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Abstract
Based on the Padé approximation method, in this paper we determine the
coefficients aj and bj such that

π =
( (2n)!!
(2n – 1)!!

)2{ nk + a1nk–1 + · · · + ak
nk+1 + b1nk + · · · + bk+1

+ O
( 1
n2k+3

)}
, n → ∞,

where k ≥ 0 is any given integer. Based on the obtained result, we establish a more
accurate formula for approximating π , which refines some known results.
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1 Introduction
It is well known that the number π satisfies the following inequalities:


n + 

(
(n)!!

(n – )!!

)

< π <

n

(
(n)!!

(n – )!!

)

, n ∈N := {, , , . . .}, (.)

where

(n)!! =  ·  ·  · · · (n) = nn!, (n – )!! =  ·  ·  · · · (n – ).

This result is due to Wallis (see []).
Based on a basic theorem in mathematical statistics concerning unbiased estimators

with minimum variance, Gurland [] yielded a closer approximation to π than that af-
forded by (.), namely,

n + 
(n + )

(
(n)!!

(n – )!!

)

< π <


n + 

(
(n)!!

(n – )!!

)

, n ∈N. (.)

By using (.), Brutman [] and Falaleev [] established estimates of the Landau constants.
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Mortici [], Theorem , improved Gurland’s result (.) and obtained the following dou-
ble inequality:

( n + 


n + 
 n + 


+


,n –


,n

)(
(n)!!

(n – )!!

)

< π <
( n + 



n + 
 n + 


+


,n

)(
(n)!!

(n – )!!

)

, n ∈N. (.)

We see from (.) that

π =
(

(n)!!
(n – )!!

){ n + 


n + 
 n + 


+ O

(


n

)}
, n → ∞. (.)

Based on the Padé approximation method, in this paper we develop the approximation
formula (.) to produce a general result. More precisely, we determine the coefficients aj

and bj such that

π =
(

(n)!!
(n – )!!

){ nk + ank– + · · · + ak

nk+ + bnk + · · · + bk+
+ O

(


nk+

)}
, n → ∞, (.)

where k ≥  is any given integer. Based on the obtained result, we establish a more accurate
formula for approximating π , which refines some known results.

The numerical values given in this paper have been calculated via the computer program
MAPLE .

2 Lemmas
Euler’s gamma function �(x) is one of the most important functions in mathematical anal-
ysis and has applications in diverse areas. The logarithmic derivative of �(x), denoted by
ψ(x) = �′(x)/�(x), is called the psi (or digamma) function.

The following lemmas are required in the sequel.

Lemma . ([]) Let r �=  be a given real number and � ≥  be a given integer. The follow-
ing asymptotic expansion holds:

�(x + )
�(x + 

 )
∼ √

x

(
 +

∞∑
j=

pj

xj

)x�/r

, x → ∞, (.)

with the coefficients pj ≡ pj(�, r) (j ∈N) given by

pj =
∑ rk+k+···+kj

k!k! · · ·kj!

(
( – )B

 ·  · 

)k( ( – )B

 ·  · 

)k

· · ·
(

(j – )Bj

j(j – )j

)kj

, (.)

where Bj are the Bernoulli numbers summed over all nonnegative integers kj satisfying the
equation

( + �)k + ( + �)k + · · · + (j + � – )kj = j.
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In particular, setting (�, r) = (, –) in (.) yields

x
(

�(x + 
 )

�(x + )

)

∼  +
∞∑
j=

cj

xj , x → ∞, (.)

where the coefficients cj ≡ pj(, –) (j ∈N) are given by

cj =
∑ (–)k+k+···+kj

k!k! · · ·kj!

(
( – )B

 ·  · 

)k( ( – )B

 ·  · 

)k

· · ·
(

(j – )Bj

j(j – )j

)kj

, (.)

summed over all nonnegative integers kj satisfying the equation

k + k + · · · + (j – )kj = j.

Lemma . ([]) Let m, n ∈N. Then, for x > ,

m∑
j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n– < (–)n
(

ψ (n–)(x + ) – ψ (n–)
(

x +



))
+

(n – )!
xn

<
m–∑

j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n– . (.)

In particular, we have

U(x) < ψ(x + ) – ψ

(
x +




)
< V (x), (.)

where

V (x) =


x
–


x +


x –


x +


,x –


,x +


,x

–
,

,x +
,

,,x

and

U(x) = V (x) –
,,

,x .

For our later use, we introduce Padé approximant (see [–]). Let f be a formal power
series

f (t) = c + ct + ct + · · · . (.)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

[p/q]f (t) =
∑p

j= ajtj

 +
∑q

j= bjtj
, (.)
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where p ≥  and q ≥  are two given integers, the coefficients aj and bj are given by (see
[–, , ])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = c,

a = cb + c,

a = cb + cb + c,
...

ap = cbp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and the following holds:

[p/q]f (t) – f (t) = O
(
tp+q+). (.)

Thus, the first p + q +  coefficients of the series expansion of [p/q]f are identical to those
of f . Moreover, we have (see [])

[p/q]f (t) =

∣∣∣∣∣∣∣

tqfp–q(t) tq–fp–q+(t) ··· fp(t)
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

tq tq– ··· 
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣

, (.)

with fn(x) = c + cx + · · · + cnxn, the nth partial sum of the series f in (.).

3 Main results
Let

f (x) = x
(

�(x + 
 )

�(x + )

)

. (.)

It follows from (.) that, as x → ∞,

f (x) ∼
∞∑
j=

cj

xj =  –


x
+


x +


x –


,x –


,x +


,x

+


,x – · · · , (.)

with the coefficients cj given by (.). In what follows, the function f is given in (.).
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Based on the Padé approximation method, we now give a derivation of formula (.). To
this end, we consider

[/]f (x) =
∑

j= ajx–j

 +
∑

j= bjx–j
.

Noting that

c = , c = –



, c =



, c =




holds, we have, by (.),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a = ,

a = b – 
 ,

 = 
 – 

 b + b,

 = 
 + 

 b – 
 b,

that is,

a = , a =



, b =



, b =



.

We thus obtain that

[/]f (x) =
 + 

x

 + 
x + 

x
, (.)

and we have, by (.),

x
(

�(x + 
 )

�(x + )

)

–
 + 

x

 + 
x + 

x
= O

(


x

)
, x → ∞. (.)

Noting that

�(n + 
 )

�(n + )
=

√
π · (n – )!!

(n)!!
, n ∈N (the Wallis ratio) (.)

holds, replacing x by n in (.) yields (.).
From the Padé approximation method introduced in Section  and the asymptotic ex-

pansion (.), we obtain a general result given by Theorem .. As a consequence, we
obtain (.).

Theorem . The Padé approximation of order (p, q) of the asymptotic formula of the
function f (x) = x( �(x+ 

 )
�(x+) ) (at the point x = ∞) is the following rational function:

[p/q]f (x) =
 +

∑p
j= ajx–j

 +
∑q

j= bjx–j
= x

(
xp + axp– + · · · + ap

xq + bxq– + · · · + bq

)
, (.)
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where p ≥  and q ≥  are two given integers and q = p +  (an empty sum is understood to
be zero), the coefficients aj and bj are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = b + c,

a = b + cb + c,
...

ap = bp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and cj is given in (.), and the following holds:

f (x) – [p/q]f (x) = O
(


xp+q+

)
, x → ∞. (.)

Moreover, we have

[p/q]f (x) =

∣∣∣∣∣∣∣∣


xq fp–q(x) 

xq– fp–q+(t) ··· fp(t)
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


xq


xq– ··· 

cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣∣

, (.)

with fn(x) =
∑n

j=
cj
xj , the nth partial sum of the asymptotic series (.).

Remark . Using (.), we can also derive (.). Indeed, we have

[/]f (x) =

∣∣∣∣


x f–(x) 
x f(x) f(x)

c c c
c c c

∣∣∣∣
∣∣∣∣


x


x 

c c c
c c c

∣∣∣∣
=

∣∣∣∣∣
 

x – 
x

 – 





– 








∣∣∣∣∣
∣∣∣∣∣∣


x


x 

 – 





– 








∣∣∣∣∣∣

=
 + 

x

 + 
x + 

x
.

Replacing x by n in (.) applying (.), we obtain the following corollary.

Corollary . As n → ∞,

π =
(

(n)!!
(n – )!!

){np +
∑p

j= ajnp–j

nq +
∑q

j= bjnq–j
+ O

(


np+q+

)}
, n → ∞, (.)

where p ≥  and q ≥  are two given integers and q = p + , and the coefficients aj and bj

are given by (.).
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Remark . Setting (p, q) = (k, k + ) in (.) yields (.).

Setting

(p, q) = (, ) and (p, q) = (, )

in (.), respectively, we find

π =
(

(n)!!
(n – )!!

){ n + n + 
 n + 

 n + 
,

n + 
 n + 

 n + 
 n + ,

, n + 
,

+ O
(


n

)}
(.)

and

π =
(

(n)!!
(n – )!!

)

×
{ n + 

 n + 
 n + 

 n + ,
, n + ,

,

n + 
 n + 

 n + 
 n + ,

, n + ,
, n + ,

,
+ O

(


n

)}
(.)

as n → ∞.
Formulas (.) and (.) motivate us to establish the following theorem.

Theorem . The following inequality holds:

x + 
 x + 

 x + 
 x + ,

, x + ,
,

x + 
 x + 

 x + 
 x + ,

, x + ,
, x + ,

,

<
(

�(x + 
 )

�(x + )

)

<
x + x + 

 x + 
 x + 

,

x + 
 x + 

 x + 
 x + ,

, x + 
,

. (.)

The left-hand side inequality holds for x ≥ , while the right-hand side inequality is valid
for x ≥ .

Proof It suffices to show that

F(x) >  for x ≥  and G(x) <  for x ≥ ,

where

F(x) =  ln

(
�(x + 

 )
�(x + )

)
– ln

x + 
 x + 

 x + 
 x + ,

, x + ,
,

x + 
 x + 

 x + 
 x + ,

, x + ,
, x + ,

,

and

G(x) =  ln

(
�(x + 

 )
�(x + )

)
– ln

x + x + 
 x + 

 x + 
,

x + 
 x + 

 x + 
 x + ,

, x + 
,

.
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Using the following asymptotic expansion (see []):

[
�(x + 

 )
�(x + )

]

∼ 
x

exp

(
–


x

+


x –


x +


,x –


,x

+


,x –
,

,x +
,

,,x – · · ·
)

, x → ∞, (.)

we obtain that

lim
x→∞ F(x) =  and lim

x→∞ G(x) = .

Differentiating F(x) and applying the first inequality in (.), we find

F ′(x) = –
[
ψ(x + ) – ψ

(
x +




)]
+

P(x)
P(x)

< –U(x) +
P(x)
P(x)

= –
P(x – )

,xP(x)
,

where

P(x) = 
(
,, + ,,x + ,,,x + ,,,x

+ ,,,x + ,,,x + ,,,x

+ ,,,x + ,,,x + ,,,x + ,,x),

P(x) =
(
,x + ,x + ,x + ,x + ,x + ,

)

× (
,x + ,x + ,x + ,x + ,x

+ ,x + ,
)

and

P(x) = ,,,,,,, + ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x + ,,,,,,x

+ ,,,,,,x + ,,,,,,x
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+ ,,,,,x + ,,,,,x

+ ,,,,x.

Hence, F ′(x) <  for x ≥ , and we have

F(x) > lim
t→∞ F(t) = , x ≥ .

Differentiating G(x) and applying the second inequality in (.), we find

G′(x) = –
[
ψ(x + ) – ψ

(
x +




)]
+

P(x)
P(x)

> –V (x) +
P(x)
P(x)

=
P(x – )

,xP(x)
,

where

P(x) = ,,x + ,,x + ,,x + ,,x + ,,x

+ ,,x + ,,x + ,,x + ,,

P(x) =
(
,x + ,x + ,x + ,x + 

)

× (
,x + ,x + ,x + ,x + ,x + 

)

and

P(x) = ,,,,, + ,,,,,,x

+ ,,,,,,x

+ ,,,,,,x + ,,,,,,x

+ ,,,,,,x

+ ,,,,,,x + ,,,,,,x

+ ,,,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,x

+ ,,,,x + ,,,,x

+ ,,,x.

Hence, G′(x) >  for x ≥ , and we have

G(x) < lim
t→∞ G(t) = , x ≥ .

The proof is complete. �
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Corollary . For n ∈ N,

an < π < bn, (.)

where

an =
n + 

 n + 
 n + 

 n + ,
, n + ,

,

n + 
 n + 

 n + 
 n + ,

, n + ,
, n + ,

,

(
(n)!!

(n – )!!

)

(.)

and

bn =
n + n + 

 n + 
 n + 

,

n + 
 n + 

 n + 
 n + ,

, n + 
,

(
(n)!!

(n – )!!

)

. (.)

Proof Noting that (.) holds, we see by (.) that the left-hand side of (.) holds for
n ≥ , while the right-hand side of (.) is valid for n ≥ . Elementary calculations show
that the left-hand side of (.) is also valid for n = ,  and , and the right-hand side of
(.) is valid for n =  and . The proof is complete. �

4 Comparison
Recently, Lin [] improved Mortici’s result (.) and obtained the following inequalities:

λn < π < μn (.)

and

δn < π < ωn, (.)

where

λn =
(

 +


n
–


n +


n +


,n –


,n –


,n

)

× 
n + 

(
(n)!!

(n – )!!

)

, (.)

μn =
(

 +


n
–


n +


n +


,n

)


n + 

(
(n)!!

(n – )!!

)

, (.)

δn =
(

(n)!!
(n – )!!

) 
n

exp

(
–


n

+


n –


n +


,n –


,n

)
, (.)

ωn =
(

(n)!!
(n – )!!

) 
n

exp

(
–


n

+


n –


n +


,n

)
. (.)

Direct computation yields

an – λn

=
(,,n + ,,n + ,,n + ,,n + ,,n + ,)

,n(n + )(,n + ,n + ,n + ,n + ,n + ,n + ,)

×
(

(n)!!
(n – )!!

)

> 
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Table 1 Comparison between inequalities (3.15) and (4.2)

n an – δn ωn – bn

1 6.673798× 10–3 3.789512× 10–3

10 2.264856× 10–13 9.947434× 10–12

100 2.398663× 10–24 1.051407× 10–20

1,000 2.408054× 10–35 1.056218× 10–29

10,000 2.408948× 10–46 1.056690× 10–38

and

bn – μn

= –
(,n + ,n + ,n + ,n + )

,n(n + )(,n + ,n + ,n + ,n + ,n + )

(
(n)!!

(n – )!!

)

< .

Hence, (.) improves (.).
The following numerical computations (see Table ) would show that δn < an and bn < ωn

for n ∈N. That is to say, inequalities (.) are sharper than inequalities (.).
In fact, we have

λn = π + O
(


n

)
, μn = π + O

(


n

)
,

δn = π + O
(


n

)
, ωn = π + O

(


n

)
,

an = π + O
(


n

)
, bn = π + O

(


n

)
.
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