Padé approximant related to the Wallis formula

Long Lin ${ }^{1}$, Wen-Cheng Ma^{2} and Chao-Ping Chen ${ }^{1 *}$

"Correspondence:
chenchaoping@sohu.com
${ }^{1}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454000, China Full list of author information is available at the end of the article

Abstract

Based on the Padé approximation method, in this paper we determine the coefficients a_{j} and b_{j} such that

$$
\pi=\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}\left\{\frac{n^{k}+a_{1} n^{k-1}+\cdots+a_{k}}{n^{k+1}+b_{1} n^{k}+\cdots+b_{k+1}}+O\left(\frac{1}{n^{2 k+3}}\right)\right\}, \quad n \rightarrow \infty
$$

where $k \geq 0$ is any given integer. Based on the obtained result, we establish a more accurate formula for approximating π, which refines some known results.

MSC: Primary 33B15; secondary 26D07; 41A60
Keywords: gamma function; psi function; Wallis ratio; inequality; approximation

1 Introduction

It is well known that the number π satisfies the following inequalities:

$$
\begin{equation*}
\frac{2}{2 n+1}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}<\pi<\frac{1}{n}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}, \quad n \in \mathbb{N}:=\{1,2,3, \ldots\}, \tag{1.1}
\end{equation*}
$$

where

$$
(2 n)!!=2 \cdot 4 \cdot 6 \cdots(2 n)=2^{n} n!, \quad(2 n-1)!!=1 \cdot 3 \cdot 5 \cdots(2 n-1) .
$$

This result is due to Wallis (see [1]).
Based on a basic theorem in mathematical statistics concerning unbiased estimators with minimum variance, Gurland [1] yielded a closer approximation to π than that afforded by (1.1), namely,

$$
\begin{equation*}
\frac{4 n+3}{(2 n+1)^{2}}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}<\pi<\frac{4}{4 n+1}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}, \quad n \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

By using (1.2), Brutman [2] and Falaleev [3] established estimates of the Landau constants.
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

Mortici [4], Theorem 2, improved Gurland's result (1.2) and obtained the following double inequality:

$$
\begin{align*}
& \left(\frac{n+\frac{1}{4}}{n^{2}+\frac{1}{2} n+\frac{3}{32}}+\frac{9}{2,048 n^{5}}-\frac{45}{8,192 n^{6}}\right)\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \\
& \quad<\pi<\left(\frac{n+\frac{1}{4}}{n^{2}+\frac{1}{2} n+\frac{3}{32}}+\frac{9}{2,048 n^{5}}\right)\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}, \quad n \in \mathbb{N} . \tag{1.3}
\end{align*}
$$

We see from (1.3) that

$$
\begin{equation*}
\pi=\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}\left\{\frac{n+\frac{1}{4}}{n^{2}+\frac{1}{2} n+\frac{3}{32}}+O\left(\frac{1}{n^{5}}\right)\right\}, \quad n \rightarrow \infty . \tag{1.4}
\end{equation*}
$$

Based on the Pade approximation method, in this paper we develop the approximation formula (1.4) to produce a general result. More precisely, we determine the coefficients a_{j} and b_{j} such that

$$
\begin{equation*}
\pi=\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}\left\{\frac{n^{k}+a_{1} n^{k-1}+\cdots+a_{k}}{n^{k+1}+b_{1} n^{k}+\cdots+b_{k+1}}+O\left(\frac{1}{n^{2 k+3}}\right)\right\}, \quad n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

where $k \geq 0$ is any given integer. Based on the obtained result, we establish a more accurate formula for approximating π, which refines some known results.
The numerical values given in this paper have been calculated via the computer program MAPLE 13.

2 Lemmas

Euler's gamma function $\Gamma(x)$ is one of the most important functions in mathematical analysis and has applications in diverse areas. The logarithmic derivative of $\Gamma(x)$, denoted by $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$, is called the psi (or digamma) function.
The following lemmas are required in the sequel.

Lemma 2.1 ([5]) Let $r \neq 0$ be a given real number and $\ell \geq 0$ be a given integer. The following asymptotic expansion holds:

$$
\begin{equation*}
\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)} \sim \sqrt{x}\left(1+\sum_{j=1}^{\infty} \frac{p_{j}}{x^{j}}\right)^{x^{\ell} / r}, \quad x \rightarrow \infty \tag{2.1}
\end{equation*}
$$

with the coefficients $p_{j} \equiv p_{j}(\ell, r)(j \in \mathbb{N})$ given by

$$
\begin{equation*}
p_{j}=\sum \frac{r^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{\left(2^{2}-1\right) B_{2}}{1 \cdot 1 \cdot 2^{2}}\right)^{k_{1}}\left(\frac{\left(2^{4}-1\right) B_{4}}{2 \cdot 3 \cdot 2^{4}}\right)^{k_{2}} \cdots\left(\frac{\left(2^{2 j}-1\right) B_{2 j}}{j(2 j-1) 2^{2 j}}\right)^{k_{j}} \tag{2.2}
\end{equation*}
$$

where B_{j} are the Bernoulli numbers summed over all nonnegative integers k_{j} satisfying the equation

$$
(1+\ell) k_{1}+(3+\ell) k_{2}+\cdots+(2 j+\ell-1) k_{j}=j .
$$

In particular, setting $(\ell, r)=(0,-2)$ in (2.1) yields

$$
\begin{equation*}
x\left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)^{2} \sim 1+\sum_{j=1}^{\infty} \frac{c_{j}}{x^{j}}, \quad x \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where the coefficients $c_{j} \equiv p_{j}(0,-2)(j \in \mathbb{N})$ are given by

$$
\begin{equation*}
c_{j}=\sum \frac{(-2)^{k_{1}+k_{2}+\cdots+k_{j}}}{k_{1}!k_{2}!\cdots k_{j}!}\left(\frac{\left(2^{2}-1\right) B_{2}}{1 \cdot 1 \cdot 2^{2}}\right)^{k_{1}}\left(\frac{\left(2^{4}-1\right) B_{4}}{2 \cdot 3 \cdot 2^{4}}\right)^{k_{2}} \cdots\left(\frac{\left(2^{2 j}-1\right) B_{2 j}}{j(2 j-1) 2^{2 j}}\right)^{k_{j}}, \tag{2.4}
\end{equation*}
$$

summed over all nonnegative integers k_{j} satisfying the equation

$$
k_{1}+3 k_{2}+\cdots+(2 j-1) k_{j}=j .
$$

Lemma 2.2 ([5]) Let $m, n \in \mathbb{N}$. Then, for $x>0$,

$$
\begin{align*}
\sum_{j=1}^{2 m}\left(1-\frac{1}{2^{2 j}}\right) \frac{2 B_{2 j}}{(2 j)!} \frac{(2 j+n-2)!}{x^{2 j+n-1}} & <(-1)^{n}\left(\psi^{(n-1)}(x+1)-\psi^{(n-1)}\left(x+\frac{1}{2}\right)\right)+\frac{(n-1)!}{2 x^{n}} \\
& <\sum_{j=1}^{2 m-1}\left(1-\frac{1}{2^{2 j}}\right) \frac{2 B_{2 j}}{(2 j)!} \frac{(2 j+n-2)!}{x^{2 j+n-1}} . \tag{2.5}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
U(x)<\psi(x+1)-\psi\left(x+\frac{1}{2}\right)<V(x) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
V(x)= & \frac{1}{2 x}-\frac{1}{8 x^{2}}+\frac{1}{64 x^{4}}-\frac{1}{128 x^{6}}+\frac{17}{2,048 x^{8}}-\frac{31}{2,048 x^{10}}+\frac{691}{16,384 x^{12}} \\
& -\frac{5,461}{32,768 x^{14}}+\frac{929,569}{1,048,576 x^{16}}
\end{aligned}
$$

and

$$
U(x)=V(x)-\frac{3,202,291}{524,288 x^{18}}
$$

For our later use, we introduce Padé approximant (see [6-11]). Let f be a formal power series

$$
\begin{equation*}
f(t)=c_{0}+c_{1} t+c_{2} t^{2}+\cdots . \tag{2.7}
\end{equation*}
$$

The Padé approximation of order (p, q) of the function f is the rational function, denoted by

$$
\begin{equation*}
[p / q]_{f}(t)=\frac{\sum_{j=0}^{p} a_{j} t^{j}}{1+\sum_{j=1}^{q} b_{j} t^{\prime}}, \tag{2.8}
\end{equation*}
$$

where $p \geq 0$ and $q \geq 1$ are two given integers, the coefficients a_{j} and b_{j} are given by (see [6-8, 10, 11])

$$
\left\{\begin{array}{l}
a_{0}=c_{0} \tag{2.9}\\
a_{1}=c_{0} b_{1}+c_{1} \\
a_{2}=c_{0} b_{2}+c_{1} b_{1}+c_{2}, \\
\vdots \\
a_{p}=c_{0} b_{p}+\cdots+c_{p-1} b_{1}+c_{p}, \\
0=c_{p+1}+c_{p} b_{1}+\cdots+c_{p-q+1} b_{q} \\
\vdots \\
0=c_{p+q}+c_{p+q-1} b_{1}+\cdots+c_{p} b_{q}
\end{array}\right.
$$

and the following holds:

$$
\begin{equation*}
[p / q]_{f}(t)-f(t)=O\left(t^{p+q+1}\right) \tag{2.10}
\end{equation*}
$$

Thus, the first $p+q+1$ coefficients of the series expansion of $[p / q]_{f}$ are identical to those of f. Moreover, we have (see [9])

$$
[p / q]_{f}(t)=\frac{\left|\begin{array}{cccc}
t^{q} f_{p-q}(t) & t-1 f_{p-q+1}(t) & \cdots & f_{p}(t) \tag{2.11}\\
c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{p} & c_{p+1} & \cdots & c_{p+q}
\end{array}\right|}{\left|\begin{array}{cccc}
t^{q} & t^{q-1} & \cdots & 1 \\
c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{p} & c_{p+1} & \cdots & c_{p+q}
\end{array}\right|},
$$

with $f_{n}(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$, the nth partial sum of the series f in (2.7).

3 Main results

Let

$$
\begin{equation*}
f(x)=x\left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)^{2} . \tag{3.1}
\end{equation*}
$$

It follows from (2.3) that, as $x \rightarrow \infty$,

$$
\begin{align*}
f(x) \sim \sum_{j=0}^{\infty} \frac{c_{j}}{x^{j}}= & 1-\frac{1}{4 x}+\frac{1}{32 x^{2}}+\frac{1}{128 x^{3}}-\frac{5}{2,048 x^{4}}-\frac{23}{8,192 x^{5}}+\frac{53}{65,536 x^{6}} \\
& +\frac{593}{262,144 x^{7}}-\cdots, \tag{3.2}
\end{align*}
$$

with the coefficients c_{j} given by (2.4). In what follows, the function f is given in (3.1).

Based on the Padé approximation method, we now give a derivation of formula (1.4). To this end, we consider

$$
[1 / 2]_{f}(x)=\frac{\sum_{j=0}^{1} a_{j} x^{-j}}{1+\sum_{j=1}^{2} b_{j} x^{-j}}
$$

Noting that

$$
c_{0}=1, \quad c_{1}=-\frac{1}{4}, \quad c_{2}=\frac{1}{32}, \quad c_{3}=\frac{1}{128}
$$

holds, we have, by (2.9),

$$
\left\{\begin{array}{l}
a_{0}=1 \\
a_{1}=b_{1}-\frac{1}{4} \\
0=\frac{1}{32}-\frac{1}{4} b_{1}+b_{2} \\
0=\frac{1}{128}+\frac{1}{32} b_{1}-\frac{1}{4} b_{2},
\end{array}\right.
$$

that is,

$$
a_{0}=1, \quad a_{1}=\frac{1}{4}, \quad b_{1}=\frac{1}{2}, \quad b_{2}=\frac{3}{32} .
$$

We thus obtain that

$$
\begin{equation*}
[1 / 2]_{f}(x)=\frac{1+\frac{1}{4 x}}{1+\frac{1}{2 x}+\frac{3}{32 x^{2}}}, \tag{3.3}
\end{equation*}
$$

and we have, by (2.10),

$$
\begin{equation*}
x\left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)^{2}-\frac{1+\frac{1}{4 x}}{1+\frac{1}{2 x}+\frac{3}{32 x^{2}}}=O\left(\frac{1}{x^{4}}\right), \quad x \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1)}=\sqrt{\pi} \cdot \frac{(2 n-1)!!}{(2 n)!!}, \quad n \in \mathbb{N} \text { (the Wallis ratio) } \tag{3.5}
\end{equation*}
$$

holds, replacing x by n in (3.4) yields (1.4).
From the Padé approximation method introduced in Section 2 and the asymptotic expansion (3.2), we obtain a general result given by Theorem 3.1. As a consequence, we obtain (1.5).

Theorem 3.1 The Pade approximation of order (p, q) of the asymptotic formula of the function $f(x)=x\left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)^{2}$ (at the point $\left.x=\infty\right)$ is the following rational function:

$$
\begin{equation*}
[p / q]_{f}(x)=\frac{1+\sum_{j=1}^{p} a_{j} x^{-j}}{1+\sum_{j=1}^{q} b_{j} x^{-j}}=x\left(\frac{x^{p}+a_{1} x^{p-1}+\cdots+a_{p}}{x^{q}+b_{1} x^{q-1}+\cdots+b_{q}}\right), \tag{3.6}
\end{equation*}
$$

where $p \geq 0$ and $q \geq 1$ are two given integers and $q=p+1$ (an empty sum is understood to be zero), the coefficients a_{j} and b_{j} are given by

$$
\left\{\begin{array}{l}
a_{1}=b_{1}+c_{1} \tag{3.7}\\
a_{2}=b_{2}+c_{1} b_{1}+c_{2} \\
\vdots \\
a_{p}=b_{p}+\cdots+c_{p-1} b_{1}+c_{p} \\
0=c_{p+1}+c_{p} b_{1}+\cdots+c_{p-q+1} b_{q} \\
\vdots \\
0=c_{p+q}+c_{p+q-1} b_{1}+\cdots+c_{p} b_{q}
\end{array}\right.
$$

and c_{j} is given in (2.4), and the following holds:

$$
\begin{equation*}
f(x)-[p / q]_{f}(x)=O\left(\frac{1}{x^{p+q+1}}\right), \quad x \rightarrow \infty \tag{3.8}
\end{equation*}
$$

Moreover, we have

$$
[p / q]_{f}(x)=\frac{\left|\begin{array}{cccc}
\frac{1}{x_{q}} f_{p-q}(x) & \frac{1}{x^{q-1}} f_{p-q+1}(t) & \cdots & f_{p}(t) \tag{3.9}\\
c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{p} & c_{p+1} & \cdots & c_{p+q}
\end{array}\right|}{\left|\begin{array}{cccc}
\frac{1}{x^{q}} & \frac{1}{x^{q-1}} & \cdots & 1 \\
c_{p-q+1} & c_{p-q+2} & \cdots & c_{p+1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{p} & c_{p+1} & \cdots & c_{p+q}
\end{array}\right|},
$$

with $f_{n}(x)=\sum_{j=0}^{n} \frac{c_{j}}{x}$, the nth partial sum of the asymptotic series (3.2).

Remark 3.1 Using (3.9), we can also derive (3.3). Indeed, we have

$$
[1 / 2]_{f}(x)=\frac{\left|\begin{array}{ccc}
\frac{1}{x^{2}} f_{-1}(x) & \frac{1}{x} f_{0}(x) & f_{1}(x) \\
c_{0} & c_{1} & c_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|}{\left|\begin{array}{lll}
\frac{1}{x^{2}} & \frac{1}{x} & 1 \\
c_{0} & c_{1} & c_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|}=\frac{\left|\begin{array}{ccc}
0 & \frac{1}{x} & 1-\frac{1}{4 x} \\
1 & -\frac{1}{4} & \frac{1}{32} \\
-\frac{1}{4} & \frac{1}{32} & \frac{1}{128}
\end{array}\right|}{\left|\begin{array}{ccc}
\frac{1}{x^{2}} & \frac{1}{x} & 1 \\
1 & -\frac{1}{4} & \frac{1}{32} \\
-\frac{1}{4} & \frac{1}{32} & \frac{1}{128}
\end{array}\right|}=\frac{1+\frac{1}{4 x}}{1+\frac{1}{2 x}+\frac{3}{32 x^{2}}} .
$$

Replacing x by n in (3.8) applying (3.5), we obtain the following corollary.

Corollary 3.1 As $n \rightarrow \infty$,

$$
\begin{equation*}
\pi=\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}\left\{\frac{n^{p}+\sum_{j=1}^{p} a_{j} n^{p-j}}{n^{q}+\sum_{j=1}^{q} b_{j} n^{q-j}}+O\left(\frac{1}{n^{p+q+2}}\right)\right\}, \quad n \rightarrow \infty, \tag{3.10}
\end{equation*}
$$

where $p \geq 0$ and $q \geq 1$ are two given integers and $q=p+1$, and the coefficients a_{j} and b_{j} are given by (3.7).

Remark 3.2 Setting $(p, q)=(k, k+1)$ in (3.10) yields (1.5).

Setting

$$
(p, q)=(4,5) \quad \text { and } \quad(p, q)=(5,6)
$$

in (3.10), respectively, we find

$$
\begin{equation*}
\pi=\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}\left\{\frac{n^{4}+n^{3}+\frac{107}{64} n^{2}+\frac{91}{128} n+\frac{789}{4,096}}{n^{5}+\frac{5}{4} n^{4}+\frac{125}{64} n^{3}+\frac{295}{256} n^{2}+\frac{1,689}{4,096} n+\frac{945}{16,384}}+O\left(\frac{1}{n^{11}}\right)\right\} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{align*}
\pi= & \left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \\
& \times\left\{\frac{n^{5}+\frac{5}{4} n^{4}+\frac{51}{16} n^{3}+\frac{133}{64} n^{2}+\frac{5,243}{4,096} n+\frac{3,867}{16,384}}{n^{6}+\frac{3}{2} n^{5}+\frac{113}{32} n^{4}+\frac{93}{32} n^{3}+\frac{7,729}{4,096} n^{2}+\frac{4,881}{8,192} n+\frac{10,395}{131,072}}+O\left(\frac{1}{n^{13}}\right)\right\} \tag{3.12}
\end{align*}
$$

as $n \rightarrow \infty$.
Formulas (3.11) and (3.12) motivate us to establish the following theorem.

Theorem 3.2 The following inequality holds:

$$
\begin{align*}
& \frac{x^{5}+\frac{5}{4} x^{4}+\frac{51}{16} x^{3}+\frac{133}{64} x^{2}+\frac{5,243}{4,096} x+\frac{3,867}{16,384}}{x^{6}+\frac{3}{2} x^{5}+\frac{113}{32} x^{4}+\frac{93}{32} x^{3}+\frac{7,729}{4,096} x^{2}+\frac{4,881}{8,192} x+\frac{10,395}{131,072}} \\
& <\left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)^{2} \\
& <\frac{x^{4}+x^{3}+\frac{107}{64} x^{2}+\frac{91}{128} x+\frac{789}{4,096}}{x^{5}+\frac{5}{4} x^{4}+\frac{125}{64} x^{3}+\frac{295}{256} x^{2}+\frac{1,899}{4,096} x+\frac{945}{16,384}} . \tag{3.13}
\end{align*}
$$

The left-hand side inequality holds for $x \geq 4$, while the right-hand side inequality is valid for $x \geq 3$.

Proof It suffices to show that

$$
F(x)>0 \quad \text { for } x \geq 4 \quad \text { and } \quad G(x)<0 \quad \text { for } x \geq 3,
$$

where

$$
F(x)=2 \ln \left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)-\ln \frac{x^{5}+\frac{5}{4} x^{4}+\frac{51}{16} x^{3}+\frac{133}{64} x^{2}+\frac{5,243}{4,096} x+\frac{3,867}{16,384}}{x^{6}+\frac{3}{2} x^{5}+\frac{113}{32} x^{4}+\frac{93}{32} x^{3}+\frac{7,729}{4,096} x^{2}+\frac{4,881}{8,192} x+\frac{10,395}{131,072}}
$$

and

$$
G(x)=2 \ln \left(\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right)-\ln \frac{x^{4}+x^{3}+\frac{107}{64} x^{2}+\frac{91}{128} x+\frac{789}{4,096}}{x^{5}+\frac{5}{4} x^{4}+\frac{125}{64} x^{3}+\frac{295}{256} x^{2}+\frac{1,689}{4,096} x+\frac{945}{16,384}} .
$$

Using the following asymptotic expansion (see [12]):

$$
\begin{align*}
{\left[\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right]^{2} \sim } & \frac{1}{x} \exp \left(-\frac{1}{4 x}+\frac{1}{96 x^{3}}-\frac{1}{320 x^{5}}+\frac{17}{7,168 x^{7}}-\frac{31}{9,216 x^{9}}\right. \\
& \left.+\frac{691}{90,112 x^{11}}-\frac{5,461}{212,992 x^{13}}+\frac{929,569}{7,864,320 x^{15}}-\cdots\right), \quad x \rightarrow \infty \tag{3.14}
\end{align*}
$$

we obtain that

$$
\lim _{x \rightarrow \infty} F(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} G(x)=0 .
$$

Differentiating $F(x)$ and applying the first inequality in (2.6), we find

$$
\begin{aligned}
F^{\prime}(x) & =-2\left[\psi(x+1)-\psi\left(x+\frac{1}{2}\right)\right]+\frac{P_{10}(x)}{P_{11}(x)} \\
& <-2 U(x)+\frac{P_{10}(x)}{P_{11}(x)}=-\frac{P_{16}(x-4)}{524,288 x^{18} P_{11}(x)}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{10}(x)= & 4\left(20,998,323+301,244,208 x+1,329,622,624 x^{2}+3,532,111,872 x^{3}\right. \\
& +6,831,390,720 x^{4}+8,950,906,880 x^{5}+9,510,060,032 x^{6} \\
& \left.+6,476,005,376 x^{7}+4,244,635,648 x^{8}+1,342,177,280 x^{9}+536,870,912 x^{10}\right), \\
P_{11}(x)= & \left(16,384 x^{5}+20,480 x^{4}+52,224 x^{3}+34,048 x^{2}+20,972 x+3,867\right) \\
& \times\left(131,072 x^{6}+196,608 x^{5}+462,848 x^{4}+380,928 x^{3}+247,328 x^{2}\right. \\
& +78,096 x+10,395)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{16}(x)= & 73,399,302,245,132,658,732,474+401,687,666,421,636,714,876,048 x \\
& +882,663,824,965,187,436,960,169 x^{2} \\
& +1,129,813,735,156,766,429,414,420 x^{3} \\
& +975,385,167,000,268,446,720,384 x^{4} \\
& +611,802,531,654,753,268,270,848 x^{5} \\
& +290,696,674,545,996,984,221,376 x^{6} \\
& +107,149,026,028,490,487,475,968 x^{7} \\
& +31,018,031,026,615,120,693,760 x^{8} \\
& +7,080,024,048,117,231,228,928 x^{9} \\
& +1,270,066,473,244,063,756,800 x^{10}+177,136,978,237,041,715,200 x^{11} \\
& +18,824,726,793,935,462,400 x^{12}+1,473,208,721,923,276,800 x^{13}
\end{aligned}
$$

$$
\begin{aligned}
& +80,051,720,723,251,200 x^{14}+2,698,074,228,326,400 x^{15} \\
& +42,489,357,926,400 x^{16}
\end{aligned}
$$

Hence, $F^{\prime}(x)<0$ for $x \geq 4$, and we have

$$
F(x)>\lim _{t \rightarrow \infty} F(t)=0, \quad x \geq 4
$$

Differentiating $G(x)$ and applying the second inequality in (2.6), we find

$$
\begin{aligned}
G^{\prime}(x) & =-2\left[\psi(x+1)-\psi\left(x+\frac{1}{2}\right)\right]+\frac{4 P_{8}(x)}{P_{9}(x)}>-2 V(x)+\frac{4 P_{8}(x)}{P_{9}(x)} \\
& =\frac{P_{14}(x-3)}{524,288 x^{16} P_{9}(x)}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{8}(x)= & 16,777,216 x^{8}+33,554,432 x^{7}+72,351,744 x^{6}+79,167,488 x^{5}+75,583,488 x^{4} \\
& +45,043,712 x^{3}+18,211,328 x^{2}+4,212,480 x+644,661 \\
P_{9}(x)= & \left(4,096 x^{4}+4,096 x^{3}+6,848 x^{2}+2,912 x+789\right) \\
& \times\left(16,384 x^{5}+20,480 x^{4}+32,000 x^{3}+18,880 x^{2}+6,756 x+945\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{14}(x)= & 427,884,340,806,856,575+5,508,337,280,234,438,700 x \\
& +16,278,641,070,340,979,232 x^{2} \\
& +25,110,186,749,213,013,376 x^{3}+25,009,399,125,661,680,960 x^{4} \\
& +17,642,792,222,808,253,696 x^{5} \\
& +9,230,356,959,310,493,184 x^{6}+3,661,094,552,739,530,752 x^{7} \\
& +1,108,535,832,992,448,000 x^{8} \\
& +255,024,028,762,675,200 x^{9}+43,854,087,132,979,200 x^{10} \\
& +5,462,018,666,496,000 x^{11} \\
& +465,495,496,704,000 x^{12}+24,287,993,856,000 x^{13} \\
& +585,252,864,000 x^{14} .
\end{aligned}
$$

Hence, $G^{\prime}(x)>0$ for $x \geq 3$, and we have

$$
G(x)<\lim _{t \rightarrow \infty} G(t)=0, \quad x \geq 3
$$

The proof is complete.

Corollary 3.2 For $n \in \mathbb{N}$,

$$
\begin{equation*}
a_{n}<\pi<b_{n}, \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{n^{5}+\frac{5}{4} n^{4}+\frac{51}{16} n^{3}+\frac{133}{64} n^{2}+\frac{5,243}{4,096} n+\frac{3,867}{16,384}}{n^{6}+\frac{3}{2} n^{5}+\frac{113}{32} n^{4}+\frac{93}{32} n^{3}+\frac{7,729}{4,096} n^{2}+\frac{4,881}{8,192} n+\frac{10,395}{131,072}}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}=\frac{n^{4}+n^{3}+\frac{107}{64} n^{2}+\frac{91}{128} n+\frac{789}{4,096}}{n^{5}+\frac{5}{4} n^{4}+\frac{125}{64} n^{3}+\frac{295}{256} n^{2}+\frac{1,689}{4,096} n+\frac{945}{16,384}}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} . \tag{3.17}
\end{equation*}
$$

Proof Noting that (3.5) holds, we see by (3.13) that the left-hand side of (3.15) holds for $n \geq 4$, while the right-hand side of (3.15) is valid for $n \geq 3$. Elementary calculations show that the left-hand side of (3.15) is also valid for $n=1,2$ and 3 , and the right-hand side of (3.15) is valid for $n=1$ and 2 . The proof is complete.

4 Comparison

Recently, Lin [12] improved Mortici's result (1.3) and obtained the following inequalities:

$$
\begin{equation*}
\lambda_{n}<\pi<\mu_{n} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{n}<\pi<\omega_{n}, \tag{4.2}
\end{equation*}
$$

where

$$
\begin{align*}
\lambda_{n}= & \left(1+\frac{1}{4 n}-\frac{3}{32 n^{2}}+\frac{3}{128 n^{3}}+\frac{3}{2,048 n^{4}}-\frac{33}{8,192 n^{5}}-\frac{39}{65,536 n^{6}}\right) \\
& \times \frac{2}{2 n+1}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}, \tag{4.3}\\
\mu_{n}= & \left(1+\frac{1}{4 n}-\frac{3}{32 n^{2}}+\frac{3}{128 n^{3}}+\frac{3}{2,048 n^{4}}\right) \frac{2}{2 n+1}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}, \tag{4.4}\\
\delta_{n}= & \left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \frac{1}{n} \exp \left(-\frac{1}{4 n}+\frac{1}{96 n^{3}}-\frac{1}{320 n^{5}}+\frac{17}{7,168 n^{7}}-\frac{31}{9,216 n^{9}}\right), \tag{4.5}\\
\omega_{n}= & \left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \frac{1}{n} \exp \left(-\frac{1}{4 n}+\frac{1}{96 n^{3}}-\frac{1}{320 n^{5}}+\frac{17}{7,168 n^{7}}\right) . \tag{4.6}
\end{align*}
$$

Direct computation yields

$$
\begin{aligned}
a_{n}- & \lambda_{n} \\
= & \frac{3\left(7,634,944 n^{5}+12,928,000 n^{4}+18,895,616 n^{3}+9,755,072 n^{2}+1,930,008 n+135,135\right)}{32,768 n^{6}(2 n+1)\left(131,072 n^{6}+196,608 n^{5}+462,848 n^{4}+380,928 n^{3}+247,328 n^{2}+78,096 n+10,395\right)} \\
& \times\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}>0
\end{aligned}
$$

Table 1 Comparison between inequalities (3.15) and (4.2)

\boldsymbol{n}	$\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{-} \boldsymbol{\delta}_{\boldsymbol{n}}$	$\boldsymbol{\omega}_{\boldsymbol{n}} \boldsymbol{-} \boldsymbol{b}_{\boldsymbol{n}}$
1	6.673798×10^{-3}	3.789512×10^{-3}
10	2.264856×10^{-13}	9.947434×10^{-12}
100	2.398663×10^{-24}	1.051407×10^{-20}
1,000	2.408054×10^{-35}	1.056218×10^{-29}
10,000	2.408948×10^{-46}	1.056690×10^{-38}

and

$$
\begin{aligned}
b_{n} & -\mu_{n} \\
& =-\frac{3\left(45,056 n^{4}+62,976 n^{3}+66,496 n^{2}+21,876 n+945\right)}{1,024 n^{4}(2 n+1)\left(16,384 n^{5}+20,480 n^{4}+32,000 n^{3}+18,880 n^{2}+6,756 n+945\right)}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \\
& <0 .
\end{aligned}
$$

Hence, (3.15) improves (4.1).
The following numerical computations (see Table 1) would show that $\delta_{n}<a_{n}$ and $b_{n}<\omega_{n}$ for $n \in \mathbb{N}$. That is to say, inequalities (3.15) are sharper than inequalities (4.2).
In fact, we have

$$
\begin{array}{ll}
\lambda_{n}=\pi+O\left(\frac{1}{n^{7}}\right), & \mu_{n}=\pi+O\left(\frac{1}{n^{5}}\right), \\
\delta_{n}=\pi+O\left(\frac{1}{n^{11}}\right), & \omega_{n}=\pi+O\left(\frac{1}{n^{9}}\right), \\
a_{n}=\pi+O\left(\frac{1}{n^{12}}\right), & b_{n}=\pi+O\left(\frac{1}{n^{10}}\right) .
\end{array}
$$

Acknowledgements

The authors thank the referees for helpful comments.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors read and approved the final manuscript.

Author details

'School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454000, China.
${ }^{2}$ College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo City, Henan Province 454000, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 17 March 2017 Accepted: 15 May 2017 Published online: 08 June 2017

References

1. Gurland, J: On Wallis' formula. Am. Math. Mon. 63, 643-645 (1956)
2. Brutman, L: A sharp estimate of the Landau constants. J. Approx. Theory 34, 217-220 (1982)
3. Falaleev, LP: Inequalities for the Landau constants. Sib. Math. J. 32, 896-897 (1991)
4. Mortici, C: Refinements of Gurland's formula for pi. Comput. Math. Appl. 62, 2616-2620 (2011)
5. Chen, CP, Paris, RB: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250, 514-529 (2015)
6. Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl 2016, 99 (2016)
7. Bercu, G: The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 11, 181-191 (2017)
8. Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci Appl. 9, 5011-5020 (2016)
9. Brezinski, C, Redivo-Zaglia, M: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69-77 (2015)
10. Li, X, Chen, CP: Padé approximant related to asymptotics for the gamma function. J. Inequal. Appl. 2017, 53 (2017)
11. Liu, J, Chen, CP: Padé approximant related to inequalities for Gauss lemniscate functions. J. Inequal. Appl. 2016, 320 (2016)
12. Lin, L: Further refinements of Gurland's formula for $\boldsymbol{\pi}$. J. Inequal. Appl. 2013, 48 (2013)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

