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Abstract
The so-called Schwab-Borchardt mean plays an important role in the theory of
(bivariate) means. It includes a lot of standard means, such as the logarithmic mean,
the first and second Seiffert means and the Neuman-Sándor mean. In this paper, we
investigate an approach which allows us to construct a class of new means. Such
class includes the (generalized) Schwab-Borchardt mean and other old/new means
derived as well.
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1 Introduction
Means arise in various contexts and contribute as good tool to solving many scientific
problems. It has been proved, throughout a lot of works, that the theory of means is useful
from the theoretical point of view as well as for practical purposes.

We understand by a mean a binary map between positive real numbers such that

∀a, b > , min(a, b) ≤ m(a, b) ≤ max(a, b). (.)

Symmetric (resp. homogeneous, continuous) means are defined in the usual way. In the
literature, an enormous amount of efforts has been devoted to understanding the theory
of means in two variables when the involved means are symmetric in each variable. As far
as we know, few papers were written about non-symmetric means. One of the interesting
examples of non-symmetric mean is the so-called Schwab-Borchardt mean, denoted by
SB and defined through [, ]

SB := SB(a, b) =

⎧
⎨

⎩

√
b–a

arccos(a/b) if  < a < b,
√

a–b
arccosh(a/b) if a > b,

(.)

with SB(a, a) = a. The importance of this non-symmetric mean lies in the fact that it in-
cludes a lot of symmetric means in the sense that

L = SB(A, G), P = SB(G, A), T = SB(A, Q), M = SB(Q, A),
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where

A := A(a, b) =
a + b


, G := G(a, b) =

√
ab;

L := L(a, b) =
a – b

ln a – ln b
, L(a, a) = a; Q := Q(a, b) =

√
a + b


;

P := P(a, b) =
a – b

 arctan
√

a/b – π
=

a – b
 arcsin a–b

a+b
=

a – b

 arctan
√

a–
√

b√
a+

√
b

, P(a, a) = a;

T := T(a, b) =
a – b

 arctan a–b
a+b

=
a – b

 arctan(a/b) – π/
=

a – b
arcsin a–b

a+b

, T(a, a) = a;

M := M(a, b) =
a – b

 arcsin h a–b
a+b

, M(a, a) = a,

are, respectively, known as the arithmetic mean, the geometric mean, the logarithmic
mean, the quadratic mean, the first Seiffert mean [], the second Seiffert mean [] and the
Neuman-Sándor mean []. For more details as regards recent developments for SB, see [,
, –] for instance. The previous means satisfy the well-known chain of inequalities

H < G < L < P < A < M < T < Q, (.)

where the notation m < m, between two means m and m, signifies that m(a, b) <
m(a, b) for all a, b >  with a �= b.

In [, ], Neuman introduced a generalization of SB itemized in the following. Let p > 
be a real number and set

SBp := SBp(a, b) =

⎧
⎨

⎩

(bp–ap)/p

arccosp(a/b) if  ≤ a < b,
(ap–bp)/p

arccos hp(a/b) if a > b,
(.)

with SBp(a, a) = a, where the notations arccosp and arccoshp refer to the p-generalized in-
verse of cosine and cosine-hyperbolic functions. The bivariate map SBp defines a non-
symmetric homogeneous mean, the so-called p-Schwab-Borchardt mean, which when
p =  coincides with SB. A detailed study of the properties of SBp can be found in
[, ]. As application, the following power means were derived there:

Lp = SBp(Ap/, G), Pp = SBp(G, Ap/),

Tp = SBp(Ap/, Ap), Mp = SBp(Ap, Ap/),

where Ap refers to the power (binomial) mean defined by Ap := Ap(a, b) = ((ap + bp)/)/p.
The previous power means satisfy the chain of inequalities [, ]

Lp < Pp < Ap/ < Mp < Tp < Ap. (.)

An extension of SBp in a two-parameter mean (denoted by SBp,q) can be found in [].
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2 Weighted means
In this section, we state more notions needed later. We begin by the following definition.

Definition . Let m be a symmetric mean. By weighted (or parameterized) m-mean, we
understand a family (mλ)≤λ≤ satisfying the following requirements:

(i) mλ is a mean, in the sense of (.), for all fixed λ ∈ [, ].
(ii) m(a, b) = a and m(a, b) = b, for all a, b > .

(iii) mλ(a, b) = m–λ(b, a), for all a, b >  and every λ ∈ [, ].
(iv) mλ coincides with m if λ = /.

As standard examples of weighted means,

Aλ := Aλ(a, b) = ( – λ)a + λb, Hλ := Hλ(a, b) =
(
( – λ)a– + λb–)–,

Gλ := Gλ(a, b) = a–λbλ, Sλ := Sλ(a, b) =
(
( – λ)

√
a + λ

√
b
),

Qλ := Qλ(a, b) =
√

( – λ)a + λb,

are known in the literature as the weighted arithmetic, harmonic, geometric, square-root
and root square (or quadratic) means, respectively. Such means satisfy

min(a, b) ≤ Hλ(a, b) ≤ Gλ(a, b) ≤ Sλ(a, b) ≤ Aλ(a, b) ≤ Qλ(a, b) ≤ max(a, b)

for all a, b >  and every λ ∈ [, ], with strict inequalities if and only if a �= b and λ ∈
(, ). These means are homogeneous/continuous, not symmetric unless λ = / which
corresponds to the simple means A, H , G, S and Q, respectively. The previous weighted
means are included in a general class of means, so-called weighted power (binomial) mean,
defined through

Ar,λ(a, b) =
(
( – λ)ar + λbr)/r ,

where r �=  is a parameter real number. Indeed, it is easy to see that

A,λ = Aλ, A–,λ = Hλ, A/,λ = Sλ, A,λ = Qλ, A,λ := lim
r→

Ar,λ = Gλ.

A natural question arises from the above: what should be the reasonable weighted means
associated to the symmetric means L, T , M and P. For the mean L, there are various
weighted L-means that have been introduced in the literature; see [–] for instance.
This understands that a given symmetric mean could have more one weighted mean. For
the simplest means A, H , G, S, Q (and more generally Ar) only one weighted mean to each
(as far as we know) is known in the literature. In fact, following two distinct points of view
we can obtain different weighted means associated to the same symmetric mean, and this
according to Definition . of course. As example, let us consider the symmetric logarith-
mic mean L. Its weighted mean is not simple to deduce from its explicit form in a and
b previously mentioned. However, L has other equivalent forms known in the literature.
In this paper (see Example .), we will obtain via our approach a reasonable weighted L-
means (i.e. satisfying all conditions of Definition .). Another simple example explaining
more the latter situation is stated in the following.
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Example . Let C be the contra-harmonic mean defined by C(a, b) = a+b

a+b . From this
form we can immediately suggest a weighted C-mean defined as follows:

Cλ(a, b) =
( – λ)a + λb

( – λ)a + λb
,

which obviously satisfies all conditions of Definition .. Now, it is easy to see that we can
write C in the following equivalent form:

C(a, b) =
a + b

a + b
= a + b –

ab
a + b

= A(a, b) – H(a, b) := A – H .

From the latter form of C we can suggest that a weighted C-mean is defined by Cλ =
Aλ – Hλ which also satisfies all conditions of Definition .. Further, it is not hard to verify
that the two previous C-weighted means are different. This justifies our claim.

Now, for the means T , M and P, related weighted means are hard to obtain from the
explicit forms in a and b of these symmetric means. As we will see later, our approach
investigated here leads us to introduce reasonable weighted means Tλ, Mλ and Pλ of T ,
M and P, respectively. To justify that our previous weighted means are good extensions
of their related symmetric means, we establish that they satisfy the following chain of
inequalities:

Hλ < Gλ < Lλ < Pλ < Aλ < Mλ < Tλ < Qλ. (.)

It is worth mentioning that the two chains of inequalities (.) and (.) look alike while
they are of course completely different.

3 Basic notions and preliminary tools
Let us go back to the mean SB. It is easy to see that SB, defined by (.), can be written as
follows:

SB(a, b) =
√|a – b|

| ∫ a/b


dt√
|t–| |

,

for all a, b > , with a �= b. In a more general point of view, the previous explicit form of SB
may be included in the following form:

(a, b) �−→ k(a, b)
∫ a/b

 f (t) dt
, (.)

where k is a homogeneous bivariate map and f is a real function to be conveniently defined.
We then ask the following question: under what conditions on k and f the binary map (.)
defines a mean? In this section, we will discuss conditions about k while those of f are the
purpose of the next section.

Let k : (,∞) × (,∞) −→R be a binary map satisfying the following requirements:

(c) k is homogeneous of degree , i.e. k(αa,αb) = αk(a, b) for all a, b,α > .
(c) k(a, b) >  for a > b, k(a, b) <  for a < b and k(a, a) = , for all a, b > .
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(c) The maps t �−→ k(t, ) and t �−→ t–k(t, ) are strictly monotone increasing on (,∞).
(c) The map t �−→ k(t, ) – t–k(t, ) is monotone increasing on [,∞) and monotone de-

creasing on (, ].
(c) The map t �−→ k(t, ) is continuously differentiable on (, ) ∪ (,∞).

In what follows, we denote by K the set of all map k : (,∞) × (,∞) −→ R satisfying
the conditions (c)-(c). It is not hard to see that K is a convex cone i.e., for all k, h ∈K and
every α >  we have h + k ∈K and α · k ∈K. The following definition may be stated.

Definition . Let k ∈K and define k, k : (,∞) −→ (,∞) as follows:

k(t) :=
d
dt

(
k(t, )

)
for all t > , t �= , with k() = ;

k(t) :=
d
dt

(
t–k(t, )

)
= –

k(t, )
t +


t

k(t) for all t > , t �= , with k() = .

The maps k and k will be called the components of k and we write k = 〈k, k〉.

The next result, which summarizes the elementary properties of k and k, will be needed
later.

Proposition . With the above, the following assertions hold true:
(i) k and k are with positive values, both continuous on (, ) ∪ (,∞).

(ii) k(t) > k(t) if t > , k(t) < k(t) if  < t < .
(iii) For all t > , we have k(/t) = tk(t) and k(/t) = tk(t).
(iv) The map t �−→ k(t)/k(t) is continuous on (,∞).

Proof (i) This follows from (c) and (c) while (ii) is a consequence of (c). The first rela-
tionship of (iii) can easily be proved by using the definition of k with the homogeneity of
k and the second one follows from the above by simple manipulation. Details are simple
and therefore omitted here. For proving (iv), it is sufficient to show the continuity at t = .
Indeed, by the definition of k and k and a simple application of the reversed l’Hôpital
rule we have

lim
t→

k

k
(t) = lim

t→

d
dt (k(t, ))

d
dt (t–k(t, ))

= lim
t→

k(t, )
t–k(t, )

= lim
t→

t =  =
k

k
().

The proof of the proposition is completed. �

For the sake of simplicity, we set k = k/k throughout the following. Proposition .(iv)
asserts that the map k : (,∞) −→ (,∞) is continuous on (,∞).

An interesting example of k ∈ K is presented as follows. Let q be a real number such
that q >  and define the map k by

k(a, b) =

⎧
⎪⎨

⎪⎩

(aq – bq)/q if a > b,
–(bq – aq)/q if a < b,
 if a = b.

(.)
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In what follows, we denote by q∗ the conjugate of q defined by


q

+


q∗ =  i.e. q∗ =
q

q – 
,

with the convention, if q =  then q∗ = ∞ and /q∗ = . With this, the following lemma
may be stated.

Lemma . Let k be given by (.). Then k ∈K and its components are given by

k(t) =
tq–

(tq – )/q∗ if t > , k(t) =
tq–

( – tq)/q∗ if  < t < , k() = ;

k(t) =


t(tq – )/q∗ if t > , k(t) =


t( – tq)/q∗ if  < t < , k() = .

Further, we have

∀t > , k(t) :=
k(t)
k(t)

= tq+.

Proof The conditions (c), (c) and (c) are obviously satisfied while (c) and (c) follow
after an elementary computation. Details are simple and therefore omitted here. �

We notice that k and k (of the previous lemma) are not continuous at t =  unless
/q∗ =  i.e. q = . This corresponds to the following simplest example.

Example . Take q =  in the previous lemma i.e. k is defined by k(a, b) = a – b for all
a, b > . Simple computation leads to k(t) = , k(t) = /t and k(t) = t, for every t > .

Other examples may be stated as follows.

Example . Let k be as follows: k(a, b) =
√

a – b if a ≥ b, k(a, b) = –
√

b – a if a ≤ b.
This corresponds to (.) with q =  and so we have

k(t) =
t√

t – 
if t > , k(t) =

t√
 – t

if  < t < , k() = ;

k(t) =


t
√

t – 
if t > , k(t) =


t

√
 – t

if  < t < , k() = ;

and k(t) = t for every t > .

Example . Taking q = / and so q∗ = –, we obtain

k(t) =
√

t – √
t

if t ≥ , k(t) =
 –

√
t√

t
if  < t ≤ , k() = ;

k(t) =
√

t – 
t if t ≥ , k(t) =

 –
√

t
t if  < t ≤ , k() = ;

and k(t) = t
√

t for all t > .
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The next lemma will also be needed in the sequel.

Lemma . Let k be defined by (.) and m be a homogeneous mean. Then we have

m
(
k(t), k(t)

)
=

⎧
⎨

⎩

m(tq+,)
t(tq–)/q∗ if t > ,

m(tq+,)
t(–tq)/q∗ if t < .

(.)

Moreover, the map t �−→ m(k(t), k(t)), defined from (,∞) into itself, is discontinuous at
t = , unless q = .

Proof By the homogeneity of m we can write, for all t > ,

m
(
k(t), k(t)

)
= k(t)m

(
k(t), 

)
,

and so we obtain (.) by using the previous lemma. The remainder of the lemma can be
checked in a simple way. �

4 General approach
As already pointed out before, the previous section was devoted to listing convenient con-
ditions on the binary map k in the aim that (.) defines a mean. In this section we will
complete our previous discussion by stating favorable conditions about the function f .

Let k ∈ K and k = 〈k, k〉 be as in the above section. Let f : (,∞) −→ (,∞) be a func-
tion such that

∀t > , min
(
k(t), k(t)

) ≤ f (t) ≤ max
(
k(t), k(t)

)
. (.)

By virtue of Definition ., the maps k and k are locally integrable on (,∞), i.e. inte-
grable on every bounded subset of (,∞). We therefore deduce from (.) that f is also
locally integrable on (,∞). Further, from (.) we deduce that f () =  and with Proposi-
tion .(), the maps t �−→ f (t)/k(t) and t �−→ f (t)/k(t) are continuous on (,∞) provided
f is as well.

Now, we are in a position to state our first main result stated as follows.

Theorem . Let k ∈ K and f be satisfying the condition (.) and define the binary map
Mf ,k : (,∞) × (,∞) −→ (,∞) by

(
Mf ,k(a, b)

)– =


k(a, b)

∫ a/b


f (t) dt (.)

for all a, b > , with Mf ,k(a, a) = a. Then the following assertions hold:
(i) Mf ,k is a homogeneous mean.

(ii) If, moreover, f and k are such that

∀t > , f (/t) = tf (t), (.)

∀a, b > , k(a, b) = –k(b, a) (i.e. k is antisymmetric), (.)

then Mf ,k is symmetric.
(iii) If the function f is continuous then Mf ,k is also continuous.
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Proof (i) We first assume that a > b. According to Proposition . we have k(t) ≥ k(t) for
all  ≤ t ≤ a/b. This, with (.), yields

∫ a/b


k(t) =

∫ a/b


min

(
k(t), k(t)

)
dt

≤
∫ a/b


f (t) dt ≤

∫ a/b


max

(
k(t), k(t)

)
dt =

∫ a/b


k(t) dt. (.)

Otherwise, by virtue of Definition . we can write

∫ a/b


k(t) dt =

∫ a/b



d
dt

(
k(t, )

)
dt = k(a/b, ) – k(, ) = k(a/b, ) =

k(a, b)
b

,

∫ a/b


k(t) dt =

∫ a/b



d
dt

(
t–k(t, )

)
dt =

b
a

k(a/b, ) =
k(a, b)

a
.

Substituting these in (.), with the fact that k(a, b) >  for a > b, we then obtain


a

≤ 
k(a, b)

∫ a/b


f (t) dt ≤ 

b
. (.)

Now, if we assume that a < b we can show in a similar manner


b

≤ 
k(a, b)

∫ a/b


f (t) dt ≤ 

a
. (.)

Inequalities (.) and (.), with (.) and Mf ,k(a, a) = a, show that

min(a, b) ≤ Mf ,k(a, b) ≤ max(a, b)

for all a, b > , i.e. Mf ,k is a mean. The fact that Mf ,k is homogeneous is immediate from
(.).

(ii) Now, assume that (.) and (.) are satisfied. If we take t = /s as change of variables
in (.) we then obtain

(
Mf ,k(a, b)

)– =


k(a, b)

∫ b/a


f (/s)

(
–ds
s

)

=


k(b, a)

∫ b/a


f (s) ds =

(
Mf ,k(b, a)

)–,

from which the symmetry for Mf ,k follows.
(iii) Assume that f is continuous. By virtue of the homogeneity of Mf ,k , we need to prove

that the map x �−→ Mf ,k(x, ) is continuous on (,∞). By (.), it is clear that x �−→ Mf ,k(x, )
is continuous on (, ) ∪ (,∞). Now, we have by (.) again and the l’Hôpital rule

lim
x→

(
Mf ,k(x, )

)– = lim
x→

∫ x
 f (t) dt
k(x, )

= lim
x→

f (x)
k(x)

=
f ()
k()

= ,

since x �−→ f (x)/k(x) is continuous on (,∞). The continuity of x �−→ Mf ,k(x, ) follows.
The proof of the theorem is complete. �

The reverse of Theorem .(iii) is not always true, i.e. the mean Mf ,k could be continuous
for not continuous f . The following example explains this situation.
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Example . Let k ∈ K be such that k(a, b) =
√

a – b if a ≥ b and k(a, b) = –
√

b – a if
 < a ≤ b. Let f be defined by

f (t) =
√

 – t
if  < t < , f (t) =

√
t – 

if t > , f () = .

It is easy to see that such f satisfies (.) and its associated mean Mf ,k is exactly the Schwab-
Borchardt mean SB. The mean SB is continuous while f is discontinuous at t = . We will
go back to this example later (see Example . and Section ).

The following corollary is of great interest for practical purposes.

Corollary . Let k ∈K, k = 〈k, k〉 and let m be a mean. Then the map mσk such that

(
mσk (a, b)

)– =


k(a, b)

∫ a/b


m

(
k(t), k(t)

)
dt (.)

for all a, b > , with mσk (a, a) = a, defines a homogeneous mean. Moreover, if k is antisym-
metric and m is symmetric then mσk is also symmetric.

Proof Let m be a mean and for t >  we set f (t) = m(k(t), k(t)) for some k ∈K. By (.), f
satisfies (.) and by the previous theorem mσk is a homogeneous mean. If m is symmetric,
Proposition .(iv) implies that f (/t) = tf (t) for all t > . The symmetry of mσk follows
then from the previous theorem. �

Remark . (i) The present approach extends that of [] for a general class of maps k and
for means not necessary homogeneous/symmetric/continuous. In fact, the above theorem
and corollary give Theorem . and Corollary . of [], respectively, when we consider
the simplest k defined by k(a, b) = a – b and m is a symmetric homogeneous continuous
mean.

(ii) In what follows, the mean mσk defined by (.) will be called the σk-mean trans-
form of m. For k ∈ K defined by (.), we write mσq . In particular, mσ is that with k of
Example .. For q =  in (.) i.e. k(a, b) = a – b, we simply write mσ .

Choosing k ∈K and m particular mean, we can obtain a lot of homogeneous (symmetric
or not) means illustrating the above results. As trivial examples, it is not hard to check that
minσk = max and maxσk = min, for all k ∈ K. To the aim to not lengthen this section, we
prefer to present other examples in another section below.

5 Examples and properties of m �−→ mσk

As a first example we present the following in form of result by virtue of its interest.

Proposition . Let k ∈ K. Then the relationship Aσk
λ = H–λ holds for all λ ∈ [, ]. In

particular Aσk = H .

Proof Let m = Aλ be the weighted arithmetic mean. For all a, b > , a �= b, we then have by
(.)

(
Aσk

λ (a, b)
)– =


k(a, b)

∫ a/b



(
( – λ)k(t) + λk(t)

)
dt.
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From the definition of k and k, with a simple manipulation, it is easy to check that

∫ a/b


k(t) dt =

k(a, b)
b

and
∫ a/b


k(t) dt =

k(a, b)
a

.

This immediately yields the desired result after a simple reduction. �

It is worth mentioning that in the previous relationship Aσk
λ = H–λ, k ∈ K is arbitrary.

This could be coming from the fact that the weighted arithmetic mean Aλ has a linear
affine character.

Now we state more examples of interest.

Example . Let k be as in Example . whose mean transform is denoted by mσ .
(i) Let m = G/ := a/b/. By Lemma ., with an elementary computation, we have

(here q =  and so q∗ = )

G/
(
k(t), k(t)

)
=

G/(t, )
t

√
t – 

=
√

t – 
if t > ;

G/
(
k(t), k(t)

)
=

G/(t, )
t

√
 – t

=
√

 – t
if t < .

By (.) we then deduce that Gσ
/ = SB, that is, the σ-mean transform of G/ is the

Schwab-Borchardt mean SB.
(ii) Let m = G/ := a/b/. By similar arguments as in the previous (i), we simply verify

that Gσ
/(a, b) = SB(b, a) i.e. Gσ

/ = SBT , where SBT denotes the mean transpose of SB
defined by SBT (a, b) = SB(b, a) for all a, b > .

We will go back again to this situation in section below.

Example . Let m = L be the logarithmic mean and let k be defined by (.). By the same
tools as previously we have

L
(
k(t), k(t)

)
=

L(tq+, )
t(tq – )/q∗ =

tq+ – 
(q + )t(ln t)(tq – )/q∗ if t > ;

L
(
k(t), k(t)

)
=

L(tq+, )
t( – tq)/q∗ =

tq+ – 
(q + )t(ln t)( – tq)/q∗ if t < .

By (.), with a simple manipulation and then with the change of variables ln t = u, we
obtain

(
Lσq (a, b)

)– =


(q + )(aq – bq)/q

∫ a/b



tq+ – 
t(ln t)(tq – )/q∗ dt

=


(q + )(aq – bq)/q

∫ ln(a/b)



eqt – e–t

t(eqt – )/q∗ dt if a > b;

(
Lσq (a, b)

)– =


(q + )(bq – aq)/q

∫ a/b



 – tq+

t(ln t)(tq – )/q∗ dt

=


(q + )(bq – aq)/q

∫ ln(a/b)



e–t – eqt

t(eqt – )/q∗ dt if a < b.
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If q =  (and so /q∗ = ) the two previous formulas are reduced to the following:

(
Lσ (a, b)

)–(a, b) =


a – b

∫ ln(a/b)



sinh(t)
t

dt.

Further examples in a general context will be discussed in the next sections.
We now give some properties of the mean-map m �−→ mσk . The first is stated as follows.

Proposition . Let k ∈K be fixed. Then the two next statements hold:
(i) Let f , g : (,∞) −→ (,∞) be two functions satisfying (.) with f ≤ g . Then

Mf ,k(a, b) ≥ Mg,k(a, b) for all a, b > .
(ii) Let m and m be two means such that m < m. Then mσk

 > mσk
 .

Proof This follows from (.) and (.), respectively. Details are simple and therefore
omitted here. �

When we have to compare two means m and m which are homogeneous but not sym-
metric, we usually have inequalities in the form

m(a, b) < m(a, b) if a < b; m(a, b) > m(a, b) if a > b.

For example, it is easy to see that if λ < μ then Aλ(a, b) < Aμ(a, b) whenever a < b. It will
then be interesting to see that if the previous proposition can be improved in this sense.
The answer is positive as confirmed by the following result.

Proposition . Let m and m be two means such that

m(a, b) < m(a, b) if a < b; m(a, b) > m(a, b) if a > b.

Then we have

mk
 (a, b) > mk

(a, b) if a < b; mk
 (a, b) < mk

(a, b) if a > b

for each k ∈K.

Proof First, we recall that k(a, b) >  for a > b and k(a, b) <  if a < b. Secondly, we have
k(t) > k(t) for t >  and k(t) < k(t) if  < t <  (see Proposition .). This, with a simple
manipulation on (.), yields the desired result. Details are simple and therefore omitted
here. �

The following example illustrates the previous proposition.

Example . It is easy to see that G/(a, b) < G/(a, b) for all a < b (and so G/(a, b) >
G/(a, b) if a > b, since Gλ(a, b) = G–λ(b, a)). By Proposition ., with Example ., we
then deduce

SB(a, b) > SBT (a, b) = SB(b, a) if a < b,

which is a well-known result; see [].
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Now, we can observe the next question: let m and m be two means and k, h ∈ K such
that mσk

 = mσh
 . We ask if this implies that m = m and k = h. Proposition . shows that it

is not true, since Aσk
λ = H–λ = Aσh

λ for all k, h ∈K. However, the next result may be stated.

Proposition . Let m and m be two continuous homogeneous means such that
mσk

 = mσk
 for some k ∈ K. Assume that the map k : (,∞) −→ (,∞) is onto. Then we

have m = m.

Proof If mσk
 = mσk

 for the same k ∈K then (.) yields (by setting x = b/a)

∀x > ,
∫ x


m

(
k(t), k(t)

)
dt =

∫ x


m

(
k(t), k(t)

)
dt.

We then deduce

m
(
k(t), k(t)

)
= m

(
k(t), k(t)

)
,

or by the homogeneity of m and m,

m
(
k(t), 

)
= m

(
k(t), 

)

almost everywhere for t > . Let a, b > . Since k is onto, there exists t >  such that
k(t) = a/b. We then deduce m(a/b, ) = m(a/b, ), or by the homogeneity of m and m

again, m(a, b) = m(a, b), almost everywhere for a, b > . Since m and m are continuous
we therefore infer that m(a, b) = m(a, b) for all a, b > , so completing the proof. �

Example . Let k be defined as in (.). Then k(t) = tq+ which is onto for q > . It
follows that if m and m are as in the previous proposition, with mσq

 = mσq
 for some

q >  then m = m.

6 Application 1: power mean including SB
As already pointed out before, this section displays various applications of the above the-
oretical approach for constructing some new power means including, among other, the
Schwab-Borchardt mean. The next result, giving us a lot of power homogeneous means,
is of great interest.

Theorem . Let q, λ be two real numbers such that q >  and  ≤ λ ≤ . Then the binary
map Xq,λ defined by Xq,λ(a, a) = a and

(
Xq,λ(a, b)

)– =

⎧
⎨

⎩


(aq–bq)/q

∫ a/b


tq––λ(q+)

(tq–)/q∗ dt if a > b,
–

(bq–aq)/q

∫ a/b


tq––λ(q+)

(–tq)/q∗ dt if a < b,
(.)

is a homogeneous mean, symmetric provided λ = /.

Proof Let k be as in (.) and take m = Gλ := a–λbλ the weighted geometric mean. Corol-
lary . asserts that Xq,λ defined by Xq,λ(a, a) = a and

(
Xq,λ(a, b)

)– =


k(a, b)

∫ a/b



(
k(t)

)–λ(k(t)
)λ dt (.)
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for all a, b > , a �= b, is a homogeneous mean, symmetric if Gλ is also symmetric i.e. λ = /.
Replacing k and k by their explicit expressions given by Lemma ., (.) yields the de-
sired result after a simple computation. �

Now, let us present the following example of interest.

Example . If in the previous theorem we take q =  (and so q∗ = ∞, /q∗ = ), it is easy
to see that, for all a, b > , a �= b, we have

(
X,λ(a, b)

)– =


a – b

∫ a/b


t–λ dt,

which after simple computation leads to

X,λ(a, b) =
( – λ)(a – b)
(a/b)–λ – 

. (.)

Moreover, X,/ is symmetric and it is not hard to verify that

X,/(a, b) := lim
λ→/

X,λ(a, b) =
a – b

ln a – ln b
= L(a, b).

From (.) we immediately obtain X,(a, b) = b and X,(a, b) = a. Further, a simple verifi-
cation asserts that X,λ(a, b) = X,–λ(b, a) for all a, b >  and each λ ∈ [, ]. These, with the
fact that Aσ

λ = H–λ, allow us to set X,λ = L–λ, i.e. with (.)

Lλ(a, b) =
(λ – )(a – b)
(a/b)λ– – 

, Lλ(a, a) = a,

as weighted logarithmic mean, according to Definition .. This weighted logarithmic
mean is simpler than those introduced in [] and []. Another L-weighted mean will
be introduced by analogy with those of T and M. See Section  below.

Now, taking q =  in the above theorem we obtain the following corollary.

Corollary . Let λ be such that  ≤ λ ≤ . Then the binary map X,λ defined by
X,λ(a, a) = a and

(
X,λ(a, b)

)– =

⎧
⎨

⎩

√
a–b

∫ argch(a/b)
 (ch t)–λ dt if a > b,

√
b–a

∫ arccos(a/b)
 (cos t)–λ dt if a < b,

(.)

is a homogeneous mean, symmetric for λ = /.

Proof If q =  then q∗ = . Making the change of variables s = argch t and s = arccos t in
the two integrals of (.), respectively, we obtain the desired result after an elementary
manipulation. Details are simple and therefore omitted here. �

Now, choosing particular values for q, λ in the above, we can state the following inter-
esting examples.
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Example . (i) Taking λ = / ∈ [, ] in (.), we find (after a simple computation) the
Schwab-Borchardt mean i.e. X,/ = SB. Since Gλ(a, b) = G–λ(b, a), we have Xq,λ(a, b) =
Xq,–λ(b, a) for fixed q > . It follows that X,/(a, b) = SB(b, a).

(ii) Theorem ., with Remark ., can be formulated as follows: For all λ ∈ [, ] and
q > , we have Gσq

λ = Xq,λ. In particular, Example . can be formulated as Gσ
λ = L–λ. Also,

the previous (i) means that Gσ
/ = SB and Gσ

/ = SBT .

Now, let us observe another interesting special situation given in the following example.

Example . Assume that here q > . If in (.) we take λ = q–
q+ ∈ (, ), then we obtain (in

a brief form for the sake of simplicity)

Gσq
q–
q+

(a, b) =


|aq – bq|/q

∣
∣
∣
∣

∫ a/b



dt
|tq – |/q∗

∣
∣
∣
∣

for all a, b >  with a �= b. This generalized mean is to compare with the so-called q-
Schwab-Borchardt mean SBq, introduced and studied in [, ].

Example . Corollary . asserts that X,/ is a (homogeneous) symmetric mean. We
can then ask what is the explicit form of this mean. If we set

α(x) =
∫ x



dt
√

t(t – )
if x > , α(x) =

∫ 

x

dt
√

t( – t)
if x < , (.)

then we can easily see that

X,/(a, b) =
√

a – b

α(a/b)
if a > b, X/,(a, b) =

√
b – a

α(a/b)
if a < b,

with X,/(a, a) = a. By the simple change of variables t = /s in the integrals of (.) we
can verify that α(a/b) = α(b/a) for all a, b > . Summarizing, X,/ is a homogeneous sym-
metric mean defined through

∀a, b > , a �= b, X,/(a, b) =
√|a – b|

α(a/b)
, with X,/(a, a) = a, (.)

where α : (,∞) −→ (,∞) is defined by

∀x > , α(x) =
∣
∣
∣
∣

∫ x



dt
√

t|t – |

∣
∣
∣
∣.

We can then see X,λ defined by (.) as weighted mean associated to the symmetric
mean X,/ given through (.). It seems that explicit computation of α(x) and so that of
X,/(a, b), for all a, b > , in terms of elementary functions is impossible.

7 Application 2: weighted means of T and M
In this section we give more application of our present approach. In particular, weighted
mean associated to the symmetric means T will be investigated. We preserve the same
notations as previously and we start with the following central result.
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Theorem . Let q, λ be two real numbers such that q >  and  ≤ λ ≤ . Then the binary
map Yq,λ defined by Yq,λ(a, a) = a and

(
Yq,λ(a, b)

)– =

⎧
⎨

⎩


(aq–bq)/q

∫ a/b


tq– dt
(–λ+λtq+)(tq–)/q∗ if a > b,

–
(bq–aq)/q

∫ a/b


tq– dt
(–λ+λtq+)(–tq)/q∗ if a < b,

is a homogeneous continuous mean, symmetric if λ = /.

Proof Let k ∈K be defined by (.) and

m(a, b) = Hλ(a, b) :=
ab

λa + ( – λ)b

be the weighted harmonic mean. Corollary . with Lemma . yields the desired result
after a simple computation. Details are similar to the proof of Theorem .. �

Generally, Yq,λ previously introduced cannot be explicitly computed, except for few
particular values of q, such as q =  and q = /. The case q = , which corresponds to
k(a, b) = a – b, is presented in the following corollary.

Corollary . The binary map Y,λ defined by

Y,λ(a, b) =
√

λ( – λ)(a – b)
arctan(

√
λ/( – λ)(a/b)) – arctan

√
λ/( – λ)

,

with Y,λ(a, a) = a, defines a homogeneous continuous mean, symmetric if λ = /.

Proof Taking q =  (and so /q∗ = ) in Theorem . we obtain

(
Y,λ(a, b)

)– =


a – b

∫ a/b



dt
 – λ + λt ,

which after an elementary computation (by change of variables) yields the desired result.�

Now, we will analyze the above mean Y,λ in the aim to obtain convenient weighted
means of T , M and P. First, it is easy to see that, for all a, b >  with a �= b, one has

Y,/(a, b) =
a – b

 arctan(a/b) – π/
,

i.e. Y,/ is nothing other than the second Seiffert mean T . It is also easy to check that the
relationship Y,λ(a, b) = Y,–λ(b, a) holds for all a, b >  and every λ ∈ [, ]. Further, it is
not hard to verify that Y,(a, b) = b and Y,(a, b) = a. As for Lλ, this with Definition .
allows us to define the weighted T-mean as follows: Tλ = Y,–λ i.e.

Tλ := Tλ(a, b) =
√

λ( – λ)(a – b)
arctan(

√
( – λ)/λ(a/b)) – arctan

√
( – λ)/λ

(.)

for all a, b > , with Tλ(a, a) = a. Using the equality

arctan x – arctan y = arctan
x – y
 + xy

,
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valid for all x, y > , it is easy to see that Tλ given by (.) can be written as follows:

Tλ(a, b) =
√

λ( – λ)(a – b)
arctan

√
λ(–λ)(a–b)

Aλ(a,b)

, Tλ(a, a) = a. (.)

After obtaining Tλ from our previous approach, we can now derive the M-weighted
mean by a simple observation over (.) together with a comparison between the explicit
forms of T and M. We can then automatically suggest that

Mλ(a, b) =
√

λ( – λ)(a – b)
arcsinh

√
λ(–λ)(a–b)

Aλ(a,b)

, Mλ(a, a) = a, (.)

is a weighted mean associated to M. Of course, Mλ should satisfy all conditions of Defini-
tion ., which can easily be checked.

It is suitable to give more justification for our above weighted means. The following
result is another reason of such suggestion.

Proposition . For all λ ∈ [, ] we have

Tλ = SB(Aλ, Qλ), Mλ = SB(Qλ, Aλ).

Proof By virtue of the explicit forms (.) and (.) we can assume, without loss of gener-
ality, a > b. It is easy to see that

Q
λ – A

λ = λ( – λ)(a – b).

Further,

arccos
Aλ

Qλ

= arccos
( – λ)x + λ

√
( – λ)x + λ

:= �(x)

and

arccosh
Qλ

Aλ

= arccosh

√
( – λ)x + λ

( – λ)x + λ
:= �(x),

where we set x = a/b. Simple computation leads to (after simplification and reduction)

�′(x) =
√

λ( – λ)
( – λ)x + λ

, � ′(x) =
√

λ( – λ)
(( – λ)x + λ)

√
( – λ)x + λ

,

and by simple integration (since �() = �() = ) we find

�(x) = arctan

√
λ( – λ)(x – )
( – λ)x + λ

, �(x) = arcsinh

√
λ( – λ)(x – )
( – λ)x + λ

.

This, with x = a/b, yields

arccos
Aλ

Qλ

= arctan

√
λ( – λ)(a – b)
( – λ)a + λb
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and

arccosh
Qλ

Aλ

= arcsinh

√
λ( – λ)(a – b)
( – λ)a + λb

.

The two desired equalities are so obtained. �

We can give more results justifying that the previous Tλ and Mλ are really reasonable
weighted means associated to T and M, respectively. In fact, the chain of inequalities

(Hλ <) Gλ < Lλ < Aλ < Mλ < Tλ < Qλ (.)

holds for every λ ∈ (, ). Indeed, since all involved means here are homogeneous, we can
show this chain of inequalities by comparing the associated functions of these means. Such
method is classical and very known. We omit all details here, because we will show again
this chain in another way. See the next section.

Now, about the weighted mean of P. This needs a long discussion which will be devel-
oped in Section  below. Other L-weighted means will be discussed there, by analogy
with those of T and M previously investigated.

8 Generated function
Let k ∈K with k = 〈k, k〉 and m be a homogeneous mean. We start this section by stating
the following definition.

Definition . Assume that the map x �−→ k(x,)
m(x,) is continuously differentiable on (, ) ∪

(,∞). We then set

∀x > , x �= , Fk
m(x) =

d
dx

(
k(x, )
m(x, )

)

, Fk
m() = . (.)

If, moreover, Fk
m satisfies (.) then Fk

m is called the k-generated function of the mean m.
If k is such that k(a, b) = a – b we simply write Fm (the generated function of m).

Since x �−→ k(x, ) is continuously differentiable on (, ) ∪ (,∞), so is x �−→ Fk
m(x) pro-

vided that x �−→ m(x, ) is as well.

Example . Let k be as k(a, b) = a – b. Simple computations lead to, for all x > ,

FAλ
(x) =


(( – λ)x + λ) , FHλ

(x) =
 – λ + λx

x , FGλ
(x) = xλ–( – λ + λx).

For the Q-weighted mean we have

FQλ
(x) =

( – λ)x + λ

(( – λ)x + λ)
√

( – λ)x + λ
,

while for the weighted logarithmic mean Lλ introduced in Example . we easily verify
that

FLλ
(x) = x(λ–).
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Example . Let k be as in the previous example and consider the weighted mean Tλ

defined by (.). We have

FTλ
(x) =

√
λ( – λ)

d
dx

arctan

√
λ( – λ)(x – )
( – λ)x + λ

,

which after elementary computation of the derivative yields

FTλ
(x) =


( – λ)x + λ

.

For Mλ, computation similar to Tλ leads to

FMλ
(x) =


(( – λ)x + λ)

√
( – λ)x + λ

.

Example . Let k be defined by k(a, b) =
√

a – b if a ≥ b and k(a, b) = –
√

b – a if
a ≤ b.

(i) According to (.) with (.), it is easy to see that

∀x > , Fk
SB(x) =


√|x – | , with Fk

SB() = .

(ii) By similar arguments, we obtain (after elementary computations)

Fk
Aλ

(x) =
(λx +  – λ)

(( – λ)x + λ)
√|x – | , Fk

Aλ
() = 

and

Fk
Gλ

(x) =
xλ–(λx +  – λ)

√|x – | , Fk
Gλ

() = .

In particular,

Fk
A(x) =


(x + )

√|x – | , Fk
A() = 

and

Fk
G(x) =

x + 
x

√
x
√|x – | , Fk

G() = .

We left to the reader the task for computing Fk
Hλ

in a similar manner.

Now we state the following result.

Proposition . Let k ∈ K and m be a homogeneous mean. Let Fk
m be the k-generated

function of m. Then we have

∀a, b > ,
(
m(a, b)

)– =


k(a, b)

∫ a/b


Fk

m(t) dt. (.)
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Proof It is a simple exercise whose details are omitted here. �

In order to state an application of the above, we introduce more notation. If f , g :
(,∞) −→ (,∞) are such that f (x) < g(x) for all x >  with x �=  then we write f ≺ g .
With this, we have the following.

Proposition . Let m, m be two homogeneous means. Then the following assertions
hold:

(i) If Fk
m = Fk

m for some k ∈K then we have m = m.
(ii) If Fk

m ≺ Fk
m for some k ∈K then m > m.

Proof This follows immediately from (.). Details are simple. �

The assertion (i) of the previous proposition means that the map m �−→ Fk
m, for fixed

k ∈ K, is one-to-one (on the set of homogeneous means). It is also possible to show that
the map k �−→ Fk

m, for fixed homogeneous mean m, is one-to-one. Assertion (ii) is more
interesting and can be used for showing some mean inequalities. In particular, the chain of
inequalities (.) can be proved here in a simple and fast way as explained in the following.

Theorem . For all λ ∈ (, ) we have

(Hλ <) Gλ < Lλ < Aλ < Mλ < Tλ < Qλ. (.)

Proof We show Gλ < Lλ < Aλ. By Proposition ., with Example ., it is sufficient to prove
that, for all x >  with x �= ,


(( – λ)x + λ) < x(λ–) < xλ–( – λ + λx).

After simple manipulation the left side of this double inequality is reduced to x–λ <
( – λ)x + λ while the right side to xλ <  – λ + λx, which are equivalent to the weighted
arithmetic-geometric mean inequality.

To prove Aλ < Mλ < Tλ < Qλ we proceed in a similar manner by using Example .. After
all reduction we are in a position to show the inequality

( – λ)x + λ <
√

( – λ)x + λ,

which follows from the strict concavity of the real function x �−→ √
x on (,∞). �

Another example of applications is given in the following result.

Proposition . The following inequalities hold:

G/ < SB < A/.

Proof First, we notice that this double inequality was already proved in the literature; see
[] for instance. Our aim here is to prove it again by using our new approach, in a fast way.
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Let k be as in Example .(ii), where we have seen that (by taking λ = /)

Fk
SB(x) =


√|x – | , Fk

A/
(x) =

(x + )
(x + )

√|x – | , Fk
G/

(x) =
x–/(x + )

√|x – |

for all x >  with x �= . With this, it is easy to verify that Fk
SB(x) > Fk

A/
(x) for all x > 

with x �= , i.e. Fk
A/

≺ Fk
SB. By Proposition .(ii) we deduce that SB < A/. Now, to prove

Fk
SB ≺ Fk

G/
we have to show that √

|x–| < x–/(x+)

√

|x–| or equivalently (after simple reduc-

tion) x/ < 
 x + 

 , for all x >  with x �= . We can write (by using the weighted arithmetic-
geometric inequality)

x/ = x · x/ < x
(




x +



)

=



x +



x <



x +



,

since the latter inequality is equivalent to x – x +  = (x – ) >  for x �= . The desired
inequality follows by Proposition .(ii), so completing the proof. �

9 Inverse transform of m �−→ mσk

This section displays the inverse mean-map of m �−→ mσk . The main result here is stated
as follows.

Theorem . Let k ∈ K and m be a homogeneous mean. Let Fk
m be the k-generated of m.

Assume that the function k : (,∞) −→ (,∞) is bijective whose inverse is k–
 . Then the

binary map Rm,k defined by

Rm,k(a, b) =
b

k ◦ k–
 (a/b)

Fk
m ◦ k–

 (a/b) (.)

for all a, b > , with Rm,k(a, a) = a, is a homogeneous mean, with the relationship Rσk
m,k = m.

If, moreover, m is continuous then so is Rm,k .

Proof We first show that Rm,k is a mean. Let us set k–
 (a/b) = c for the sake of simplicity.

Since Fk
m is assumed to satisfy (.), for all t > , we have

min
(
k(t), k(t)

) ≤ Fk
m(t) ≤ max

(
k(t), k(t)

)
,

or by homogeneity

k(t) min
(
k(t), 

) ≤ Fk
m(t) ≤ k(t) max

(
k(t), 

)
.

In particular, taking t = c we obtain

k(c) min
(
k(c), 

) ≤ Fk
m(c) ≤ k(c) max

(
k(c), 

)
,

or again, by virtue of c = k–
 (a/b) i.e. a/b = k(c),

min(a/b, ) ≤ 
k ◦ k–

 (a/b)
Fk

m ◦ k–
 (a/b) ≤ max(a/b, ),
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from which we deduce that Rm,k defined by (.) is a mean. The homogeneity of Rm,k is
immediate.

Let us show that Rσk
m,k = m. It is very easy to verify that Rm,k(k(t), k(t)) = Fk

m(t) for all
t > . Further, by (.) we have

(
Rσk

m,k(a, b)
)– =


k(a, b)

∫ a/b


Rm,k

(
k(t), k(t)

)
dt =


k(a, b)

∫ a/b


Fk

m(t) dt,

which with (.) yields the desired result.
Now, assume that m is continuous and prove that Rm,k is as well. Since Rm,k is homoge-

neous, it is sufficient to show that x �−→ Rm,k(x, ) is continuous. By (.) we have

Rm,k(x, ) =


k ◦ k–
 (x)

Fk
m ◦ k–

 (x),

from which the continuity of x �−→ Rm,k(x, ) on (, ) ∪ (,∞) follows, since the involved
functions k, k–

 and Fk
m are all continuous on (, ) ∪ (,∞). For proving the continuity of

x �−→ Rm,k(x, ) at x =  we write

lim
x→

Rm,k(x, ) = lim
x→

Fk
m(k–

 (x))
k(k–

 (x))
= lim

y→

Fk
m(y)

k(y)
,

since k–
 is continuous with k–

 () = . Now, by the definition of Fk
m and k with the (re-

versed) l’Hôpital rule, we have

lim
x→

Fk
m(x)

k(x)
= lim

x→

d
dx ( k(x,)

m(x,) )
d

dx (x–k(x, ))
= lim

x→

k(x,)
m(x,)

x–k(x, )

= lim
x→

x
m(x, )

=


m(, )
=  = Rm,k(, ),

since m is continuous and Rm,k(a, a) = a for each a > . The proof of the theorem is com-
pleted. �

As consequence of the above theorem we obtain the following result which is of interest
in practical purposes. For the sake of simplicity we adopt the notation x/q = q√x for all
x, q > .

Corollary . Let k be defined by (.) and m be a homogeneous mean. Then the binary
map

Rm,k(a, b) = q+√a
∣
∣ q+√aq – q+√bq

∣
∣/q∗Fk

m
( q+√a/b

)

is a homogeneous mean with Rσq
m,k = m. Further, Rm,k is continuous if m is as well.

Proof Here we have k(t) = tq+ and k is explicitly given in Example .. The desired result
follows after simple computation and reduction. �

In particular, if k(a, b) = a – b i.e. q = , /q∗ =  and Fm denotes the generated function of
m, then the binary map: rm(a, b) = aFm(

√
a/b) for all a, b > , a �= b, defines a homogeneous
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mean with rσ
m = m. Further, rm is symmetric (resp. continuous) provided that m is as well.

This particular situation corresponds to that developed in [].
The above theorem tells us that starting from a homogeneous mean m, we can con-

struct a lot of new homogeneous means Rm,k whenever k ∈K is given. Moreover, we have
Rσk

m,k = m. Inversely, let m be a homogeneous mean and k ∈ K be fixed. Does there ex-
ist a unique homogeneous mean r := rm,k such that rσk = m? The following result gives a
positive answer to this question. For the sake of simplicity, if Mhc denotes the set of all
homogeneous continuous means, we introduce the following notation:

� =
{

(m, k) ∈Mhc ×K, Fk
m satisfies (.) and k is a bijection

}
. (.)

Corollary . Let (m, k) ∈ �. Then there exists one and only one mean r = rm,k ∈ Mhc

such that rσk = m. We then write r = m–σk .

Proof The existence follows from the previous theorem, since Rσk
m,k = m. The uniqueness

is an immediate consequence of Proposition .. Details are simple and therefore omitted
here for the reader. �

Under the hypotheses of Corollary . and combining the above results, the unique
mean r ∈ Mhc such that rσk = m is given by r = Rm,k , where Rm,k is defined by (.). We
can then write m–σk = Rm,k and Rm,k will be called the σk-inverse mean of m. We then have
(m–σk )σk = m and (mσk )–σk = m for every (m, k) ∈ �.

The following example illustrates the previous results.

Example . (i) Following Proposition ., we have Aσk
λ = H–λ. By Corollary . we then

deduce that H–σk
λ = A–λ = G/Hλ for all λ ∈ [, ] and every k ∈K satisfying the hypothe-

ses of the previous corollary.
(ii) Example . asserts that Gσq

λ = Xλ,q for all λ ∈ (, ) and q > . We can then write
X–σq

λ,q = Gλ and in particular, SB–σ = G/.
(iii) Theorem . asserts that Y –σq

λ,q = Hλ for every λ ∈ (, ) and q > . In particular, (.)
yields T–σ

λ = H–λ = G/Aλ for each λ ∈ (, ).

Other examples of interest are given in the following result.

Theorem . For all λ ∈ [, ], the following relationships hold:

A–σ
λ =

G

Sλ

, G–σ
λ = (G–λS–λ)/, L–σ

λ = G–λ =
G

Gλ

,

M–σ
λ =

G

(AλSλ)/ , Q–σ
λ =

GS/
λ

A/
λ

.

Proof We show, for example, the second and fourth equalities. The other ones can be
proved in a similar way by using analogous tools. By definition we have

G–σ
λ (a, b) := aFGλ

(
√

a/b) = a(a/b)λ/–( – λ + λ
√

a/b)

= aλ/b(–λ)/(( – λ)
√

b + λ
√

a
)

= G/
–λ(a, b)S/

–λ(a, b),
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which is the desired result. For M–σ
λ we have

M–σ
λ (a, b) = aFMλ

(
√

a/b) =
ab

(( – λ)
√

a + λ
√

b)
√

( – λ)a + λb
,

from which the desired result follows. �

Remark . The equalities of the previous theorem can be linked by nice and simple re-
lationships which can be used for obtaining inequalities between the involved weighted
means. For more details, see Section  below.

Now, we state the next result which is also of interest.

Corollary . Let m, m ∈ Mhc. Let k ∈ K be such that (m, k) ∈ � and (m, k) ∈ �. If
m–σk

 < m–σk
 then we have m > m.

Proof This follows immediately from the definition of m �−→ m–σk with
Proposition .(iii). �

We can show again all inequalities of (.) by using the previous corollary. This is ex-
plained in the following example.

Example . To show, for example, Tλ < Qλ it is sufficient to prove that Q–σ
λ < T–σ

λ i.e.

GS/
λ

A/
λ

< H–λ =
G

Aλ

,

which is reduced to Sλ < Aλ well-known inequality.
We left to the reader the task for verifying the other inequalities in a similar manner.

Another example of application is given in the following.

Example . For all λ ∈ (, ), we have Hλ < Gλ < Aλ. According to the construction of Xq,λ

and Yq,λ, with Proposition . and Example ., the previous double inequality is equivalent
to the following one:

Y –σq
q,λ < X–σq

q,λ < H–σq
–λ

for all q > . This, with Corollary . yields

H–λ < Xq,λ < Yq,λ

for all λ ∈ (, ) and q > .

10 About the P-weighted mean
As already pointed out before, this section deals with the weighted mean of P. We will see
that we can introduce more one P-weighted means following different point of view. We
also introduce other L-weighted means.
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First, we cannot suggest the form of Pλ (directly from that of Tλ) as we did it for Mλ, i.e.
just by replacing arctan by arcsin. This is so because the expression

√
λ( – λ)(a – b)

Aλ(a, b)

does not always belong to [–, ], for a, b > . Following another tool of intuition and ana-
lyzing the generated functions associated to Pλ and Mλ we can suggest that

(
Pλ(a, b)

)– =


b – a

∫ a/b



tλ–

( – λ)t + λ
dt (.)

is a weighted P-mean. In fact, we can easily verify that Pλ satisfies all conditions of Defini-
tion .. For proving P/ = P we use the change of variables

√
t = u while for the relation

P–λ(a, b) = Pλ(b, a) we put t = /u. As in the previous study, we will give more justification
for our suggestion. We first state the following result.

Proposition . The following relationships hold:

∀x > , FPλ
(x) =

xλ–

( – λ)x + λ
,

P–σ
λ =

G

(GλSλ)/ .

Proof The first relation immediately follows from (.) with Definition .. For the second
relation, we have (in a similar way to above)

P–σ
λ (a, b) =

a(a/b)(λ–)/

( – λ)
√

a/b + λ
=

a(+λ)/b(–λ)/

S/
λ (a, b)

.

To complete the proof it is sufficient to remark that

a(+λ)/b(–λ)/ =
ab

a(–λ)/bλ/ =
G(a, b)

G/
λ (a, b)

. �

Now, we can state the following result giving more justification to our previous sugges-
tion.

Proposition . We have Lλ < Pλ < Aλ for all λ ∈ (, ).

Proof As before, we can prove this double inequality in different ways. We present here
two methods:

• By Proposition .(ii), it is sufficient to show that the double inequality

FAλ
(x) < FPλ

(x) < FLλ
(x)

holds for all x >  with x �= . According to Example . and Proposition ., we have
to prove that


(( – λ)x + λ) <

xλ–

( – λ)x + λ
< x(λ–)
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holds for all x >  with x �= . The left side of this double inequality as well as its right
side is reduced to x–λ < ( – λ)x + λ which is the well-known Young (or weighted
arithmetic-geometric) inequality. The desired double inequality is proved.

• Following Corollary ., it is sufficient to show that

A–σ
λ < P–σ

λ < L–σ
λ .

By Theorem . and Proposition ., this is equivalent to

G

Sλ

<
G

(GλSλ)/ <
G

Gλ

,

which, in its two sides, is reduced to Gλ < Sλ, so finishing the proof. �

For the weighted means Tλ and Mλ we have seen that Tλ = SB(Aλ, Qλ) and Mλ =
SB(Qλ, Aλ). Analogous relation for Pλ seems to be not obvious. We then put the following
as open problem.

Problem  Prove or disprove that Pλ defined by (.) satisfies Pλ = SB(Gλ, Aλ). Similar
question can be posed for Lλ = SB(Aλ, Gλ).

It is worth mentioning that the weighted means SB(Gλ, Aλ) and SB(Aλ, Gλ) satisfy the
following inequalities:

Gλ < SB(Aλ, Gλ) < SB(Gλ, Aλ) < Aλ.

Indeed, using the fact that SB(x, y) < SB(y, x) for x < y and SB(x, y) is strictly increasing in
x and y, we can proceed as in [] for writing

Gλ = SB(Gλ, Gλ) < SB(Aλ, Gλ) < SB(Gλ, Aλ) < SB(Aλ, Aλ) = Aλ.

Now, we will see that we can give other weighted means, associated to P and L, which are
different from the previous ones. The previous P-weighted mean was constructed from an
analogy of the generated functions of P with those of T and M. Here, we will use another
point of view. Analyzing the expressions of Tλ and Mλ, in a parallel way with those of T and
M, together with the various expressions of P (previously mentioned in the introduction),
we can suggest that

Pλ(a, b) =
√

λ( – λ)(
√

a –
√

b)Aλ(
√

a,
√

b)

arctan
√

λ(–λ)(
√

a–
√

b)
Aλ(

√
a,

√
b)

, Pλ(a, a) = a, (.)

is a weighted mean of P. Indeed, a simple verification asserts that this Pλ satisfies all con-
ditions of Definition ..

Now, we can ask what is the more reasonable P-weighted mean among the two previous
ones. In fact, it depends on what we want to do and what we want to have. For instance,
if we desire to conserve the inequalities Lλ < Pλ < Aλ, by analogy with L < P < A, then the
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P-weighted mean given by (.) is more convenient, since that given by (.) does not
satisfy the previous double inequality (we omit its verification here).

Finally, for the logarithmic mean we can also give another weighted L-mean. This can
be done if we recall that

L(a, b) =
a – b

ln a – ln b
=

a – b
 arctanh a–b

a+b

for all a, b > , a �= b. Now, the idea is clear and we can proceed as previously. We leave
to the reader the task for deducing another weighted L-mean and to compare it with the
previous one.

11 Inequalities involving the previous weighted means
As pointed out before, we present here some inequalities involving three means among
the previous weighted means. For this purpose, we need a list of theoretical results which
we will state in what follows. We begin by the first proposition.

Proposition . The following relationships hold true:

A–σ
λ T–σ

λ =
(
M–σ

λ

), M–σ
λ Q–σ

λ =
(
T–σ

λ

),

L–σ
λ A–σ

λ =
(
P–σ

λ

), A–σ
λ Q–σ

λ = M–σ
λ T–σ

λ .

Proof This follows immediately from Theorem . and Proposition .. Details are sim-
ple and therefore omitted here. �

Now, we state the following result.

Theorem . Let k ∈ K be fixed. Then the map m �−→ mσk enjoys the following proper-
ties:

(i) Point-wise convexity: for all α ∈ (, ) and any means m and m we have

(
( – α)m + αm

)σk ≤ ( – α)mσk
 + αmσk

 .

If, moreover, m �= m are comparable the previous mean inequality becomes strict.
(ii) Point-wise geometric strict concavity: for all α ∈ (, ) and any means m �= m one

has

(
m–α

 mα

)σk >

(
mσk


)–α(

mσk


)α . (.)

Proof It is similar to those of Theorem . and Theorem . of [], pages -, with
some precautions. Details are omitted here to the aim to not lengthen the present paper. �

In applications, the following corollary is of interest.

Corollary . Let m, m, m be three means, with m �= m. Let k ∈ K be such that
(m, k) ∈ �, (m, k) ∈ � and (m, k) ∈ �, where � was defined by (.). Assume that

m–σk ≤ (
m–σk


)–α(

m–σk


)α (.)
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for some α ∈ (, ). Then we have

m–α
 mα

 < m.

Proof From (.), with Proposition .(ii), we obtain

((
m–σk


)–α(

m–σk


)α)σk ≤ (
m–σk

)σk = m.

This, with (.), immediately yields the desired mean inequality. �

Now, we will illustrate the previous statements with the following example.

Example . (i) The relationship A–σ
λ T–σ

λ = (M–σ
λ ) of Proposition . can be written as

M–σ
λ =

(
A–σ

λ

)/(T–σ
λ

)/,

which is (.) as equality, with α = /, k(a, b) = a – b and m = Mλ, m = Aλ, m = Tλ. We
immediately deduce, by Corollary ., that M

λ > AλTλ for any λ ∈ (, ).
(ii) By similar arguments, we show that the two mean inequalities

T
λ > MλQλ and P

λ > AλLλ

hold for any λ ∈ (, ).
(iii) We leave to the reader the routine task for obtaining more mean inequalities in a

similar way to previously.

We end this paper by stating the following remark.

Remark . The mean inequalities obtained in Example ., for λ ∈ (, ), justify again
that Lλ, Mλ, Tλ and Pλ are reasonable weighted means of L, M, T and P, respectively. This
is so because, for λ = /, they yield the known mean inequalities M > AT , T > MQ and
P > AL, already proved in [].
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