as the merit function for line search and the step
size is determined by suitable inexact line search. The global convergence of the proposed
algorithm is shown under some mild conditions.

The paper is organized as follows. In Section  we restate some definitions and results
on NLSDP and matrix analysis. In Section  the algorithm is presented and its feasibility
is discussed. The global convergence is analyzed in Section . Some preliminary numer-
ical results are reported in Section  and some concluding remarks are given in the final
section.

2 Preliminaries
For the sake of convenience, some results on matrix analysis and NLSDP are restated in
this section, which will be employed in the following analysis of the proposed algorithm.
More introduction for theory of matrices should be seen in [] and []. Denote by Rm×n

the space of m × n real matrices, denote by Sm
+ and Sm

++ the sets of m-order symmetric
positive semidefinite and positive definite matrices, respectively. The sets Sm

– and Sm
–– are

defined similarly.

Definition . For any A = (aij), B = (bij) ∈ Rm×n, the inner product of A and B is defined
by

〈A, B〉 = Tr
(
BTA

)
=

m∑

i=

n∑

j=

aijbij, (.)

where Tr(P) means the trace of the matrix P.

Definition . ([]) For any M ∈ Rm×m, let

sym(M) =


(
M + MT), skw(M) =



(
M – MT), (.)

sym(M) and skw(M) are called the symmetric part and the skew part of M, respectively.
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Given a matrix A ∈ Sm, let m = 
 m(m + ), define a map svec: Sm → Rm:

svec(A) = (a,
√

a, . . . ,
√

am, a,
√

a, . . . ,
√

am, . . . , amm)T,

and the map smat : Rm → Sm is defined to be the inverse of svec. Then the inner product
of matrices is indicated by

〈A, B〉 = svec(A)T svec(B), for A, B ∈ Sm. (.)

Definition . ([]) For any A, B ∈ Rm×m, the symmetric Kronecker product, denoted by
A ⊗s B, is a mapping on a vector u = svec(U) where U is an m × m symmetric matrix and
is defined as

(A ⊗s B)u =



svec
(
BUAT + AUBT). (.)

For any matrix U ∈ Sm, it is verified that the following equality is true:

(A ⊗s B) svec(U) = svec
(
sym(BUA)

)
. (.)

Note that the linear operator A ⊗s B is defined implicitly in (.). In Appendix of [] a
matrix representation of A ⊗s B is given as follows:

A ⊗s B =



Q(A ⊗ B + B ⊗ A)QT, (.)

where A ⊗ B = [aijB] (i, j = , , . . . , m) is the Kronecker product of A and B, Q is an orthog-
onal m × m matrix (i.e. QQT = Im), with the following property:

Q vec(U) = svec(U), QT svec(U) = vec(U), ∀U ∈ Sm, (.)

where vec(U) = (u, u, . . . , um, u, u, . . . , um, . . . , umm)T.

Remark . One choice for the matrix Q is given in the appendix of [].

Lemma . ([]) For any A, B ∈ Sm, the following results are true:
() A ⊗s B = B ⊗s A;
() (A ⊗s B)T = AT ⊗s BT;
() (A ⊗s B)(C ⊗s D) = 

 (AC ⊗s BD + AD ⊗s BC);
() If A and B are symmetric positive definite, then A ⊗s B is positive definite.

Lemma . ([]) If A, B ∈ Sm, A 
  and AB + BA ≺ , then B ≺ .

Lemma . If A ∈ Sm
++, B ∈ Sm

––, then all eigenvalues of AB are less than zero.

The proof is elementary and omitted here.

Lemma . ([]) If A ∈ Sm
++, B ∈ Sm

– , and they commute, then (A ⊗s Im)–(B ⊗s Im) ∈ Sm
– .
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Lemma . Suppose A ∈ Sm
++, B ∈ Sm

––, and they commute, then (A⊗s Im)–(B⊗s Im) ∈ Sm
––.

Proof Since A ∈ Sm
++, B ∈ Sm

––, and they commute, there exists an orthogonal matrix P ∈
Rm×m such that

A = PDAP–, B = PDBP–,

where DA is a diagonal and positive definite matrix, and DB is a diagonal and negative
definite matrix. It follows from Lemma .() that

A ⊗s Im = T DAT –, B ⊗s Im = T DBT –,

where T = P ⊗s P, DA = DA ⊗s Im and DB = DB ⊗s Im. We know from Lemma .(), ()
that T is orthogonal, from Lemma .() thatDA is a diagonal and positive definite matrix,
and DB is a diagonal and negative definite matrix. Hence,

(A ⊗s Im)–(B ⊗s Im) = T DADBT – ∈ Sm
––. �

In the rest of this section we state the first order optimality conditions for NLSDP (.).
For the sake of convenience, we first introduce some notations. Given a matrix valued
function A(·), we use the notation

DA(x) =
(

∂A(x)
∂x

, . . . ,
∂A(x)
∂xn

)T

for its differential operator evaluated at x, where ∂A(x)
∂xi

denotes the partial derivative of
A(x) with respect to xi with components ∂apq(x)

xi
(p, q = , . . . , m). Then the derivative of

A(·) in the direction d = (d, . . . , dn)T ∈ Rn at x denoted by DA(x)d is defined by

DA(x)d =
n∑

i=

di
∂A(x)
∂xi

. (.)

If we denote

∇A(x) :=
(

svec

(
∂A(x)
∂x

)
, . . . , svec

(
∂A(x)
∂xn

))

m×n
, (.)

then by (.), the following equality is true:

svec
(
DA(x)d

)
= ∇A(x)d. (.)

The Lagrangian function of NLSDP (.) L : Rn × Sm × Rl → R is defined by

L(x,�,μ) = f (x) +
〈
A(x),�

〉
+ h(x)Tμ, (.)

where h(x) = (h(x), h(x), . . . , hl(x))T. In view of (.), the above equality can be rewritten
as follows:

L(x,λ,μ) = f (x) + svec
(
A(x)

)T
λ + h(x)Tμ,
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where λ := svec(�). The gradient of L(x,λ,μ) with respect to x is given as follows:

∇xL(x,λ,μ) = ∇f (x) + ∇A(x)Tλ + ∇h(x)μ, (.)

where ∇h(x) = (∇h(x),∇h(x), . . . ,∇hl(x)).
We are now in a position to restate the definition of the first order optimality conditions

for NLSDP (.).

Definition . ([]) For x ∈ Rn, if there exist a matrix � ∈ Sm and a vector μ (∈ Rl) such
that

∇xL(x,�,μ) = , (.a)

�A(x) = , �  , (.b)

h(x) = , A(x) � , (.c)

then x is called a KKT point of NLSDP (.).

Remark . According to the Von Neumann-Theobald inequality, the complementarity
condition �A(x) =  has the following two useful equivalent forms:

Tr
(
�A(x)

)
= ,

λj(�)λj
(
A(x)

)
= , ∀j ∈ {, , . . . , m}.

3 The algorithm
In this section, we present our algorithm and show it is well defined. For the sake of sim-
plicity, we introduce some notations:

� =
{

x ∈ Rn : A(x) � , h(x) = 
}

,

F =
{

x ∈ Rn : A(x) � 
}

, F =
{

x ∈ Rn : A(x) ≺ 
}

,

that is, � is the feasible set of NLSDP (.).
In general, �A(x) is not guaranteed to be symmetric, so we consider sym(�A(x)) = 

instead of �A(x) = . Then the three equalities of KKT condition (.a)-(.c) can be
rewritten in the following form:

∇f (x) + ∇A(x)Tλ + ∇h(x)μ = ,

svec
(
sym

(
�A(x)

))
= ,

h(x) = .

(.)

In order to solve (.) at each Newton iteration, we define a vector-value function ϕ :
Rn+m+l → Rn+m+l as follows:

ϕ(x,λ,μ) =

⎛

⎜
⎝

ϕLg(x,λ,μ)
ϕC(x,λ,μ)
ϕh(x,λ,μ)

⎞

⎟
⎠ =

⎛

⎜
⎝

∇f (x) + ∇A(x)Tλ + ∇h(x)μ
svec(sym(�A(x)))

h(x)

⎞

⎟
⎠ .
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It follows from (.) and Lemma . that

ϕC(x,λ,μ) = svec
(
sym

(
I�A(x)

))
=

(
I ⊗s A(x)

)
svec(�) = (� ⊗s I) svec

(
A(x)

)
,

thus, the Jacobian of ϕ is

∇ϕ(x,λ,μ) =

⎛

⎜
⎝

∇
xxL(x,λ,μ) ∇A(x)T ∇h(x)

(� ⊗s I)∇A(x) I ⊗s A(x) 
∇h(x)T  

⎞

⎟
⎠ .

Instead of the Hessian ∇
xxL(x,λ,μ), we employ a positive definite matrix denoted by H

which can be a quasi-Newton approximation or the identity matrix. A Newton-like itera-
tion to solve (.) is given by the linear systems as follows:

⎛

⎜
⎝

H ∇A(x)T ∇h(x)
(� ⊗s I)∇A(x) I ⊗s A(x) 

∇h(x)T  

⎞

⎟
⎠

⎛

⎜
⎝

x – x
λ – λ

μ – μ

⎞

⎟
⎠

= –

⎛

⎜
⎝

∇f (x) + ∇A(x)Tλ + ∇h(x)μ
svec(sym(�A(x)))

h(x)

⎞

⎟
⎠ , (.)

where (x,�,μ) ∈ F × Sm
++ × Rl is the current point, (x,�,μ) ∈ F × Sm

++ × Rl is the
new estimates given by the Newton-like iteration, λ := svec(�) and λ := svec(�). Let
d = x – x, we obtain from (.)

Hd + ∇A(x)Tλ + ∇h(x)μ = –∇f (x), (.a)

(� ⊗s I)∇A(x)d +
(
I ⊗s A(x)

)
λ = , (.b)

∇h(x)Td = –h(x). (.c)

If d = , then we have

∇f (x) + ∇A(x)Tλ + ∇h(x)μ = ,
(
I ⊗s A(x)

)
λ = , h(x) = .

Since A(x) ≺ , I ⊗s A(x) is nonsingular and we have � := smat(λ) = , which implies
that �A(x) = . Therefore, x is a KKT point. If d �= , then d is not guaranteed to be a
feasible direction. To obtain a better search direction, we modify (.b) by introducing an
appropriate right hand side, so we obtain another linear equations as follows:

Hd + ∇A(x)Tλ + ∇h(x)μ = –∇f (x),

(� ⊗s I)∇A(x)d +
(
I ⊗s A(x)

)
λ = –λ

∥
∥d∥∥,

∇h(x)Td = –h(x).

(.)

In order to ensure that SLEs (.a)-(.c) and (.) have a unique solution, respectively,
the following assumption is required.
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A For any x ∈F , the matrix

B(x) =

(
∇A(x)T ∇h(x)

A(x) ⊗s Im 

)

is full of column rank.
The following lemma gives a sufficient condition of the assumption A.

Lemma . For any x ∈ F , if A(x) ≺  and {∇h(x), . . . ,∇hl(x)} is linearly independent,
then B(x) is full of column rank, i.e., the assumption A holds.

Lemma . Let H be a positive definite matrix. If the assumption A holds, then the coef-
ficient matrix of the SLEs (.a)-(.c) and (.)

W (x, H ,�) def=

⎛

⎜
⎝

H ∇A(x)T ∇h(x)
(� ⊗s Im)∇A(x) A(x) ⊗s I 

∇h(x)T  

⎞

⎟
⎠ (.)

is nonsingular, hence, SLEs (.a)-(.c) and (.) have a unique solution, respectively.

The proof is elementary and it is omitted here.
In our algorithm the following exact penalty function is used as a merit function for line

search:

P(x;σ ) = f (x) + σ
∑

j∈E

∣
∣hj(x)

∣
∣, (.)

where σ >  is a penalty parameter. Further, we define a function P(•; d;σ ) : Rn × Rn ×
[, +∞) → R associated with P(x;σ ) by

P(x; d;σ ) = f (x) + ∇f (x)Td + σ
∑

j∈E

∣∣hj(x) + ∇hj(x)Td
∣∣. (.)

Now the algorithm is described in detail.

Algorithm A
Parameters. α ∈ (, 

 ), β , ξ ∈ (, ), λI > , σ– > , ρ,ρ > .
Initialization. Select an initial iteration point x ∈ F, H ∈ Sn

++, � (∈ Sm
++) satisfying

λI Im � � such that � and A(x) commute. Let λ = svec(�), k := .

Step . Let (dk,λk,μk) be the solution of the SLE (.a)-(.c) in (d,λ,μ), i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

Hkd + ∇A(xk)Tλ +
∑

j∈E μj∇hj(xk) = –∇f (xk),

(�k ⊗s Im)∇A(xk)d + (A(xk) ⊗s Im)λ = ,

∇hj(xk)Td = –hj(xk), j ∈ E .

(.)

If dk = , then stop, xk is a KKT point of NLSDP (.); else, go to Step .
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Step . Let (dk,λk,μk) be the solution of the SLE (.) in (d,λ,μ), i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

Hkd + ∇A(xk)Tλ +
∑

j∈E μj∇hj(xk) = –∇f (xk),

(�k ⊗s Im)∇A(xk)d + (A(xk) ⊗s Im)λ = –λk‖dk‖,

∇hj(xk)Td = –hj(xk), j ∈ E .

(.)

Step . Compute the search direction dk and the approximate multiplier vector (λk ,μk):

dk = ( – δk)dk + δkdk, (.)

λk = ( – δk)λk + δkλ
k, (.)

μk = ( – δk)μk + δkμ
k, (.)

where

δk =

⎧
⎪⎪⎨

⎪⎪⎩

 – ξ , if ∇f (xk)Tdk ≤ ;

, if ∇f (xk)Tdk >  and ∇f (xk)Tdk ≤ ∇f (xk)Tdk;

min{ξ , |( – ξ ) ∇f (xk )Tdk+(μk)Th(xk )
∇f (xk )T(dk–dk) |}, otherwise.

(.)

Step . (Update the penalty parameter) Set σ k = ( – ξ ) maxj∈E |μk
j | + ρ. The updating

rule of σk is as follows:

σk =

⎧
⎨

⎩
max{σ k ,σk– + ρ}, if σ k > σk–,

σk–, otherwise.
(.)

Step . (Line search) Set the step size tk to be the first number of the sequence {,β ,β, . . .}
satisfying the following two inequalities:

P
(
xk + tdk ;σk

) ≤ P
(
xk ;σk

)
+ tα

(
P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

))
, (.)

A
(
xk + tdk) ≺ . (.)

Step . Set xk+ = xk + tkdk . Using the following methods to generate �k+ commuting with
A(xk+):

Step .. If the search direction dk does not descend or is not feasible, set �k+ = Im

and go to Step .
Step .. Compute the least eigenvalue λmin(�k) of the matrix �̄k . If λmin(�k) ≥ λI ,

then let �k+ = �k ; otherwise, let �k+ = �k + (λI – λmin(�k))Im.

Step . Set λk+ = svec(�k+), and update Hk by some method to Hk+ such that Hk+ is
symmetric positive definite. Let k := k + , return to Step .

By (.), the following lemma is obvious.



Li et al. Journal of Inequalities and Applications  (2017) 2017:145 Page 9 of 21

Lemma . Suppose that the assumption A holds. If dk = , then xk is a KKT point of
NLSDP (.).

Lemma . Suppose that the assumption A holds. Then the search direction dk of Algo-
rithm A satisfies the following inequality:

∇f
(
xk)Tdk ≤ –ξ

(
dk)THkdk + ( – ξ )

∑

j∈E

∣
∣μk

j hj
(
xk)∣∣. (.)

Proof First we show that the inequality

∇f
(
xk)Tdk ≤ –

(
dk)THkdk +

∑

j∈E

∣∣μk
j hj

(
xk)∣∣ (.)

holds. Premultiplying the first equation of (.) by (dk)T, we obtain

(
dk)THkdk +

∑

j∈E
μk

j
(
dk)T∇hj

(
xk) +

(
dk)T∇A

(
xk)T

λk = –
(
dk)T∇f

(
xk). (.)

According to the second equation of (.), we get

(
dk)T∇A

(
xk)T

λk = –
(
λk)T((�k ⊗s Im)–(A

(
xk) ⊗s Im

))T
λk.

Substituting the above equality and the third equality of (.) into (.), we have

(
dk)T∇f

(
xk)

= –
(
dk)THkdk +

(
λk)T((�k ⊗s Im)–(A

(
xk) ⊗s Im

))T
λk +

∑

j∈E
μk

j hj
(
xk).

In view of Lemma ., the matrix (�k ⊗s Im)–(A(xk) ⊗s Im) is negative semidefinite, so it
follows from the above equality that

(
dk)T∇f

(
xk) ≤ –

(
dk)THkdk +

∑

j∈E

∣
∣μk

j hj
(
xk)∣∣,

i.e., the inequality (.) holds.
Next, we will prove the inequality (.) is true. The rest of the proof is divided into three

cases.
Case A. ∇f (xk)Tdk ≤ . From (.) we have δk =  – ξ . It follows from (.), (.),

(.) and ξ ∈ (, ) that

∇f
(
xk)Tdk ≤ –ξ

(
dk)THkdk + ξ

∑

j∈E

∣∣μk
j hj

(
xk)∣∣

≤ –ξ
(
dk)THkdk + ( – ξ )

∑

j∈E

∣∣μk
j hj

(
xk)∣∣, (.)

that is, (.) holds.
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Case B. ∇f (xk)Tdk >  and ∇f (xk)Tdk ≤ ∇f (xk)Tdk. From (.), one has δk = . It
follows from (.), (.) and ξ ∈ (, ) that

∇f
(
xk)Tdk = ∇f

(
xk)Tdk ≤ ∇f

(
xk)Tdk

≤ –
(
dk)THkdk +

∑

j∈E

∣
∣μk

j hj
(
xk)∣∣,

which implies (.) holds.
Case C. ∇f (xk)Tdk >  and ∇f (xk)Tdk > ∇f (xk)Tdk. It follows from (.) and ξ ∈ (, )

that

δk =
∣
∣∣
∣( – ξ )

∇f (xk)Tdk + (μk)Th(xk)
∇f (xk)T(dk – dk)

∣
∣∣
∣

≤ |(ξ – )∇f (xk)Tdk| + |(μk)Th(xk)|
∇f (xk)T(dk – dk)

. (.)

If ∇f (xk)Tdk ≤ , then we obtain from the above inequality

( – δk)∇f
(
xk)Tdk + δk∇f

(
xk)Tdk ≤ ξ∇f

(
xk)Tdk +

∣∣(μk)Th
(
xk)∣∣,

which together with (.) and (.) gives

∇f
(
xk)Tdk ≤ –ξ

(
dk)THkdk + ( + ξ )

∑

j∈E

∣∣μk
j hj

(
xk)∣∣

≤ –ξ
(
dk)THkdk + ( – ξ )

∑

j∈E

∣
∣μk

j hj
(
xk)∣∣. (.)

If ∇f (xk)Tdk > , then the inequality (.) gives rise to

δk∇f
(
xk)Tdk – δk∇f

(
xk)Tdk ≤ ( – ξ )∇f

(
xk)Tdk +

∣
∣(μk)Th

(
xk)∣∣,

which together with (.) and (.) shows

∇f
(
xk)Tdk ≤ –( – ξ )

(
dk)THkdk + ( – ξ )

∑

j∈E

∣∣μk
j hj

(
xk)∣∣

≤ –ξ
(
dk)THkdk + ( – ξ )

∑

j∈E

∣∣μk
j hj

(
xk)∣∣. (.)

The inequalities (.) and (.) indicate that the inequality (.) is true. �

Lemma . Suppose that the assumption A holds. If xk (∈F ) is not a KKT point of NLSDP
(.), then

P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

)
< . (.)

Proof From (.) and (.) we know that (dk ,λk ,μk) is the solution of the following SLE:

Hkd + ∇A
(
xk)T

λ +
∑

j∈E
μj∇hj

(
xk) = –∇f

(
xk), (.a)
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(�k ⊗s Im)∇A
(
xk)d +

(
A

(
xk) ⊗s Im

)
λ = –δkλk

∥∥dk∥∥, (.b)

∇hj
(
xk)Td = –hj

(
xk), j ∈ E . (.c)

From the definition (.) of the function P(xk ; dk ;σk) and (.c), we have

P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

)

= ∇f
(
xk)Tdk – σk

∑

j∈E

∣∣hj
(
xk)∣∣

≤ –ξ
(
dk)THkdk + ( – ξ )

∑

j∈E

∣∣μk
j hj

(
xk)∣∣ – σk

∑

j∈E

∣∣hj
(
xk)∣∣

≤ –ξ
(
dk)THkdk +

(
( – ξ ) max

j∈E
∣∣μk

j
∣∣ – σk

)∑

j∈E

∣∣hj
(
xk)∣∣, (.)

the first inequality above is due to (.).
Since xk is not a KKT point of NLSDP (.), it implies from Step  of Algorithm A that

dk �= , so (dk)THkdk > . On the other hand, it follows from the updating rule of σk that
σk > ( – ξ ) maxj∈E |μk

j |, therefore, (.) gives rise to

P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

)
< ,

that is, the inequality (.) holds. �

Lemma . Suppose that the assumption A holds. If Algorithm A does not stop at the
current iterate xk , then (.) and (.) are satisfied for t >  small enough, so Algorithm A
is well defined.

Proof It follows from the Taylor expansion and (.) that

P
(
xk + tdk ;σk

)
– P

(
xk ;σk

)

= t∇f
(
xk)Tdk + σk

∑

j∈E

(∣∣hj
(
xk) + t∇hj

(
xk)Tdk∣∣ –

∣
∣hj

(
xk)∣∣) + o(t)

= P
(
xk ; tdk ;σk

)
– P

(
xk ; ;σk

)
+ o(t). (.)

The second equality above is due to (.). From the convexity of P(xk ; d;σk) for d, we obtain

P
(
xk ; tdk ;σk

)
– P

(
xk ; ;σk

) ≤ t
(
P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

))
, (.)

which together with (.) and Lemma . gives for t small enough

P
(
xk + tdk ;σk

)
– P

(
xk ;σk

) ≤ tα
(
P
(
xk ; dk ;σk

)
– P

(
xk ; ;σk

))
,

where α ∈ (, ). Hence, (.) holds for sufficiently small t > .
In what follows, we prove (.) holds for sufficiently small t > . Since A(x) is twice

continuously differentiable function, it follows from Taylor expansion that

A
(
xk + tdk) = A

(
xk) + tDA

(
xk)dk + o(t) = A

(
xk) + O(t). (.)
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Note that the largest eigenvalue function λmax(A) = max‖v‖= vTAv, we deduce from (.)
and A(xk) ≺  that

λmax
(
A

(
xk + tdk)) = max

‖v‖=

{
vTA

(
xk)v + vTO(t)v

}
< 

for  < t <  small enough, which implies (.) holds for  < t <  small enough.
By summarizing the above discussions, we conclude that Algorithm A is well defined.

�

4 Global convergence
If Algorithm A terminates at xk after a finite number of iterations, we know from
Lemma . that xk is a KKT point of NLSDP (.). In this section, without loss of gen-
erality, we assume that the sequence {xk} generated by Algorithm A is infinite. We will
prove any accumulation point of {xk} is a stationary point or a KKT point of NLSDP (.),
i.e., Algorithm A is globally convergent. We first generalize the definition of stationary
point for nonlinear programming defined in [] to nonlinear semidefinite programming.

Definition . Let x ∈ Rn, if there exist a matrix � (∈ Sm) and a vector μ (∈ Rl) such that

∇xL(x,�,μ) = , (.)

�A(x) = , A(x) � , h(x) = , (.)

then x is called a stationary point of NLSDP (.).

In order to analyze the global convergence, some additional assumptions are required:
A The sequence {xk} yielded by Algorithm A lies in a nonempty closed and bounded

set X .
A The functions f (x), h(x) and A(x) are twice continuously differentiable on an open

set containing X .
A There exists a positive constant λs such that λs > λI and λI Im � �k � λsIm for all k.
A The matrix Hk is uniformly positive definite, i.e., there exist two positive constants a

and b such that a‖y‖ ≤ yTHky ≤ b‖y‖ for all y ∈ Rn.
Let x∗ be an accumulation point of {xk}, then there exists a subset K ⊆ {, , . . .} such

that limk∈K xk = x∗. Without loss of generality, we suppose

Hk
K−→ H∗, ∇h

(
xk) K−→ ∇h

(
x∗),

�k
K−→ �∗, W

(
xk , Hk ,�k

) K−→ W
(
x∗, H∗,�∗

)
,

where W (xk , Hk ,�k) is defined by (.) and

W
(
x∗, H∗,�∗

) def=

⎛

⎜
⎝

H∗ ∇A(x∗)T ∇h(x∗)
(�∗ ⊗s Im)∇A(x∗) A(x∗) ⊗s Im 

∇h(x∗)T  

⎞

⎟
⎠ .

From the assumptions A-A, we obtain the following conclusions immediately.



Li et al. Journal of Inequalities and Applications  (2017) 2017:145 Page 13 of 21

Lemma . Suppose the assumptions A-A hold. Then there exists a constant M >  such
that |f (yk)| ≤ M, ‖∇f (yk)‖ ≤ M, ‖∇f (yk)‖ ≤ M, ‖h(yk)‖ ≤ M, ‖∇h(yk)‖ ≤ M, ‖A(yk)‖F ≤
M, ‖DA(yk)‖F ≤ M and ‖DA(yk)‖F ≤ M, for any yk ∈ N (xk), where N (xk) is a neighbor-
hood of xk .

Lemma . Suppose the assumptions A-A hold. Then
() there exists a constant c >  such that ‖W (xk , Hk ,�k)–‖ ≤ c for any k ∈K;
() there exists a constant M̂ >  such that ‖λk‖ ≤ M̂, ‖λk‖ ≤ M̂, ‖μk‖ ≤ M̂,

‖μk‖ ≤ M̂, ‖dk‖ ≤ M̂ and ‖dk‖ ≤ M̂ for any k ∈K.

The following result is an important property of the penalty parameter σk , which is ob-
tained by the updating rule (.).

Lemma . Suppose the assumptions A-A hold. Then the penalty parameter σk is up-
dated only in a finite number of steps.

Based on Lemma ., in the rest of the paper, we assume, without loss of generality, that
σk ≡ σ̃ for all k, where

σ̃ > sup
k

{
( – ξ ) max

j∈E
∣∣μk

j
∣∣
}

.

By using of Lemma ., we obtain the following result.

Lemma . Suppose the assumptions A-A hold. Then there exists a constant c >  such
that

∥
∥dk – dk∥∥ ≤ c

∥
∥dk∥∥. (.)

For the sake of simplicity, in the rest of this section, let (d∗,μ∗,λ∗) be the solution of
the following SLE in (d,μ,λ):

⎧
⎪⎪⎨

⎪⎪⎩

H∗d + ∇A(x∗)Tλ +
∑

j∈E μj∇hj(x∗) = –∇f (x∗),

(�∗ ⊗s Im)∇A(x∗)d + (A(x∗) ⊗s Im)λ = ,

∇hj(x∗)Td = –hj(x∗), j ∈ E .

(.)

Let (d∗,μ∗,λ∗) be the solution of the following SLE in (d,μ,λ):

⎧
⎪⎪⎨

⎪⎪⎩

H∗d + ∇A(x∗)Tλ +
∑

j∈E μj∇hj(x∗) = –∇f (x∗),

(�∗ ⊗s Im)∇A(x∗)d + (A(x∗) ⊗s Im)λ = –λ∗‖d∗‖,

∇hj(x∗)Td = –hj(x∗), j ∈ E .

(.)

From the above equalities and Lemma ., we obtain the following conclusion.

Lemma . Suppose the assumptions A-A hold, and δk
K−→ δ∗. Then

(i) dk K−→ d∗, μk K−→ μ∗, λk K−→ λ∗,
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(ii) dk K−→ d∗, μk K−→ μ∗, λk K−→ λ∗,
(iii) d∗ =  if and only if d∗ =  where d∗ = ( – δ∗)d∗ + δ∗d∗.

Remark . By (.), we know that {δk} is bounded, so in the rest of the paper, we assume,

without loss of generality, that δk
K−→ δ∗.

Lemma . Suppose the assumptions A-A hold. Let x∗ be an accumulation point of the

sequence {xk} and xk K−→ x∗. If dk K−→ , then x∗ is a KKT point or a stationary point of

NLSDP (.), and λk K−→ svec(�∗), μk K−→ μ∗, where (�∗,μ∗) is the Lagrangian multiplier
corresponding to x∗.

Proof It is clear from Lemma . that {λk} and {μk} are bounded. Assume that λ̂, μ̂ are
accumulation points of {λk} and {μk}, respectively. Without loss of generality, we assume

that λk K−→ λ̂ and μk K−→ μ̂.
Obviously, (dk ,λk ,μk) satisfies the SLE (.a)-(.c). By taking the limit on K in

(.a)-(.c), we obtain

∇A
(
x∗)λ̂ +

∑

j∈E
μ̂j∇hj

(
x∗) = –∇f

(
x∗), (.a)

(
A

(
x∗) ⊗s I

)
λ̂ = , (.b)

hj
(
x∗) = , j ∈ E . (.c)

If x∗ ∈F, i.e., A(x∗) ≺ , then we know from Lemma .() that A(x∗)⊗s I is nonsingular,
so the equation (.b) has a unique solution λ̂ = . Let �̂ := smat(λ̂) = , so �̂A(x∗) = .
Together with (.a) and (.c), we conclude that x∗ is a KKT point of NLSDP (.).

If x∗ ∈ �\F, let �̂ := smat(λ̂). It follows from (.b) that sym(�̂A(x∗)) = , which means
that �̂A(x∗) is a skw-symmetric matrix. Hence Tr(�̂A(x∗)) = . According to Remark .,
we obtain �̂A(x∗) = . Combining with (.a) and (.c), x∗ is a stationary point of NLSDP
(.). (λ∗,μ∗) is the Lagrangian multiplier corresponding to x∗, that is,

∇A
(
x∗)T

λ∗ +
∑

j∈E
μ∗

j ∇hj
(
x∗) = –∇f

(
x∗),

�∗A
(
x∗) = ,

where �∗ = smat(λ∗). It is not difficult to verify that (λ∗,μ∗) is the solution of the following
SLE:

∇A
(
x∗)T

λ∗ +
∑

j∈E
μ∗

j ∇hj
(
x∗) = –∇f

(
x∗), (.a)

(
A

(
x∗) ⊗s I

)
λ∗ = . (.b)

From (.a)-(.c), we know that (λ̂, μ̂) is also the solution of (.a)-(.b). It is clear from
the assumption A that the solution of (.a)-(.b) is unique, therefore, λ̂ = λ∗, μ̂ = μ∗.
The proof is completed. �

Based on Lemma ., the following conclusion is obvious.
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Lemma . Suppose the assumptions A-A hold. Let xk K−→ x∗. If dk– K−→ , then x∗ is a
KKT point or a stationary point of NLSDP (.).

Lemma . Suppose the assumptions A-A hold, xk K−→ x∗. If infK{‖dk–‖} > , then

dk K−→ .

Proof By contradiction, we assume that there exist a subset K′ ⊂ K and a constant d̄ > 
such that ‖dk‖ ≥ d̄, ∀k (∈ K′) large enough. From the assumptions A-A, (.) and the

updating rule of �k , we assume without loss of generality that Hk
K′

−→ H∗, δk
K′

−→ δ∗, �k
K′

−→
�∗. On the other hand, it follows from the updating rule of �k and the assumption A that
�∗ is positive definite. According to Lemma .(iii), there exists d >  such that ‖dk‖ ≥ d
for all k ∈K′.

Firstly, we show that there exists t >  independent of k such that (.) and (.) are
satisfied for all t ≥ t. For any k ∈K′, it is clear from the assumptions A and A and Lem-
mas .-. and Lemmas .-. that

P
(
xk ; dk ; σ̃

)
– P

(
xk ; ; σ̃

) ≤ –ξad. (.)

Together with (.)-(.), there exists tf >  independent of k such that

P
(
xk + tdk ; σ̃

)
– P

(
xk ; σ̃

) ≤ tα
[
P
(
xk ; dk ; σ̃

)
– P

(
xk ; ; σ̃

)]
(.)

for all k ∈ K′ and t ∈ (, tf ], where α ∈ (, ). The above inequality shows the inequality
(.) holds.

We next prove the inequality (.) holds. It follows from (.) and Lemma .() and
Lemma . that

∣∣∇f
(
xk)Tdk +

(
μk)Th

(
xk)∣∣

=
∣∣–

(
dk)THkdk +

(
λk)T((�k ⊗s Im)–(A

(
xk) ⊗s Im

))T
λk∣∣

≥ a
∥∥dk∥∥.

Combining with Lemmas .-. and (.), there exists a constant  < δ̃ ≤  such that
δk ≥ δ̃ for k ∈K′. By the mean-value theorem and Lemmas .-., we obtain

A
(
xk + tdk) = A

(
xk) + tDA

(
xk)dk + t(DA

(
x + tϑdk)(dk , dk))

� A
(
xk) + tDA

(
xk)dk + tMIm (.)

for any k ∈ K′, where ϑ ∈ (, ), M = max{M̂, M}. Let N(t; xk) = A(xk) + tDA(xk)dk +
tMIm, the above inequality is rewritten as

A
(
xk + tdk) � N

(
t; xk), (.)

thus, in order to prove that A(xk + tdk) is negative definite, it is sufficient to prove that
N(t; xk) is negative definite. In view of �k 
 , the definition (.) of sym and Lemma .,
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it is sufficient to show that there exists tA >  independent of k such that

sym
(
�kN

(
t; xk)) ≺ , ∀t ∈ (, tA]. (.)

In view of (.), (.) and Lemma .(), we obtain

(�k ⊗s Im)∇A
(
xk)dk = svec

(
sym

(
�kDA

(
xk)dk)). (.)

Let �k = smat(λk), i.e., λk = svec(�k), it is obvious from (.) that

(
A

(
xk) ⊗s Im

)
λk =

(
A

(
xk) ⊗s Im

)
svec

(
�k) = svec

(
sym

(
�kA

(
xk))). (.)

Hence, (.), (.) and (.b) give rise to

sym
(
�kDA

(
xk)dk + �kA

(
xk))

= smat
(
svec

(
sym

(
�kDA

(
xk)dk)) + svec

(
sym

(
�kA

(
xk))))

= smat
(
–δkλk

∥∥dk∥∥) = –δk
∥∥dk∥∥�k .

Based on the above equality, we have

sym
(
�kN

(
t; xk)) = sym

(
�k

(
A

(
xk) + tDA

(
xk)dk + tMIm

))

= sym
((

�k – t�k)A
(
xk)) +

(
tM�k – tδk

∥
∥dk∥∥�k

)

≺ sym
((

�k – t�k)A
(
xk)) +

(
tM – tδ̃d

)
�k ; (.)

note the positive definiteness of �k , hence, if

max
{

vT((�k – t�k)A
(
xk))v : v ∈ Rm,‖v‖ = 

} ≤ , for any k ∈K′, (.)

then (.) holds for t ≤ δ̃d
M .

Since �k and A(xk) are symmetric and commuting, there exists an orthogonal matrix
Qk such that

�k = QT
k Dk

λQk , A
(
xk) = QT

k Dk
AQk , (.)

where Dk
λ and Dk

A are diagonal matrices. Then (�k – t�k)A(xk) = QT
k (Dk

λ – tQk�
kQT

k ) ×
Dk

AQk . Let �̃k = Qk�
kQT

k , so in order to prove (.), it is enough to show that there exists
a constant tA >  such that

vT((Dk
λ – t�̃k)Dk

A
)
v ≤ , ∀v: ‖v‖ = , (.)

for any t ∈ (, tA) and k ∈K′. By Lemma . and �k = smat(λk), we know {�k} is bounded,
furthermore, {�̃k} is also bounded. Let �̃∗ be an accumulation point of {�̃k}. Without loss

of generality, we assume that �̃k K′
−→ �̃∗. Let Bk = �̃k – �̃∗, obviously, Bk K′

−→ , thus there
exists γ >  such that

∣∣vT(BkDk
A
)
v
∣∣ < γ (.)
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for any k ∈K′. Note that

vT(Dk
λ – t�̃k)Dk

Av = vT(Dk
λ – t�̃∗)Dk

Av – tvT(BkDk
A
)
v. (.)

It follows from the assumption A that all eigenvalues of Dk
λ are between λI and λs for

all k. According to Weyl’s theorem (see []), there exists t >  such that all eigenvalues of
(Dk

λ – t�̃∗) are positive for any t ∈ (, t]. We also know from A(xk) ≺  and the second
equality in (.) that DA is negative definite. Therefore, for any v with ‖v‖ =  and t ∈
(, t], it follows from Lemma . that (Dk

λ – t�̃∗)Dk
A is also negative definite. Combining

with (.), for any v with ‖v‖ =  and any t ∈ (, t), we obtain

vT((Dk
λ – t�̃∗)Dk

A
)
v – tvT(BkDk

A
)
v ≤ , (.)

together with (.) shows that (.) is satisfied, further, (.) and (.) hold.
Let tA = min{t, md

M }, thus (.) holds for any t ∈ (, tA]. Hence, we see that A(xk +
tdk) ≺  holds for t ∈ (, tA] and any k ∈ K′. Let t̄ = min{tf , tA}, for any t ∈ (, t̄], (.)
and (.) are satisfied for all t ≥ t. Combining with (.) and (.), we obtain for any
k ∈K′

P
(
xk+; σ̃

) ≤ P
(
xk ; σ̃

)
– tαξad. (.)

On the other hand, the sequence {P(xk ; σ̃ )} decreases monotonically and P(xk ; σ̃ )
K′

−→
P(x∗; σ̃ ), so {P(xk ; σ̃ )}∞k= is convergent. Let limk→∞ P(xk ; σ̃ ) = � and taking the limit in the
above inequality, we have –tξαad ≥ , which is a contradiction. Hence, dk K−→ . �

Based on Lemmas .-., the following global convergence of Algorithm A is immedi-
ate.

Theorem . Suppose the assumptions A-A hold. Then Algorithm A either terminates
in a finite number of iterations at a KKT point of the NLSDP (.), or it generates a sequence
{xk} whose every accumulation point is a KKT point or a stationary point of the NLSDP
(.).

5 Numerical experiments
Algorithm A has been implemented in Matlab b and the codes have been run on a
. GHz Intel(R) Core(TM)i- machine with a Windows  system. We choose H as
n-order identical matrix and at each iteration, Hk is updated by the damped BFGS formula
in [] and � as m-order identical matrix. In the numerical experiments, we choose the
parameters as follows:

α = ., β = ., ξ = ., λI = .,

σ– = ., ρ = , ρ = .

The stop criterion is ‖dk‖ ≤ –.
The test problems are described as follows:
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I. The first test problem is Rosen-Suzuki problem [] combined with a negative
semidefinite constraint and denoted by CM:

min f(x) = x
 + x

 + x
 + x

 – x – x – x + x

s.t. x
 + x

 + x
 + x

 + x – x + x – x –  = ,

x
 + x

 + x
 + x

 – x – x –  = ,

x
 + x

 + x
 + x – x – x –  = ,

⎛

⎜⎜
⎜
⎝

–x – x   
 –x –x 
 –x –x 
   –x – x

⎞

⎟⎟
⎟
⎠

� .

II. We select some test problems from [] only with equality constraints and we add a
negative semidefinite matrix constraint.

() We select the problems HS, HS, HS, HS combined with the following  × 
order symmetric matrix which comes from [] and rename them MHS, MHS,
MHS and MHS, respectively:

(
–x

 – x


– x
 –x



)

� .

() Choose the problems HS, HS, HS and HS combined with the following
 ×  order symmetric matrix and rename them MHS, MHS, MHS and
MHS, respectively:

⎛

⎜
⎝

–x
 – x

 
– x

 –x
 

  –x


⎞

⎟
⎠ � .

() Choose the problems HS, HS, HS, HS, HS, HS, HS and HS,
adding the negative semidefinite matrix constraint in the problem CM and renaming
them MHS, MHS, MHS, MHS, MHS, MHS, MHS and MHS.

III. Nearest correlation matrix problem (NCM for short) (see []):

min f (X) =


‖X – A‖F

s.t. X  εI,

Xii = , i = , , . . . , m,

where A ∈ Sm is given. In NCM problem, eigenvalues of X should not be less than ε, and
the diagonal elements of X are equal to . Elements of the matrix A are uniform random
numbers in [–, ] with Aii = , i = , , . . . , m. Set ε = –. In addition, we compare with the
results of [] (Algo. SDPIP for short) and [] (Algo. YYNY for short), and their results
from [].
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Table 1 The numerical results of test problems I and II

Problem n l m x0 Iter. NF NC ffinal Time (s)

CM 4 3 4 (2.5, 2.5, 2.5, –2.5)T 19 72 72 –4.400000e+001 4.097408e–001
PHS6 2 1 2 (–2, –2)T 99 128 128 1.226381e–006 3.541575e–001
PHS7 2 1 2 (1, 5)T 43 169 169 –1.732051e+000 3.551911e–001
PHS8 2 2 2 (1, 4)T 4 4 4 –1 2.195229e–001
PHS9 2 1 2 (–4, 4)T 2 2 2 –4.999996e–001 2.025914e–001
PHS26 3 1 3 (1.5, 1.5, 1.5)T 28 28 28 3.726010e–005 2.514937e–001
PHS27 3 1 3 (–1, 1, 1)T 17 17 17 5.426241e–002 2.354974e–001
PHS28 3 1 3 (1, –1, –1)T 6 6 6 6.756098e–001 1.708627e–001
PHS40 4 3 4 (0.5, 0.5, 0.5, 0.5)T 8 10 10 –2.500001e–001 2.773717e–001
PHS42 4 2 4 (–1, 1, 1, 1)T 17 28 28 1.385766e+001 2.415490e–001
PHS47 5 3 4 (–1, 1, 1, 1, 1)T 31 80 80 2.910505e–001 2.642828e–001
PHS48 5 2 4 (3, 3, 3, 3, –3)T 49 140 140 3.060758e–008 2.962501e–001
PHS50 5 3 4 (–3, 3, 3, 3, 3)T 23 84 84 2.390072e–009 3.139633e–001
PHS51 5 3 4 (–1, 1, 1, 1, 1)T 13 14 14 4.687353e–008 2.302719e–001
PHS61 3 2 3 (2.5, 2.5, 2.5)T 59 59 59 –8.191909e+001 3.401501e–001
PHS77 5 2 4 (1, 1, 1, 1, 1)T 23 25 25 2.415051e–001 2.393263e–001
PHS79 5 3 4 (–1, 1, 1, 1, 1)T 44 50 50 7.877716e–002 3.415668e–001

Table 2 The numerical results for NCM problem

n l m Algorithm Iter. NF NC

10 5 5 Algo. A 8 15 15
Algo. YYNY 8 - -
Algo. SDPIP 9 - -

45 10 10 Algo. A 10 19 19
Algo. YYNY 8 - -
Algo. SDPIP 10 - -

105 15 15 Algo. A 10 20 20
Algo. YYNY 10 - -
Algo. SDPIP 11 - -

190 20 20 Algo. A 10 18 18
Algo. YYNY 11 - -
Algo. SDPIP 12 - -

300 25 25 Algo. A 10 25 25
Algo. YYNY 10 - -
Algo. SDPIP 11 - -

435 30 30 Algo. A 10 19 19
Algo. YYNY 9 - -
Algo. SDPIP 10 - -

595 35 35 Algo. A 11 25 25
Algo. YYNY 11 - -
Algo. SDPIP 11 - -

780 40 40 Algo. A 11 24 24
Algo. YYNY 11 - -
Algo. SDPIP 11 - -

1,225 50 50 Algo. A 12 34 34
Algo. YYNY – - -
Algo. SDPIP – - -

The numerical results are listed in Table  and Table . The meanings of the notations
in Table  and Table  are as follows:

n: the number of variables;
l: the number of equality constraints;
m: the dimensionality of the negative semidefinite matrix;
Iter.: the number of iterations;
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NF: the number of evaluations for f (x);
NC: the number of evaluations for all constraint functions;
ffinal: the optimal value;
Time (s): the time of calculation;
-: means that the result is not given.

6 Concluding remarks
We have presented a globally convergent QP-free algorithm for nonlinear SDP problems.
Based on KKT conditions of nonlinear SDP problems and techniques of perturbation, we
construct two SLEs skillfully. Under some linear independence condition, the SLEs have
unique solution. At each iteration, the search direction is yielded by solving two SLEs with
the same coefficient matrix; some penalty function is used as the merit function for line
search and the penalty parameter is updated automatically in the algorithm. The prelimi-
nary numerical results show that the proposed algorithm is effective and comparable.
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28. Aroztegui, M, Herskovits, J, Roche, JR, Baźan, E: A feasible direction interior point algorithm for nonlinear semidefinite

programming. Struct. Multidiscip. Optim. 50, 1019-1035 (2014)
29. Chen, ZW, Miao, SC: A penalty-free method with trust region for nonlinear semidefinite programming. Asia-Pac.

J. Oper. Res. 32, 1-24 (2015)


	A globally convergent QP-free algorithm for nonlinear semideﬁnite programming
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	The algorithm
	Global convergence
	Numerical experiments
	Concluding remarks
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


