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Abstract
Based on the analysis of stratification structure on random normed modules, we first
present the notion of random smoothness in random normed modules. Then, we
establish the relations between random smoothness and random strict convexity.
Finally, a type of Gâteaux differentiability is defined for random norms, and its relation
to random smoothness is given. The results are helpful in the further study of
geometry of random normed modules.
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1 Introduction
Guo initiated a new approach to random functional analysis [–], whose main idea is to
develop random functional analysis as functional analysis based on random normed mod-
ules, random inner product modules and random locally convex modules. In particular,
since the essential applications of random functional analysis to conditional risk measures,
the idea has also attracted much attention in different aspects [–]. Motivated by these
advances, the study of geometric theory of random normed modules has begun in the
direction of geometry of classical Banach spaces []. In [, ] random strict convexity
and random uniform convexity are successfully introduced in random normed modules,
which facilitates further study on geometrical properties of random normed modules [].
The geometric theory of random normed modules is closely related to the geometry of
Banach spaces since a complete random normed module is a kind of random generaliza-
tion of a Banach space, as demonstrated by [, ]. From the point of view of classical
Banach space theory, it is a quite natural topic to give a reasonable definition of random
smoothness in random normed modules. Based on the analysis of stratification structure
on random normed modules, we first present the notion of random smoothness via that
of support functionals for the random closed unit ball in a random normed module. Then,
the relations of random smoothness to random strict convexity are established. Finally, a
type of Gâteaux differentiability equivalent to that in [] is introduced for random norms,
and its relation to random smoothness is given.

The remainder of this article is organized as follows. Section  is devoted to some knowl-
edge indispensable for next two sections. Section  is focused on the definition and basic
properties of random smoothness, where Proposition . is of vital importance in this
article. As a generalization of the corresponding classical case, Proposition . is a non-
trivial result which plays a key role in the proof of Proposition .. Section  is focused on
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the Gâteaux differentiability of random norm, where some inequality techniques are em-
ployed in combination with stratification analysis in random normed modules to derive
the main result Theorem ..

Throughout this paper, we adopt the following notations []:
(�,F , P) denotes a probability space, K is the scalar field R of real numbers or C of

complex numbers, L(F , K) denotes the algebra of equivalence classes of K-valued F -
measurable random variables on � in the usual sense.

For any A ∈ F , the equivalence class of A, denoted by Ã, is defined by Ã = {B ∈ F :
P(A�B) = }, where A�B is the symmetric difference of A and B. P(Ã) is defined to be
P(A). For two F -measurable sets G and D, G ⊂ D a.s. means P(G\D) = , in which case
we also say G̃ ⊂ D̃; G̃ ∩ D̃ denotes the equivalence class determined by G ∩ D and so on.
For any ξ , η ∈ L(F , R), ξ > η means ξ ≥ η and ξ �= η. [ξ > η] stands for the equivalence
class of the F -measurable set {ω ∈ � : ξ(ω) > η(ω)} (briefly, [ξ > η]), where ξ and η

are arbitrarily chosen representatives of ξ and η, respectively, and I[ξ>η] stands for Ĩ[ξ>η].
Other analogous symbols are easily understood.

Specially, L
+ = {ξ ∈ L(F , R)|ξ ≥ } and ˜F denotes the set of equivalence classes of ele-

ments in F .

2 Preliminaries
In this section, we recall Hahn-Banach theorems for L-linear functions and a.s. bounded
random linear functionals, respectively, the notion of a random normed module together
with its random conjugate space, the notion of random strict convexity and frequently-
used notations.

Let E be a left module over the algebra L(F , K), a module homomorphism f : E →
L(F , K) is called an L (or L(F , K))-linear function. If K = R, then a mapping p : E →
L(F , R) is called an L-sublinear function if it satisfies the following:

() p(ξx) = ξp(x), ∀ξ ∈ L
+ and x ∈ E;

() p(x + y) ≤ p(x) + p(y),∀x, y ∈ E.
Theorem . below is an important result which will be used in the proof of Theorem ..

Theorem . ([]) Let E be a left module over the algebra L(F , R), M ⊂ E be an L(F , R)-
submodule, f : M → L(F , R) be an L-linear function and p : E → L(F , R) be an L-
sublinear function such that f (x) ≤ p(x),∀x ∈ M. Then there exists an L-linear function
g : E → L(F , R) such that g extends f and g(x) ≤ p(x),∀x ∈ E.

Definitions . and . below are fundamental notations well known in random metric
theory.

Definition . ([]) An ordered pair (E,‖ · ‖) is called a random normed module (briefly,
an RN module) over K with base (�,F , P) if E is a left module over the algebra L(F , K)
and ‖ · ‖ is a mapping from E to L

+ such that the following three axioms are satisfied:

(RNM-) ‖ξx‖ = |ξ |‖x‖,∀ξ ∈ L(F , K), x ∈ E;
(RNM-) ‖x + y‖ ≤ ‖x‖ + ‖y‖,∀x, y ∈ E;
(RNM-) ‖x‖ =  implies x = θ (the null vector in E),

where ‖x‖ is called the random norm (or L-norm) of the vector x in E.
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Definition . ([]) Let (E,‖·‖) be an RN module. A linear operator f from E to L(F , K)
is an almost surely (briefly, a.s.) bounded random linear functional on E if there exists
some ξ in L

+ such that |f (x)| ≤ ξ · ‖x‖,∀x ∈ E. Denote by E∗ the linear space of all a.s.
bounded random linear functionals on E with the ordinary pointwise addition and scalar
multiplication on linear operators. Then (E∗,‖ · ‖∗) is an RN module over K with base
(�,F , P), in which the module multiplication · : L(F , K) × E∗ → E∗ is defined by (ξ ·
f )(x) = ξ · (f (x)),∀ξ ∈ L(F , K), f ∈ E∗ and x ∈ E, and the random norm ‖ · ‖∗ : E∗ → L

+

is defined by ‖f ‖∗ = ∧{ξ ∈ L
+ : |f (x)| ≤ ξ · ‖x‖,∀x ∈ E},∀f ∈ E∗. (E∗,‖ · ‖∗) is called the

random conjugate space of (E,‖ · ‖).

Remark . In Definition ., we can easily see that
() for each f in E∗, |f (x)| ≤ ‖f ‖∗ · ‖x‖,∀x ∈ E;
() since (E∗,‖ · ‖∗) is also an RN module, we can have its random conjugate space

((E∗)∗, (‖ · ‖∗)∗) (briefly, (E∗∗,‖ · ‖∗∗)). Define a mapping J : E → E∗∗ by
J(x)(f ) = f (x),∀f ∈ E∗ and x ∈ E, then ‖J(x)‖∗∗ = ‖x‖. Such a mapping J is called the
canonical embedding mapping from E to E∗∗. In particular, when J is surjective, we
call (E,‖ · ‖) to be random reflexive [].

Theorem . below is the Hahn-Banach theorem for a.s. bounded random linear func-
tionals.

Theorem . ([, ]) Let (E,‖ · ‖) be an RN module over K with base (�,F , P), M ⊂ E
be a linear subspace, and f : M → L(F , K) be an a.s. bounded random linear functional
on M. Then there exists F ∈ E∗ such that () F(x) = f (x),∀x ∈ M, and () ‖F‖∗ = ‖f ‖∗. As a
consequence, for any x ∈ E, there exists g ∈ E∗ such that g(x) = ‖x‖ and ‖g‖∗ = IAx .

Notations in Definition . below were heavily used in the study of random strict con-
vexity and random uniform convexity [] in order to analyze the stratification structure
of E.

Definition . ([]) For any x, y in an RN module (E,‖ · ‖) over K with base (�,F , P),
[‖x‖ �= ] is denoted by Ax, called the support of x, and we briefly write Axy = Ax ∩ Ay

and Bxy = Ax ∩ Ay ∩ Ax–y. The random unit sphere of E is defined by S(E) = {x ∈ E : ‖x‖ =
ĨA for some A ∈ F with P(A) > }. The random closed unit ball of E is defined by U(E) =
{x ∈ E : ‖x‖ ≤ }.

Random strict convexity is as follows.

Definition . ([]) An RN module (E,‖ · ‖) is said to be random strictly convex if for
any x and y ∈ E\{θ} such that ‖x + y‖ = ‖x‖ + ‖y‖ there exists ξ ∈ L

+ such that ξ >  on Axy

and IAxy x = ξ (IAxy y).

It is well known that an RN module (E,‖ · ‖) is random strictly convex if and only if for
any x, y ∈ S(E) with P(Bxy) > , ‖ x+y

 ‖ <  on Bxy [], Theorem ..
The notions of generalized inverse, absolute value, complex conjugate and sign of an

element in L(F , K) are recapitulated from [] for Proposition . below. Let ξ be an
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element in L(F , K). For an arbitrarily chosen representative ξ of ξ , define twoF -random
variables (ξ)– and |ξ| respectively by

(

ξ)–(ω) =

⎧

⎨

⎩


ξ(ω) ξ(ω) �= ,

 otherwise,

and

∣

∣ξ∣
∣(ω) =

∣

∣ξ(ω)
∣

∣, ∀ω ∈ �.

Then the equivalence class of (ξ)–, denoted by ξ–, is called the generalized inverse of
ξ ; the equivalence class of |ξ|, denoted by |ξ |, is called the absolute value of ξ . When
ξ ∈ L(F , C), set ξ = u + iv, where u, v ∈ L(F , R), ξ̄ := u – iv is called the complex conjugate
of ξ and sgn(ξ ) := |ξ |– · ξ is called the sign of ξ . It is obvious that |ξ | = |ξ̄ |, ξ · sgn(ξ̄ ) = |ξ |,
| sgn(ξ )| = IA and ξ– · ξ = ξ · ξ– = IA, where A = [ξ �= ].

3 Random smoothness
In this section, (E,‖ · ‖) is always an RN module over K with base (�,F , P) and (E∗,‖ · ‖∗)
its random conjugate space.

Proposition . Let f be an element in E∗. Then ‖f ‖∗ = ∨{Re f (x) : x ∈ S(E)} and ‖f ‖∗ =
∨{Re f (x) : x ∈ U(E)}.

Proof It is known in [], Proposition ., that ‖f ‖∗ = ∨{|f (x)| : x ∈ U(E)} and in [],
Proposition ., that ‖f ‖∗ = ∨{|f (x)| : x ∈ S(E)}. For any x ∈ S(E), take x′ = sgn(f (x))x, then
x′ ∈ S(E) and f (x′) = sgn(f (x))f (x) = |f (x)|, so that |f (x)| = Re f (x′) ≤ ∨{Re f (x) : x ∈ S(E)},
which justifies the equality ‖f ‖∗ = ∨{Re f (x) : x ∈ S(E)}. It is not difficult to see that
‖f ‖∗ = ∨{Re f (x) : x ∈ U(E)}. �

The notion of support functionals is a preparation for that of random smoothness.

Definition . Let A be a subset of E, then a nonzero element f in E∗ is called a support
functional for A if there exists some x in A such that Re f (x) = ∨{Re f (x) : x ∈ A}, in which
case x is called a support point of A, the set H(f , x) = {x ∈ E : Re f (x) = Re f (x)} is called
a support hyperplane for A, and the support functional f and the support hyperplane
H(f , x) are both said to support A at x.

Remark . By Theorem . each point x in S(E) is a support point of U(E) and therefore
gives rise to at least one support hyperplane for U(E) that supports U(E) at x.

Proposition . For any f, f ∈ S(E∗) with P(Aff ) >  and x ∈ S(E) such that both f and
f support U(E) at x, namely, Re fj(x) = ∨{Re fj(x) : x ∈ U(E)}, j = ,  (this time, Re fj(x) =
‖fj‖∗ = IAfj

, j = , ), the following statements hold:
() Let D ∈ ˜F be such that D ⊂ Aff and P(D) > . If H(IDf, x) = H(IDf, x), then

H(IGf, x) = H(IGf, x) for any G ∈ ˜F with G ⊂ D and P(G) > ;
() For an arbitrary D ∈ ˜F with D ⊂ Aff and P(D) > , H(IDf, x) = H(IDf, x) if and

only if IDf = IDf.
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Proof (). Let x ∈ H(IGf, x), then

Re IDf(IGx + ID\Gx) = Re IDf(IGx) + Re IDf(ID\Gx)

= Re IGf(x) + Re ID\Gf(x)

= Re IGf(x) + Re ID\Gf(x)

= ID Re f(x) = Re IDf(x),

so that IGx + ID\Gx ∈ H(IDf, x) = H(IDf, x), which implies

Re IDf(IGx + ID\Gx) = Re IGf(x) + Re ID\Gf(x) = Re IDf(x),

thus Re IGf(x) = Re IGf(x), from which we can see that H(IGf, x) ⊂ H(IGf, x). Simi-
larly, H(IGf, x) ⊂ H(IGf, x).

(). (⇐) is clear.
(⇒). We only need to show that ID Re f = ID Re f. Assume by way of contradiction that

there exists x′ in E such that P(D′) > , where D′ = [ID Re f(x′) �= ID Re f(x′)] ∩ D. Let

D′
 =

[

ID Re f
(

x′) �= 
] ∩ [

ID Re f
(

x′) = 
] ∩ D,

D′
 =

[

ID Re f
(

x′) = 
] ∩ [

ID Re f
(

x′) �= 
] ∩ D,

D′
 =

[

ID Re f
(

x′) �= 
] ∩ [

ID Re f
(

x′) �= 
] ∩ [

ID Re f
(

x′) �= ID Re f
(

x′)] ∩ D,

then D′ = D′
 ∪ D′

 ∪ D′
. It is enough to show that P(D′) = .

If P(D′
) > , let x′

 = ID′

(Re f(x′))–x′, then

Re f
(

x′

)

= ID′


(

Re f
(

x′))–
Re f

(

x′) = ID′


= ID′

IAf

= ID′

Re f(x),

which implies that x′
 ∈ H(ID′


f, x). Since H(IDf, x) = H(IDf, x) and D′

 ⊂ D, by () of
this proposition we have x′

 ∈ H(ID′

f, x), namely, Re ID′


f(x′

) = Re ID′

f(x) = ID′


. On

the other hand, Re ID′

f(x′

) = ID′

Re f(x′

) = ID′

(Re f(x′))– Re f(x′) = . The contradiction

shows that P(D′
) = .

Similarly, P(D′
) = .

Now let us show that P(D′
) =  as follows.

If P(D′
) > , then let y = ID′


(Re f(x′))–x′. It is easy to see that Re f(y) = ID′


(Re f(x′))– ×

Re f(x′) = ID′

, which implies that Re ID′


f(y) = ID′


= ID′


IAf

= Re ID′

f(x), namely, y ∈

H(ID′

f, x). Again by () of this proposition we have H(ID′


f, x) = H(ID′


f, x). Con-

sequently, Re ID′

f(y) = Re ID′


f(x) = ID′


. On the other hand, by the definition of y

and D′
 we have that Re ID′


f(y) = Re ID′


f(ID′


(Re f(x′))–x′) = Re ID′


(Re f(x′))–f(x′) =

ID′

(Re f(x′))– Re f(x′) �=  on D′

, which contradicts the fact that

Re ID′

f(y) = Re ID′


f(x) = ID′


.

Thus P(D′
) = .

Therefore, P(D′) =  and this completes the proof. �
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Definition . In an RN module (E,‖·‖), an element x of S(E) is called a point of random
smoothness of U(E) if H(IAf f

f, x) = H(IAf f
f, x) for any two support functionals f, f

for U(E) at x with P(Aff ) > . E is said to be random smooth if each point of S(E) is a
point of random smoothness of U(E).

Proposition . Suppose that E is an RN module and that x ∈ S(E). Then the following
are equivalent.

() x is a point of random smoothness of U(E);
() If both f and f in S(E∗) support U(E) at x and P(Aff ) > , then IAf f

f = IAf f
f;

() If f and f in S(E∗) satisfy Re IAf f
fj(x) = IAf f

(j = , ), then IAf f
f = IAf f

f;
() If f and f in S(E∗) satisfy f(x) = f(x) = IAf f

, then IAf f
f = IAf f

f.

Proof ()⇒(). Assume that IAf f
f �= IAf f

f, then IAf f
‖f – f‖∗ �= . It is easy to see that

P(D) > , where D = Aff ∩ [‖f – f‖∗ �= ]. Considering IDf, IDf ∈ S(E∗) and IDx ∈ S(E),
we can gte Re IDfj(x) = ID Re fj(x) = ID · ∨{Re fj(x) : x ∈ U(E)} = ∨{Re IDfj(x) : x ∈ U(E)}
(j = , ). Namely, both IDf and IDf are support functionals for U(E) at x. By Defini-
tion . we have H(IDf, x) = H(IDf, x), and then by Proposition .() IDf = IDf, which
leads to ID‖f – f‖∗ = , a contradiction.

()⇒(). Observing that Re IAf f
fj(x) = IAf f

= ‖IAf f
fj‖∗ = ∨{Re IAf f

fj(x) : x ∈ U(E)}(j =
, ), namely, both IAf f

f and IAf f
f support U(E) at x, we obtain that IAf f

f = IAf f
f

by ().
()⇒() is obvious.
()⇒() Suppose that f, f ∈ E∗ are two support functionals for U(E) with P(Aff ) > ,

namely,

Re fj(x) = ∨{

Re fj(x) : x ∈ U(E)
}

= ‖fj‖∗ (j = , ).

It is enough to show that H(IAf f
f, x) = H(IAf f

f, x) by Proposition .(). Clearly,

Re IAf f

(‖f‖∗)–f(x) = Re IAf f

(‖f‖∗)–f(x) = IAf f
,

IAf f

(‖f‖∗)–f, IAf f

(‖f‖∗)–f ∈ S
(

E∗).

From

‖f‖∗ = Re f(x) ≤ ∣

∣f(x)
∣

∣ ≤ ‖f‖∗‖x‖ = ‖f‖∗ · IAx
≤ ‖f‖∗

it follows that |f(x)| = ‖f‖∗, namely, |Re f(x) – i Re f(ix)| = ‖f‖∗, which together with
Re f(x) = ‖f‖∗ implies that Re f(ix) = ; consequently, f(x) = Re f(x) = ‖f‖∗. In the
same way, f(x) = ‖f‖∗. Thus IAf f

(‖f‖∗)–f(x) = IAf f
(‖f‖∗)–f(x) = IAf f

. Then by ()
IAf f

(‖f‖∗)–f = IAf f
(‖f‖∗)–f. Therefore, H(IAf f

f, x) = H(IAf f
f, x). �

Corollary . Suppose that E is an RN module and that x ∈ S(E). Then the following are
equivalent.

() E is random smooth;
() For each x ∈ S(E), if both f and f in S(E∗) support U(E) at x with P(Aff ) > , then

IAf f
f = IAf f

f;
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() For each x ∈ S(E), if f and f in S(E∗) satisfy Re IAf f
f(x) = Re IAf f

f(x) = IAf f
, then

IAf f
f = IAf f

f;
() For each x ∈ S(E), if f and f in S(E∗) satisfy IAf f

f(x) = IAf f
f(x) = IAf f

, then
IAf f

f = IAf f
f.

The relations between random smoothness and random strict convexity are described
by Theorems . and . below.

Theorem . Suppose that E is an RN module. If E∗ is random strictly convex, then E is
random smooth.

Proof Suppose that E is not random smooth, by Corollary ., there exist x ∈ S(E) and
f, f ∈ S(E∗) such that

IAf f
f(x) = IAf f

f(x) = IAf f
()

and

IAf f
f �= IAf f

f. ()

From () it follows that




IAf f
(f + f)(x) = IAf f

,

which yields
∥

∥

∥

∥




IAf f
(f + f)

∥

∥

∥

∥

= IAf f
,

namely,

‖IAf f
f + IAf f

f‖ = IAf f
= ‖IAf f

f‖ + ‖IAf f
f‖.

By the random strict convexity of E∗, there exists ξ ∈ L
+ such that ξ >  on Aff and

IAf f
f = ξ IAf f

f, so that IAf f
‖f‖ = ξ IAf f

‖f‖, which implies ξ IAf f
= IAf f

, thus IAf f
f =

IAf f
f, a contradiction to (). �

Theorem . Suppose that E is an RN module. If E∗ is random smooth, then E is random
strictly convex.

Proof Assume by way of contradiction that E is not random strictly convex, then there
exist x, x ∈ S(E) and D ∈ ˜F with D ⊂ Bxx and P(D) >  such that

ID

∥

∥

∥

∥

x + x



∥

∥

∥

∥

= ID.

By Theorem ., there exists f ∈ E∗ such that

f

(

ID
x + x



)

= ID

∥

∥

∥

∥

x + x



∥

∥

∥

∥

= ID
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and ‖f‖∗ = ID. Noticing that

ID =
ID


f(x) +

ID


f(x) ≤ ID


∣

∣f(x)
∣

∣ +
ID


∣

∣f(x)
∣

∣ ≤ ID, ()

we have

ID


∣

∣f(x)
∣

∣ +
ID


∣

∣f(x)
∣

∣ = ID,

where ID
 |f(x)| ≤ 

 ID and ID
 |f(x)| ≤ 

 ID. Consequently, ID|f(xi)| = ID(i = , ). By ()
ID = ID

 Re f(x) + ID
 Re f(x), which in combination with ID|f(x)| = ID|f(x)| = ID yields

Re f(x) = Re f(x) = ID, and hence IDf(x) = IDf(x) = ID. Using the canonical embed-
ding mapping (see Remark .), we have J(IDx)(f) = f(IDx) = f(IDx) = J(IDx)(f) = ID,
thus ‖J(IDxj)‖∗∗ = ∨{J(IDxj)(f ) : f ∈ U(E∗)} = ID = J(IDxj)(f) (j = , ), namely, both J(IDx)
and J(IDx) support U(E∗) at f. Since E∗ is random smooth, by Corollary . we can ob-
tain that IDJ(IDx) = IDJ(IDx) so that ID‖J(IDx – IDx)‖∗∗ = , which yields ID‖x – x‖ = ,
a contradiction. �

Proposition . Let E be a random reflexive RN module. Then the following hold.
() E is random strictly convex if and only if E∗ is random smooth;
() E is random smooth if and only if E∗ is random strictly convex.

Proof Since the canonical embedding mapping J is random-norm preserving and linear,
and J(E) = E∗∗, it is a straightforward verification by Theorems . and .. �

4 Gâteaux differentiability of random norm
In classical normed spaces the function t �→ (‖x + ty‖ – ‖x‖)/t from R\{} to R plays an
important role in Gâteaux differentiability of the classical norm []. Motivated by this,
we consider in an RN module (E,‖ · ‖) the mapping f defined by

f (t, y) =
‖x + ty‖ – ‖x‖

t
, ∀t ∈ L(F , R)\{},∀y ∈ E,

where x is a fixed element in S(E). It is feasible to define the Gâteaux differentiability
of random norm via f (t, y) and establish its relation to random smoothness. It should be
pointed out that some terminologies and properties in this section are closely related to
[], Section .

For any D ∈ ˜F with P(D) >  and t, t in L(F , R) such that  < t < t on D, we can verify
that

ID
‖x + ty‖ – ‖x‖

t
≤ ID

‖x + ty‖ – ‖x‖
t

,

ID
‖x – ty‖ – ‖x‖

–t
≤ ID

‖x – ty‖ – ‖x‖
–t

and

ID
‖x – ty‖ – ‖x‖

–t
≤ ID

‖x + ty‖ – ‖x‖
t
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as in the classical case, see [] for details. Consequently, f (t, y) is nondecreasing in t in
the sense that IDf (t, y) ≤ IDf (t, y) for any t, t ∈ L(F , R) and D ∈ ˜F with P(D) >  such
that t, t �=  on D and t < t on D. Besides, f (t, y) possesses the following properties as
described in Lemma ..

Lemmas .() and . below are implied by [], Lemma ., and [], Theorem .(),
respectively. Here we present slightly different proofs to illustrate the typical stratification
analysis on random normed modules and to keep self-contained.

Lemma . () ∧{IDf (t, y) : t ∈ L(F , R), t >  on D} = ID · ∧{f (s, y) : s ∈ R, s > };
() ∧{IDf (ξ s, y) : s ∈ R, s > } = ID · ∧{f (s, y) : s ∈ R, s > },∀ξ ∈ L(F , R), ξ >  on D;
() ∨{IDf (t, y) : t ∈ L(F , R), t <  on D} = ID · ∨{f (s, y) : s ∈ R, s < }.

Proof (). It is clear that

∧{

IDf (t, y) : t ∈ L(F , R), t >  on D
} ≤ ID · ∧{

f (s, y) : s ∈ R, s > 
}

.

For any fixed t ∈ L(F , R) with t >  on D, denote D(t) = D∩ [t ≥ ] and Dn(t) = D∩ [ 
n+ ≤

t < 
n ],∀n ≥ , then D =

∑∞
n= Dn(t). Since

IDn(t)f (t, y) ≥ IDn(t)f
(


n + 

, y
)

≥ IDn(t) · ∧{

f (s, y) : s ∈ R, s > 
}

, ∀n,

we obtain that

IDf (t, y) =
∞

∑

n=

IDn(t)f (t, y) ≥
∞

∑

n=

IDn(t) · ∧{

f (s, y) : s ∈ R, s > 
}

= ID · ∧{

f (s, y) : s ∈ R, s > 
}

.

The proofs of () and () are similar. �

Lemma . Denote G+(x, y) = ∧{f (t, y) : t ∈ R, t > }, G–(x, y) = ∨{f (t, y) : t ∈ R, t < }.
Then G+(x, y) and G–(x, y) satisfy the following:

() G+(x, ξy) = ξG+(x, y), G–(x, ξy) = ξG–(x, y);
() G+(x, y + y) ≤ G+(x, y) + G+(x, y),

where x ∈ S(E), y, y, y ∈ E, ξ ∈ L
+.

Proof (). For any ξ ∈ L
+, let A = [ξ > ], then by Lemma .

G+(x, ξy) = ∧{

f (t, ξy) : t ∈ R, t > 
}

= ∧
{‖x + tξy‖ – ‖x‖

t
: t ∈ R, t > 

}

= ∧
{

IA‖x + tξy‖ – IA‖x‖
t

: t ∈ R, t > 
}

= IAξ · ∧
{

IA · ‖x + tξy‖ – ‖x‖
tξ

: t ∈ R, t > 
}

= IAξ · ∧
{

IA · ‖x + ty‖ – ‖x‖
t

: t ∈ R, t > 
}
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= IAξG+(x, y)

= ξG+(x, y).

The proof of the other equality is similar.
(). Notice that

∧ {

f (t, y) : t ∈ R, t > 
}

+ ∧{

f (t, y) : t ∈ R, t > 
}

= ∧{

f (t, y) + f (t, y) : t ∈ R, t > 
}

. ()

In fact, for any positive numbers t and t,

f (t, y) + f (t, y) ≥ [

f (t, y) + f (t, y)
] ∧ [

f (t, y) + f (t, y)
]

≥ ∧{

f (t, y) + f (t, y) : t ∈ R, t > 
}

.

Consequently, the left-hand side of () is not less than the right-hand side, so that () can
be easily verified. Then, by the following

f (t, y + y) =
‖x + t(y + y)‖ – ‖x‖

t

≤ ‖x + ty‖ – ‖x‖
t

+
‖x + ty‖ – ‖x‖

t

= f (t, y) + f (t, y) (∀t ∈ R, t > )

it is easy to see that

∧ {

f (t, y + y) : t ∈ R, t > 
}

≤ ∧{

f (t, y) + f (t, y) : t ∈ R, t > 
}

= ∧{

f (t, y) : t ∈ R, t > 
}

+ ∧{

f (t, y) : t ∈ R, t > 
}

,

which implies that

G+(x, y + y) ≤ G+(x, y) + G+(x, y). �

The Gâteaux differentiability was defined for proper local functions from a random lo-
cally convex module to L̄(F ) in [], Definition .. Since a random locally convex mod-
ule is a generalization of a random normed module and a random norm is L-convex, it
is easy to see that a random norm is also a proper local function. For random norms we
present the following definition of Gâteaux differentiability, which is equivalent to that in
[], Definition .. Under Definition . we can establish the relations among supporting
functionals, points of random smoothness and Gâteaux differentiability of random norms.

Definition . Let (E,‖ · ‖) be an RN module, x ∈ S(E) and y ∈ E. Then G–(x, y) and
G+(x, y) are respectively called the left-hand and right-hand Gâteaux derivative of the
random norm ‖ · ‖ at x in the direction y. ‖ · ‖ is called Gâteaux differentiable at x in
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the direction y if G–(x, y) = G+(x, y), in which case the common value of G–(x, y) and
G+(x, y) is denoted by G(x, y) and is called the Gâteaux derivative of ‖ · ‖ at x in the
direction y. If ‖ · ‖ is Gâteaux differentiable at x in every direction y ∈ E, then it is called
Gâteaux differentiable at x. Finally, if ‖ · ‖ is Gâteaux differentiable at every point of the
random unit sphere S(E), then ‖ · ‖ is said to be Gâteaux differentiable.

Remark . It is obvious that G–(x, y) ≤ G+(x, y), G–(x, –y) = –G+(x, y) and G–(x, x) =
G+(x, x) = G(x, x) = ‖x‖ = IAx for any x in S(E) and y in E.

Lemma . Let (E,‖ · ‖) be an RN module, x ∈ S(E) and f ∈ S(E∗) such that P(D) > ,
where D = Ax ∩ Af . Then IDf supports U(E) at x if and only if

IDG–(x, y) ≤ ID Re f (y) ≤ IDG+(x, y), ∀y ∈ E. ()

Proof (⇒). By the following facts

Re IDf (x) = ∨{

Re IDf (x) : x ∈ U(E)
}

= ID‖f ‖∗ = ID,

IDf (x) = Re IDf (x) – i Re IDf (ix) and IDf (x) ≤ ID‖f ‖∗‖x‖ = ID,

one can obtain that IDf (x) = ID. Since

ID Re f (ty) = ID Re f (x + ty) – ID Re f (x) ≤ ID
(‖x + ty‖ – ‖x‖

)

for any positive numbers t and any y ∈ E, the following inequalities hold:

ID
‖x – ty‖ – ‖x‖

–t
= –ID

‖x + t(–y)‖ – ‖x‖
t

≤ –ID
Re f (t(–y))

t
= ID Re f (y) ≤ ID

‖x + ty‖ – ‖x‖
t

,

which implies ().
(⇐). Since G–(x, x) = ‖x‖ = G+(x, x), it follows that ID Re f (x) = ID by (). Noticing

that

Re IDf (x) = ID = ∨{

Re IDf (x) : x ∈ U(E)
}

,

we complete the proof. �

Theorem . Let (E,‖ · ‖) be an RN module and x be a point in S(E). Then the following
statements hold:

() x is a point of random smoothness of U(E) if and only if ‖ · ‖ is Gâteaux
differentiable at x;

() If x is a point of random smoothness of U(E) and f in S(E∗) supports U(E) at x,
then IAf G(x, y) = Re IAf f (y).

Proof (). (⇒). Assume by way of contradiction that ‖ · ‖ is not Gâteaux differentiable
at x. Then there exists y in E such that G–(x, y) < G+(x, y), namely, P(M) > ,
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where M = [G–(x, y) < G+(x, y)]. Since IAc
x

G–(x, y) = IAc
x

G+(x, y) = IAc
x

‖y‖ and
IAc

y
G–(x, y) = IAc

y
G+(x, y) = , one knows that M ⊂ Ax and that M ⊂ Ay .

Take an arbitrary s in L(F , R) such that

G–(x, y) < s < G+(x, y) on M. ()

Define W = {ry : r ∈ L(F , R)} and fs(ry) = IMrs,∀r ∈ L(F , R), then it is clear that W is
an L(F , R)-submodule of E, that fs is an L-linear function on W , and that

fs(ry) = IMrs ≤ IMrG+(x, y) = IMG+(x, ry), ∀r ∈ L
+.

For any r ∈ L(F , R)\L
+, denote D = M∩ [r < ], then fs(–IDry) = –IDrs ≥ –IDrG–(x, y) =

G–(x, –IDry) = –G+(x, IDry), and hence fs(IDry) ≤ G+(x, IDry) = IDG+(x, ry). Com-
bining the fact that fs(IM\Dry) = IM\Drs ≤ IM\DG+(x, ry), we can see that fs(ry) ≤
IDG+(x, ry) + IM\DG+(x, ry) = IMG+(x, ry). Thus

fs(ry) ≤ IMG+(x, ry), ∀r ∈ L(F , R).

By Theorem . there exists an L-linear function x∗
s : E → L(F , R) such that x∗

s |W = fs

and x∗
s (y) ≤ G+(x, y),∀y ∈ E.

Without loss of generality, suppose that E is a complex RN module. Let

gs(y) = x∗
s (y) – ix∗

s (iy).

It is easy to show that gs : E → L(F , C) is L-linear and Re gs = x∗
s , from which it follows

that Re gs(y) ≤ G+(x, y),∀y ∈ E. Then we obtain

Re gs(y) ≤ G+(x, y) ≤ ‖x + y‖ – ‖x‖


≤ ‖y‖, ∀y ∈ E

and

Re gs(y) = – Re gs(–y) ≥ –G+(x, –y) = G–(x, y),

which together with the fact that ‖gs‖∗ = ‖Re gs‖∗ yields that gs ∈ E∗, ‖gs‖∗ ≤  and
G–(x, x) ≤ Re gs(x) ≤ G+(x, x). Thus Re gs(x) = IAx

and so ‖IAx
gs‖∗ = IAx

. Namely,
IAx

gs supports U(E) at x.
Therefore, for any s and s satisfying () and sIM �= sIM , there exist two corresponding

gs and gs in E∗ such that both IAx
gs and IAx

gs support U(E) at x and ‖IAx
gs‖∗ =

‖IAx
gs‖∗ = IAx

. Noticing that

IAx
Re gs (y) = IAx

x∗
s (y) = IAx

fs (y) = IMs

IAx
Re gs (y) = IAx

x∗
s (y) = IAx

fs (y) = IMs,

we derive that IAx
Re gs �= IAx

Re gs , which is a contradiction to Proposition ..
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(⇐). Suppose that ‖ · ‖ is Gâteaux differentiable at x, f in S(E∗) supports U(E) at x.
Then it is obvious that Af ⊂ Ax . By Lemma . we have

IAf Re f (y) = IAf G(x, y), ∀y ∈ E. ()

If f and f in S(E∗) both support U(E) at x and P(Aff ) > , then IAf f
Re f = IAf f

Re f,
which implies that IAf f

f = IAf f
f. By Proposition . x is a point of random smoothness

of U(E).
(). It is clear by (). �

Remark . It should be pointed out that further development of random smoothness
under Definition . confronted some obstacles, one of which is how to establish the con-
nection between random smoothness of an RN module E and classical smoothness of the
abstract Lp space derived from E. It is an interesting problem and attracts some attention
in different literature [, ].
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