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Abstract
In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels,
a study initiated recently by Atangana and Baleanu, from order α ∈ [0, 1] to higher
arbitrary order and we formulate their correspondent integral operators. We prove
existence and uniqueness theorems for the Caputo (ABC) and Riemann (ABR) type
initial value problems by using the Banach contraction theorem. Then we prove a
Lyapunov type inequality for the Riemann type fractional boundary value problems
of order 2 < α ≤ 3 in the frame of Mittag-Leffler kernels. Illustrative examples are
analyzed and an application as regards the Sturm-Liouville eigenvalue problem in the
sense of this fractional calculus is given as well.
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1 Introduction
Fractional calculus [–] has kept attracting the interest of many authors in the last three
decades or so. Some researchers have realized that finding new fractional derivatives with
different singular or nonsingular kernels is essential in order to meet the need of mod-
eling more real-world problems in different fields of science and engineering. In [, ]
the authors studied a new type of fractional derivatives where the kernel is of exponential
type and in [, ] the authors studied new different and interesting fractional derivatives
with Mittag-Leffler kernels. Then the authors in [, ] studied the discrete counterparts
of those new derivatives. We devote this work to an extension of the fractional calculus
with Mittag-Leffler kernels to higher order, and we prove some existence and uniqueness
theorems. The extension for right fractional operators and integrals is also considered to
be used later by researchers in solving higher order fractional variational problems in the
frame of Mittag-Leffler kernels by means of integration by parts depending on left and
right fractional operators [–].

As an application to our extension, we prove a Lypanouv type inequality for boundary
value problems with fractional operators with Mittag-Leffler kernel and of order  < α ≤ .
The limiting case of the obtained Lypanouv inequality as α tends to  from the right will
give the following well-known classical Lyapunov inequality.
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Theorem . [] If the boundary value problem

y′′(t) + q(t)y(t) = , t ∈ (a, b), y(a) = y(b) = ,

has a nontrivial solution, where q is a real continuous function, then

∫ b

a

∣∣q(s)
∣∣ds >


b – a

. ()

The generalization of the above Lyapunov inequality to fractional boundary value prob-
lems have been the interest of some researchers in the last few years. For examples, we
refer the reader to [–]. For discrete fractional counterparts of Lyapunov inequalities
we refer to [] and for the q-fractional types we refer to [].

The manuscript is organized as follows. In Section , we present some basic and neces-
sary concepts of fractional operators with nonsingular Mittag-Leffler kernels as discussed
in [, , ]. In Section , we extend fractional operators with nonsingular Mittag-Leffler
functions and their correspondent fractional integrals to arbitrary order α > . In Sec-
tion , we prove, using the Banach fixed point theorem, some existence and uniqueness
theorems for Riemann (ABR) and Caputo (ABC) type initial value problems in the frame
of fractional operators with Mittag-Leffler kernels, supported by some examples. In Sec-
tion , We prove the Lyapunov type inequality for ABR boundary value problems and give
an example of a Sturm-Liouville eigenvalue problem. Finally, we finish by some conclu-
sions in Section .

2 Preliminaries
Definition . ([]) For α > , a ∈ R and f a real-valued function defined on [a,∞), the
left Riemann-Liouville fractional integral is defined by

(
aIαf

)
(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds.

The right fractional integral ending at b is defined by

(
Iα

b f
)
(t) =


�(α)

∫ b

t
(s – t)α–f (s) ds.

Definition . ([, ]) Let f ∈ H(a, b), a < b, α ∈ [, ], then the definition of the new (left
Caputo) fractional derivative in the sense of Abdon and Baleanu becomes

(ABC
a Dαf

)
(t) =

B(α)
 – α

∫ t

a
f ′(x)Eα

(
–α

(t – x)α

 – α

)
dx ()

and in the left Riemann-Liouville sense has the following form:

(ABR
a Dαf

)
(t) =

B(α)
 – α

d
dt

∫ t

a
f (x)Eα

(
–α

(t – x)α

 – α

)
dx. ()

The associated fractional integral by

(AB
a Iαf

)
(t) =

 – α

B(α)
f (t) +

α

B(α)
(

aIαf
)
(t). ()
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Here B(α) >  is a normalization function satisfying B() = B() = . In the right case we
have

(ABCDα
b f

)
(t) =

–B(α)
 – α

∫ b

t
f ′(x)Eα

(
–α

(x – t)α

 – α

)
dx ()

and in the right Riemann-Liouville sense it has the following form:

(ABRDα
b f

)
(t) =

B(α)
 – α

–d
dt

∫ b

t
f (x)Eα

(
–α

(x – t)α

 – α

)
dx. ()

The associated fractional integral by

(ABIα
b f

)
(t) =

 – α

B(α)
f (t) +

α

B(α)
(
Iα

b f
)
(t). ()

In [], it was verified that (AB
a IαABR

a Dαf )(t) = f (t) and (ABR
a DαAB

a Iαf )(t) = f (t). In the right
case, it was verified in [] that (ABIα

b
ABRDα

b f )(t) = f (t) and (ABRDα
b

ABIα
b f )(t) = f (t). From []

or [] we recall the relation between the Riemann-Liouville and Caputo new derivatives:

(ABC
a Dαf

)
(t) =

(ABR
a Dαf

)
(t) –

B(α)
 – α

f (a)Eα

(
–

α

 – α
(t – a)α

)
. ()

In the next section, we extend Definition . to arbitrary α > .

Lemma . [] For  < α < , we have

(AB
a IαABC

a Dαf
)
(x) = f (x) – f (a)

and

(ABIα
b

ABCDα
b f

)
(x) = f (x) – f (b).

3 The higher order fractional derivatives and integrals
Definition . Let n < α ≤ n +  and f be such that f (n) ∈ H(a, b). Set β = α – n. Then
β ∈ (, ] and we define

(ABC
a Dαf

)
(t) =

(ABC
a Dβ f (n))(t) ()

and in the left Riemann-Liouville sense it has the following form:

(ABR
a Dαf

)
(t) =

(ABR
a Dβ f (n))(t). ()

We have the associated fractional integral

(AB
a Iαf

)
(t) =

(
aInAB

a Iβ f
)
(t). ()

Note that if we use the convention that (aIf )(t) = f (t) then for the case  < α ≤ 
we have β = α and hence (aIαf )(t) = (aIαf )(t). Also, the convention f ()(t) = f (t) leads to
(ABR
a Dαf )(t) = (ABR

a Dαf )(t) and (ABC
a Dαf )(t) = (ABC

a Dαf )(t) for  < α ≤ .
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Remark . In Definition ., if we let α = n +  then β =  and hence (ABR
a Dαf )(t) =

(ABR
a Df (n))(t) = f (n+)(t). Also, by noting that (AB

a If )(t) = (aIf )(t), we see that for α = n + 
we have (AB

a Iαf )(t) = (aIn+f )(t). Also, for  < α ≤  we reobtain the concepts defined in
Definition .. Therefore, our generalization to the higher order case is valid.

Analogously, in the right case we have the following extension.

Definition . Let n < α ≤ n +  and f be such that f (n) ∈ H(a, b). Set β = α – n. Then
β ∈ (, ] and we define

(ABCDα
b f

)
(t) =

(ABCDβ

b (–)nf (n))(t), ()

and in the right Riemann-Liouville sense it has the following form:

(ABRDα
b f

)
(t) =

(ABRDβ

b (–)nf (n))(t). ()

We have the associated fractional integral

(ABIα
b f

)
(t) =

(
In

b
ABIβ

b f
)
(t). ()

The next proposition explains the action of the higher order integral operator AB
a Iα on

the higher order ABR and ABC derivatives and, vice versa, the action of the ABR derivative
on the AB integral.

Proposition . For u(t) defined on [a, b] and α ∈ (n, n + ], for some n ∈N, we have:
• (ABR

a DαAB
a Iαu)(t) = u(t).

• (AB
a IαABR

a Dαu)(t) = u(t) –
∑n–

k=
u(k)(a)

k! (t – a)k .
• (AB

a IαABC
a Dαu)(t) = u(t) –

∑n
k=

u(k)(a)
k! (t – a)k .

Proof • By Definition . and the statement after Definition . we have

(ABR
a DαAB

a Iαu
)
(t) =

(
ABR
a Dβ dn

dtn aInAB
a Iβu

)
(t)

=
(ABR

a DβAB
a Iβu

)
(t) = u(t), ()

where β = α – n.
• By Definition . and the statement after Definition . we have

(AB
a IαABR

a Dαu
)
(t) =

(
aInAB

a IβABR
a Dβu(n))(t)

= aInu(n)(t) = u(t) –
n–∑
k=

u(k)(a)
k!

(t – a)k . ()
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• By Lemma . applied to f (t) = u(n)(t) we have

(AB
a IαABC

a Dαu
)
(t) = aIn

aIβABC
a Dβu(n)(t)

= aIn[u(n)(t) – u(n)(a)
]

= u(t) –
n–∑
k=

u(k)(a)
k!

(t – a)k – u(n)(a)
(t – a)n

n!

= u(t) –
n∑

k=

u(k)(a)
k!

(t – a)k . ()
�

Similarly, for the right case we have the following.

Proposition . For u(t) defined on [a, b] and α ∈ (n, n + ], for some n ∈N, we have:
• (ABRDα

b
ABIα

b u)(t) = u(t).
• (ABIα

b
ABRDα

b u)(t) = u(t) –
∑n–

k=
(–)ku(k)(b)

k! (b – t)k .
• (ABIα

b
ABCDα

b u)(t) = u(t) –
∑n

k=
(–)k u(k)(b)

k! (b – t)k .

Example . Consider the initial value problem:

(ABC
 Dαy

)
(t) = K(t), t ∈ [, b], ()

where K(t) is continuous on [, b]. We consider two cases depending on the order α:
• Assume  < α ≤ , y() = c and K() = . By applying AB

 Iα and making use of
Proposition ., we get the solution

y(t) = c +
 – α

B(α)
K(t) +

α

B(α)
(

IαK(·))(t).

Notice that the condition K() =  verifies that the initial condition y() = c. Also
notice that when α →  we reobtain the solution of the ordinary initial value problem
y′(t) = K(t), y() = c.

• Assume  < α ≤ , K() = y() = c, y′() = c: By applying AB
 Iα and making use of

Proposition . and Definition . with β = α – , we get the solution

y(t) = c + ct +
 – α

B(α – )

∫ t


K(s) ds +

α – 
B(α – )�(α)

∫ t


(t – s)α–K(s) ds.

Notice that the solution y(t) verifies y() = c without the use of K() = . However, it
verifies y′() = c under the assumption K() = . Also, note that when α →  we
reobtain the solution of the second order ordinary initial value problem y′′(t) = K(t).

Next section, we prove existence and uniqueness theorems for some types of ABC and
ABR initial value problems.

Example . Consider the ABC boundary value problem

(ABC
a Dαy

)
(t) + q(t)y(t) = ,  < α ≤ , a < t < b, y(a) = y(b) = . ()
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Then β = α –  and by Proposition . applying the operator AB
a Iα will result in the solution

y(t) = c + c(t – a) –
(AB

a Iαq(·)y(·))(t).

But (AB
a Iαq(·)y(·))(t) = –β

B(β)
∫ t

a q(s)y(s) ds+ β

B(β) aIβ+q(t)y(t). Hence, the solution has the form

y(t) = c + c(t – a) –
 – α

B(α – )

∫ t

a
q(s)y(s) ds –

α – 
B(α – ) aIαq(t)y(t),

or

y(t) = c + c(t – a) –
 – α

B(α – )

∫ t

a
q(s)y(s) ds –

α – 
�(α)B(α – )

∫ t

a
(t – s)α–q(s)y(s) ds.

The boundary conditions imply that c =  and

c =
 – α

(b – a)B(α – )

∫ b

a
q(s)y(s) ds +

α – 
(b – a)�(α)B(α – )

∫ b

a
(b – s)α–q(s)y(s) ds.

Hence,

y(t) =
( – α)(t – a)

(b – a)B(α – )

∫ b

a
q(s)y(s) ds –

(α – )(t – a)
�(α)(b – a)B(α – )

∫ b

a
(b – s)α–q(s)y(s) ds

–
 – α

B(α – )

∫ t

a
q(s)y(s) ds –

α – 
�(α)B(α – )

∫ t

a
(t – s)α–q(s)y(s) ds. ()

4 Existence and uniqueness theorems for the initial value problem types
In this section we prove existence uniqueness theorems for ABC and ABR type initial value
problems.

Theorem . Consider the system

(ABC
a Dαy

)
(t) = f

(
t, y(t)

)
, t ∈ [a, b],  < α ≤ , y(a) = c, ()

such that f (a, y(a)) = , A( –α
B(α) + (b–a)α

�(α)B(α) ) < , and |f (t, y) – f (t, y)| ≤ A|y – y|, A > . Here
f : [a, b]×R→R and y : [a, b] →R. Then the system () has a unique solution of the form

y(t) = c + AB
a Iαf

(
t, y(t)

)
. ()

Proof First, with the help of Proposition ., () and taking into account that f (a, y(a)) = ,
it is straightforward to prove that y(t) satisfies the system () if and only if it satisfies ().

Let X = {x : maxt∈[a,b] |x(t)| < ∞} be the Banach space endowed with the norm ‖x‖ =
maxt∈[a,b] |x(t)|. On X define the linear operator

(Tx)(t) = c + AB
a Iαf

(
t, x(t)

)
.

Then, for arbitrary x, x ∈ X and t ∈ [a, b], we have by assumption

∣∣(Tx)(t) – (Tx)(t)
∣∣ =

∣∣AB
a Iα

[
f
(
t, x(t)

)
– f

(
t, x(t)

)]∣∣

≤ A
(

 – α

B(α)
+

(b – a)α

�(α)B(α)

)
‖x – x‖, ()
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and hence T is a contraction. By the Banach contraction principle, there exists a unique
x ∈ X such that Tx = x and hence the proof is complete. �

Theorem . Consider the system

(ABR
a Dαy

)
(t) = f

(
t, y(t)

)
, t ∈ [a, b],  < α ≤ , y(a) = c, ()

such that A
B(α–) (( – α)(b – a) + (α–)(b–a)α

�(α+) ) < , and |f (t, y) – f (t, y)| ≤ A|y – y|, A > .
Here f : [a, b] × R → R and y : [a, b] → R. Then the system () has a unique solution of
the form

y(t) = c + AB
a Iαf

(
t, y(t)

)

= c +
 – α

B(α – )

∫ t

a
f
(
s, y(s)

)
ds +

α – 
B(α – )

(
aIαf

(·, y(·)))(t). ()

Proof If we apply AB
a Iα to system () and make use of Proposition . with β = α –  then

we obtain the representation (). Conversely, if we apply ABR
a Dα , make use of Proposi-

tion . and note that

ABR
a Dα = ABR

a Dβ d
dt

c = ,

we obtain the system (). Hence, y(t) satisfies the system () if and only if it satisfies ().
Let X = {x : maxt∈[a,b] |x(t)| < ∞} be the Banach space endowed with the norm ‖x‖ =

maxt∈[a,b] |x(t)|. On X define the linear operator

(Tx)(t) = c + AB
a Iαf

(
t, x(t)

)
.

Then, for arbitrary x, x ∈ X and t ∈ [a, b], we have by assumption

∣∣(Tx)(t) – (Tx)(t)
∣∣ =

∣∣AB
a Iα

[
f
(
t, x(t)

)
– f

(
t, x(t)

)]∣∣
≤ A

B(α – )

(
( – α)(b – a) +

(α – )(b – a)α

�(α + )

)
‖x – x‖, ()

and hence T is a contraction. By the Banach contraction principle, there exists a unique
x ∈ X such that Tx = x and hence the proof is complete. �

5 The Lyapunov inequality for the ABR boundary value problem
In this section, we prove a Lyapunov inequality for an ABR boundary value problem of
order  ≤ α < .

Consider the boundary value problem

(ABR
a Dαy

)
(t) + q(t)y(t) = ,  ≤ α < , t ∈ (a, b), y(a) = y(b) = . ()

Lemma . y(t) is a solution of the boundary value problem () if and only if it satisfies
the integral equation

y(t) =
∫ b

a
G(t, s)R

(
s, y(s)

)
ds, ()
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where

G(t, s) =

{
(t–a)(b–s)

b–a a ≤ t ≤ s ≤ b,
( (t–a)(b–s)

b–a – (t – s)) a ≤ s ≤ t ≤ b

}

and

R
(
t, y(t)

)
= (AB

a Iβ
(
q(·)y(·))(t) =

 – β

B(β)
q(t)y(t) +

β

B(β)
(

aIβq(·)y(·))(t), β = α – .

Proof Apply the integral AB
a Iα to () and make use of Definition . and Proposition .

with n =  and β = α –  to obtain

y(t) = c + c(t – a) –
(

aIR
(·, y(·)))(t)

= c + c(t – a) –
∫ t

a
(t – s)R

(
s, y(s)

)
ds. ()

The condition y(a) =  implies that c =  and the condition y(b) =  implies that c =


b–a
∫ b

a (b – s)R(s, y(s)) ds and hence

y(t) =
t – a
b – a

∫ b

a
(b – s)R

(
s, y(s)

)
ds –

∫ t

a
(t – s)q(s)R

(
s, y(s)

)
ds.

Then the result follows by splitting the integral

∫ b

a
(b – s)R

(
s, y(s)

)
ds =

∫ t

a
(b – s)R

(
s, y(s)

)
ds +

∫ b

t
(b – s)R

(
s, y(s)

)
ds. �

Lemma . The Green function G(t, s) defined in Lemma . has the following properties:
• G(t, s) ≥  for all a ≤ t, s ≤ b.
• maxt∈[a,b] G(t, s) = G(s, s) for s ∈ [a, b].
• H(s, s) has a unique maximum, given by

max
s∈[a,b]

G(s, s) = G
(

a + b


,
a + b



)
=

(b – a)


.

Proof • It is clear that g(t, s) = (t–a)(b–s)
b–a ≥ . Regarding the part g(t, s) = ( (t–a)(b–s)

b–a – (t – s))
we see that (t – s) = t–a

b–a (b – (a + (s–a)(b–a)
(t–a) )) and that a + (s–a)(b–a)

(t–a) ≥ s if and only if s ≥ a.
Hence, we conclude that g(t, s) ≥  as well. Hence, the proof of the first part is complete.

• Clearly, g(t, s) is an increasing function in t. Differentiating g with respect to t for
every fixed s we see that g is a decreasing function in t.

• Let g(s) = G(s, s) = (s–a)(b–s)
b–a . Then one can show that g ′(s) =  if s = a+b

 and hence the
proof is concluded by verifying that g( a+b

 ) = b–a
 . �

In the next lemma, we estimate R(t, y(t)) for a function y ∈ C[a, b].

Lemma . For y ∈ C[a, b] and  < α ≤ , β = α – , we have for any t ∈ [a, b]

∣∣R(
t, y(t)

)∣∣ ≤ T(t)‖y‖,
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where

T(t) =
[

 – α

B(α – )
∣∣q(t)

∣∣ +
α – 

B(α – )
(

aIα–∣∣q(·)∣∣)(t)
]

.

Theorem . If the boundary value problem () has a nontrivial solution, where q(t) is
a real-valued continuous function on [a, b], then

∫ b

a
T(s) ds >


b – a

. ()

Proof Assume y ∈ Y = C[a, b] is a nontrivial solution of the boundary value problem (),
where ‖y‖ = supt∈[a,b] |y(t)|. By Lemma ., y must satisfy

y(t) =
∫ b

a
G(t, s)R

(
s, y(s)

)
ds.

Then, by using the properties of the Green function G(t, s) proved in Lemma . and
Lemma ., we come to the conclusion that

‖y‖ ≤ b – a


∫ b

a
T(s) ds‖y‖.

From this () follows. �

Remark . Note that if α → +, then T(t) tends to |q(t)| and hence one obtains the clas-
sical Lyapunov inequality ().

Example . Consider the following ABR Sturm-Liouville eigenvalue problem (SLEP) of
order  < α ≤ :

(ABR
 Dαy

)
(t) + λy(t) = ,  < t < , y() = y() = . ()

If λ is an eigenvalue of (), then by Theorem . with q(t) = λ, we have

T(t) =
[

 – α

B(α – )
|λ| +

α – 
B(α – ) Iα–|λ|

]

= |λ|
[

 – α

B(α – )
+

α – 
B(α – )

tα–

�(α – )

]
. ()

Hence, we must have

∫ 


T(s) ds = |λ|

[
 – α

B(α – )
+

α – 
�(α)B(α – )

]
> .

Notice that the limiting case α → + implies that |λ| > . This is the lower bound for the
eigenvalues of the ordinary eigenvalue problem:

y′′(t) + λy(t) = ,  < t < , y() = y() = .



Abdeljawad Journal of Inequalities and Applications  (2017) 2017:130 Page 10 of 11

6 Conclusions
We have extended the order of the fractional operators with nonsingular Mittag-Leffler
function kernels from order α ∈ [, ] to arbitrary order α > . Their corresponding higher
order integral operators have been defined as well and confirmed. The right fractional
extension is also considered. We proved existence and uniqueness theorems by means of
the Banach fixed point theorem for initial value problems in the frame of ABC and ABR
derivatives. We realized that the condition f (a, y(a)) =  is necessary to guarantee a unique
solution and hence the fractional linear initial value problem with constant coefficients
results in the trivial solution unless the order is a positive integer. As an application to
our extension, we proved a Lyapunov type inequality for a ABR boundary value problem
with order  < α ≤  and then obtained the classical ordinary case when α tends to  from
the right. This is different from the classical fractional case, where the Lyapunov inequality
was proved for a fractional boundary problem of order  < α ≤  and the classical ordinary
case was recovered when α tends to  from the left.
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