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Abstract
In this paper, we consider the Riesz transform of higher order associated with the
harmonic oscillator L = –� + |x|2, where � is the Laplacian on R

d . Moreover, the
boundedness of Riesz transforms of higher order associated with Hermite functions
on the Hardy space is proved.
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1 Introduction
Let Hk(x) denote the Hermite polynomials on R, which can be defined as

Hk(x) = (–)k dk

dxk

(
e–x)

ex
, k = , , , . . . .

The normalized Hermite functions are defined by

hk(x) =
(
π /kk!

)–/Hk(x) exp
(
–x/

)
, k = , , . . . .

The high dimensional Hermite functions on R
d can be defined in the following way. For

α = (α, . . . ,αd), αi ∈ {, , . . .}, x = (x, . . . , xd) ∈R
d ,

hα(x) =
d∏

j=

hαj (xj).

{hα} forms a complete orthonormal basis of L(Rd). Let |α| = α + · · · + αd , then we have

Lhα =
(
|α| + d

)
hα .

A very famous reference for Hermite functions is [].
The operator L is positive and symmetric on L(Rd). Let {TL

t }t≥ be the heat kernel
defined by

TL
t f = e–tLf =

∞∑

n=

e–t(n+d)Pnf
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for f ∈ L(Rd) and

Pnf =
∑

|α|=n

〈f , hα〉hα .

Then the Poisson semigroup is defined as

PL
t f = e–tL/

f =
∞∑

n=

e–t(n+d)/Pnf , f ∈ L(
R

d).

The relation between the heat kernel and the Poisson kernel is

PL
t f (x) =

t√
π

∫ ∞


s–/ exp

(
–t/s

)
TL

s f (x) ds. ()

Let Aj = ∂
∂xj

+ xj and A–j = A∗
j = – ∂

∂xj
+ xj, j = , , . . . , d. Then we can denote L as

L = –


[
(∇ + x) · (∇ – x) + (∇ – x) · (∇ + x)

]
=




d∑

j=

AjA–j + A–jAj.

We define operators RL
±j, j = , , . . . , d

RL
j = AjL–/, RL

–j = A–jL–/.

Rj and R–j are called the Riesz transforms associated with L. The definition was first sug-
gested by Thangavelu in [].

Let ej be the coordinate vectors in R
d , then

Ajhα = (αj + )/hα+ej , A–jhα = (αj)/hα–ej .

Therefore, for f ∈ L(Rd),

RL
j f =

∑

α

(
αj

|α| + d

)/

〈f , hα〉hα–ej

=
∞∑

n=

∑

|α|=n

(
αj

n + d

)/

〈f , hα〉hα–ej , ()

and

RL
–jf =

∑

α

(
(αj + )
|α| + d

)/

〈f , hα〉hα+ej

=
∞∑

n=

∑

|α|=n

(
(αj + )
n + d

)/

〈f , hα〉hα+ej . ()

In [], the author proved that RL
j were bounded on the local Hardy spaces h(Rd) which

were defined by Goldberg in []. Thangavelu asked one question: whether it was possible
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to characterize h(Rd) by RL
j , i.e., whether the equality

h(
R

d) =
{

f ∈ L(
R

d) : RL
j f ∈ L(

R
d), j = , , . . . , d

}

is true. In [], the author proved the boundedness of RL
j on Hardy spaces H

L(Rd), d ≥ ,
where H

L(Rd) are the Hardy spaces for L (cf. []).

Proposition  Let j = , , . . . , d. Then the operators RL
j are bounded on H

L(Rd), that is,
there exists C >  satisfying

∥
∥RL

j f
∥
∥

H
L
≤ C‖f ‖H

L
.

Moreover, he characterized H
L(Rd) by RL

j , j = , , . . . , d. Therefore, we cannot charac-
terize h(Rd) by RL

j .

Remark  When we consider the boundedness of Riesz transforms for L on Hardy spaces,
the main tool is Littlewood-Paley characterizations of Hardy spaces. In fact, we have the
following equality (cf. []):

t∂te–t(L±)/(
RL

±jf
)

= –t
(

± ∂

∂xj
+ xj

)
e–tL/

f

for all j = , , . . . , d and f ∈ L(Rd). If we prove the boundedness of Riesz transforms RL
–j

on Hardy spaces, we need to consider the operator L – . Since the Hardy spaces H
L(Rd),

d ≥ , associated with L defined in [] are for nonnegative potentials, it is maybe natural
to just consider RL

j . In [], the authors proved the boundedness of RL
±j on Lp(Rd), where

they considered the semigroup generated by L + b for b <  on Lp(Rd).

In this paper, we prove that the higher ordered Riesz transforms are bounded on the
Hardy spaces associated with Hermite functions. More precisely, let

L–m/hα =
(
|α| + d

)–m/hα ,

and define the m-ordered Riesz transforms as

Rii···im = Ai Ai · · ·Aim L–m/,

where  ≤ ij ≤ d and  ≤ j ≤ m.
We define Hardy space H

L(Rd) for d ≥  as follows (cf. []):

H
L
(
R

d) =
{

f ∈ L(
R

d) : MLf ∈ L(
R

d)},

where MLf (x) = supt> |TL
t f (x)|.

Define

ρ(x) =


 + |x| , ()

we say a(x) is an atom for the space H
L(Rd) if there exists a ball B(x, r) such that

() supp a ⊂ B(x, r),
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() ‖a‖L∞ ≤ |B(x, r)|–,
() if r < ρ(x), then

∫
a(x) dx = .

The atomic quasi-norm in H
L(Rd) can be defined as

‖f ‖L-atom = inf
{∑

|cj|
}

.

In [], the authors proved the following result.

Proposition  There exists C >  satisfying

C–‖f ‖H
L
≤ ‖f ‖L-atom ≤ C‖f ‖H

L
.

Let b ∈R
d
+. We define

Gb
t (x, y) = e–btGL

t (x, y).

Then

Gb
t (f )(x) =

∫

Rd
Gb

t (x, y)f (y) dy

is a semigroup for the spaces Lp(Rd),  ≤ p < ∞, and ‖Gb
t (f )‖Lp(Rd) ≤ e–bt‖f ‖Lp(Rd). This

semigroup is generated by the operator –(L + b).
The subordination formula is

Pb
t (x, y) =

t√
π

∫ ∞


Gb

s (x, y)s–/e–t/s ds. ()

The Poisson integral of f (x) can be defined as

ub(x, t) = Pb
t (f )(x) =

∫

Rd
Pb

t (x, y)f (y) dy

=
t√
π

∫

Rd

∫ ∞


Gb

s (x, y)f (y)s–/e–t/s ds dy.

Let

Gb(f )(x) =

(∫ ∞



d∑

j=

∣∣tAjub(x, t)
∣∣ dt

t

)/

and

G
b(f )(x) =

(∫ ∞



∣∣t∂tub(x, t)
∣∣ dt

t

)/

,

where A = ∂t .
The main results of this paper are as follows.
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Theorem  f ∈ H
L(Rd) is equivalent to Gb(f ) ∈ L(Rd) and f ∈ L(Rd). Moreover,

‖f ‖H
L
∼ ∥∥Gb(f )

∥∥
L + ‖f ‖L .

Theorem  The operators Rii···im = Ai Ai · · ·Aim L–m/ are bounded on H
L(Rd) for all  ≤

ij ≤ d for every  ≤ j ≤ m, that is, there exists C >  satisfying

‖Rii···im f ‖H
L
≤ C‖f ‖H

L
.

The organization of this paper is as follows. In Section , we give some estimations of
the heat kernel and the Poisson kernel associated with L + b. In Section , Theorem  is
proved. In Section , we prove Theorem .

Throughout the article, we use A and C to denote the positive constants, which are
independent of the main parameters and may be different at each occurrence. By B ∼ B,
we mean that there exists a constant C >  such that 

C ≤ B
B

≤ C.

2 Estimations of the kernels
Let Gb

t (x, y) be the heat kernel of {TL+b
t }. Then the following inequality can be proved by

the Feynman-Kac formula:

Gb
t (x, y) ≤ Wt(x – y),

where

Wt(x) = (π t)–d/ exp
(
–|x|/(t)

)

is the heat kernel on R
d .

Since Gb
t (x, y) ≤ GL

t (x, y), we have (cf. []) the following lemma.

Lemma 
(a) For N ∈N, there exists CN > 

 ≤ Gb
t (x, y) ≤ CN t– d

 e–(t)–|x–y|
(

 +
√

t
ρ(x)

+
√

t
ρ(y)

)–N

. ()

(b) There are constants  < δ <  and C > , for N > , there is CN >  which satisfies for
all |h| ≤ |x–y|

 ,

∣
∣Gb

t (x + h, y) – Gb
t (x, y)

∣
∣ ≤ CN

( |h|√
t

)δ

t– d
 e–At–|x–y|

(
 +

√
t

ρ(x)
+

√
t

ρ(y)

)–N

. ()

By the subordination formula, we get the following.

Lemma 
(a) For N ∈N, there is CN >  satisfying

 ≤ Pb
t (x, y) ≤ CN

t
(t + A|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

. ()
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(b) Let  < δ <  and |h| < |x–y|
 . Then, for N ∈N, there are C > , CN >  satisfying

∣
∣Pb

t (x + h, y) – Pb
t (x, y)

∣
∣

≤ CN

( |h|
t

)δ t
(t + A|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

. ()

Proof (a) By subordination formula and Lemma , we have

 ≤ Pb
t (x, y) =

√
π

∫ ∞


Gb

t/μ
(x, y)e–μμ–/ dμ

≤ CN

∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)
(

t√
μρ(x)

+
t√

μρ(y)

)–N

e–μμ–/ dμ

= CN

∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)
(

t
ρ(x)

+
t

ρ(y)

)–N

e–μμN/–/ dμ

≤ CN

(
t

ρ(x)
+

t
ρ(y)

)–N ∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)e–μμ–/ dμ

= CN

(
t

ρ(x)
+

t
ρ(y)

)–N t
(t + A|x – y|)(d+)/ . ()

By () and

Pb
t (x, y) ≤ t

(t + A|x – y|)(d+)/ ,

we get

 ≤ Pb
t (x, y) ≤ CN

t
(t + A|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

.

(b) By subordination formula again, we know

∣∣Pb
t (x + h, y) – Pb

t (x, y)
∣∣

≤ √
π

∫ ∞



∣
∣Gb

t/μ
(x + h, y) – Gb

t/μ
(x, y)

∣
∣e–μμ–/ dμ

≤ CN

∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)
(

t√
μρ(x)

+
t√

μρ(y)

)–N

×
(√

μ|h|
t

)δ′

e–μμ–/ dμ

= CN

( |h|
t

)δ′(
t

ρ(x)
+

t
ρ(y)

)–N ∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)e–μμ(N+δ′)/–/ dμ

≤ CN

( |h|
t

)δ′(
t

ρ(x)
+

t
ρ(y)

)–N ∫ ∞



(
t

μ

)– d


e–C′
t–(μ|x–y|)e–μμ–/ dμ

= CN

( |h|
t

)δ′(
t

ρ(x)
+

t
ρ(y)

)–N t
(t + A|x – y|)(d+)/ . ()
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We also have

∣∣Pb
t (x + h, y) – Pb

t (x, y)
∣∣

≤ CN

∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)
(√

μ|h|
t

)δ′

e–μμ–/ dμ

= CN

( |h|
t

)δ′ ∫ ∞



(
t

μ

)– d


e–Ct–(μ|x–y|)e–μμδ′/–/ dμ

≤ CN

( |h|
t

)δ′ ∫ ∞



(
t

μ

)– d


e–C′
t–(μ|x–y|)e–μμ–/ dμ

= CN

( |h|
t

)δ′
t

(t + A|x – y|)(d+)/ . ()

Then (b) follows from () and (). �

Let Db,k
t (x, y) = tk∂k

t Pb
t (x, y). Then, by Lemma , we can prove (cf. [] or []) the following.

Proposition  There are C > ,  < δ′ < δ, for N ∈N, there is CN such that

(a)
∣∣Db,k

t (x, y)
∣∣ ≤ CN

t
(t + C|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

;

(b)
∣∣Db,k

t (x + h, y) – Db,k
t (x, y)

∣∣

≤ CN

( |h|
t

)δ′
t

(t + C|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

for all |h| ≤ |x – y|


.

Let t = 
 ln +s

–s , s ∈ (, ). Then

Gt(x, y) =
(

 – s

πs

)d/

exp

(
–




(
s|x + y| +


s
|x – y|

))
.= Ks(x, y). ()

The proof of the following proposition is motivated by [].

Proposition  There is A > , for N ∈ N and |x – x′| ≤ |x–y|
 , we can find CN >  such

that

(a)
∣∣tAjGb

t (x, y)
∣∣ ≤ CN t– d

 exp

(
–

|x – y|
At

)(
 +

√
t

ρ(x)
+

√
t

ρ(y)

)–N

;

(b)
∣
∣tAjGb

t (x, y) – tAjGb
t
(
x′, y

)∣∣

≤ CN
|x – x′|

t
t– d

 exp

(
–

|x – y|
At

)(
 +

√
t

ρ(x)
+

√
t

ρ(y)

)–N

.
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Proof By

∣
∣AjGt(x, y)

∣
∣ =

∣∣
∣∣

∂

∂xj
Gt(x, y) + xjGt(x, y)

∣∣
∣∣

≤
∣
∣∣
∣

∂

∂xj
Gt(x, y)

∣
∣∣
∣ +

∣∣xjGt(x, y)
∣∣ .= I + I,

and t = 
 ln +s

–s ∼ s, s → +, for s ∈ (, 
 ], we have

I ≤ C|xj|s– d
 exp

(
–




s|x + y|
)

exp

(
–




|x – y|
s

)

≤ C|x|s– d
 exp

(
–




s|x + y|
)

exp

(
–




|x – y|
s

)
.

If x · y ≤ , then |x| ≤ |x – y|. So

I ≤ Cs– d
 |x – y| exp

(
–




|x – y|
s

)
≤ Cs– d–

 exp

(
–

|x – y|
s

)

≤ Ct– d–
 exp

(
–

|x – y|
t

)
.

If x · y ≥ , then |x| ≤ |x + y|. So

I ≤ Cs– d
 |x + y| exp

(
–




s|x + y|
)

exp

(
–




|x – y|
s

)

≤ Cs– d+
 exp

(
–

|x – y|
s

)
≤ Ct– d+

 exp

(
–

|x – y|
t

)
.

Therefore,

|tI| ≤ C
(
t


 + t



)
e–btt– d

 exp

(
–

|x – y|
t

)
≤ Ct– d

 exp

(
–

|x – y|
t

)
. ()

When s ∈ [ 
 , ),

I ≤ C|xj| exp

(
–




(
s|x + y| +

|x – y|
s

))

≤ C|x|s– d
 exp

(
–




(
s|x + y| +

|x – y|
s

))

≤ C(|x + y| + |x – y|)s– d
 exp

(
–




(
s|x + y| +

|x – y|
s

))

≤ C exp

(
–

|x – y|
s

)
.

Since t = 
 ln +s

–s > s for s ∈ [ 
 , ), we get

I ≤ C exp

(
–

|x – y|
t

)
.



Huang Journal of Inequalities and Applications  (2017) 2017:99 Page 9 of 17

Therefore,

|tI| ≤ Cte–bt exp

(
–

|x – y|
t

)
≤ Ct– d

 exp

(
–

|x – y|
t

)
. ()

By (), we get

∂

∂xj
Ks(x, y) = –




(
s(xj + yj) +


s

(xj – yj)
)

Ks(x, y),

and

I ≤ C
(

s|xj + yj| +

s
|xj – yj|

)
Ks(x, y) ≤ C

(
s|x + y| +


s
|x – y|

)
Ks(x, y).

Therefore, when s ∈ (, 
 ], we have

I ≤ Cs– d
 exp

(
–

|x – y|
s

)
≤ Ct– d

 exp

(
–

|x – y|
t

)
.

When s ∈ [ 
 , ), we have

I ≤ C exp

(
–

|x – y|
s

)
≤ C exp

(
–

|x – y|
t

)
.

Then

∣
∣∣
∣t

∂

∂xj
Gb

t (x, y)
∣
∣∣
∣ ≤ Ct

(
 + t– d


)
e–bt exp

(
–

|x – y|
t

)
≤ Ct– d

 exp

(
–

|x – y|
t

)
. ()

By ()-(), we get

∣∣tAjGb
t (x, y)

∣∣ ≤ Ct– d
 exp

(
–

|x – y|
t

)
. ()

Similar to the proof of (), for any N > , we can prove

(√
t|x|)N ∣∣tAjGb

t (x, y)
∣∣ ≤ CN t– d

 exp

(
–

|x – y|
t

)

and

tN ∣∣tAjGb
t (x, y)

∣∣ ≤ CN t– d
 exp

(
–

|x – y|
t

)
.

Since ρ(x) = 
+|x| , we get

√
t

ρ(x) =
√

t( + |x|). Then, for N > ,

( √
t

ρ(x)

)N ∣
∣tAjGb

t (x, y)
∣
∣ ≤ CN t– d

 exp

(
–

|x – y|
t

)
. ()
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Since x and y are symmetric, we also have

( √
t

ρ(y)

)N ∣
∣tAjGb

t (x, y)
∣
∣ ≤ CN t– d

 exp

(
–

|x – y|
t

)
. ()

Then (a) follows from ()-().
(b) Note that

∣∣tAjGb
t
(
x′, y

)
– tAjGb

t (x, y)
∣∣

≤
∣
∣∣
∣t

∂

∂xj
Gb

t
(
x′, y

)
– t

∂

∂xj
Gb

t (x, y)
∣
∣∣
∣ +

∣∣tx′
jG

b
t
(
x′, y

)
– txjGb

t (x, y)
∣∣

.= J + J.

For J, let

ϕ(z) = ϕy,s(z) = zj exp

(
–




α(s, z, y)
)

,

where α(s, z, y) = s|z + y| + 
s |z – y|.

Then

∂ϕ

∂zk
(z) =

(
δjk –

s


zj(zk + yk) –

s

zj(zk – yk)
)

exp

(
–




α(s, z, y)
)

.

Therefore

∣∣
∣∣
∂ϕ

∂zk
(z)

∣∣
∣∣ ≤ C

(
 + s|z||z + y| +


s
|z||z – y|

)
exp

(
–




α(s, z, y)
)

≤ C
(

 + s/|z| +


s/ |z|
)

exp

(
–



α(s, z, y)

)

≤ C
(

 + s/(|z – y| + |z + y|) +


s/

(|z – y| + |z + y|)
)

exp

(
–



α(s, z, y)

)

≤ C
(

 + s +

s

)
exp

(
–


s

|z – y|
)

≤ Cs– exp

(
–


s

|z – y|
)

. ()

Let θ = λx + ( – λ)x′,  < λ < . Then

J = te–bt∣∣x′
jKs

(
x′, y

)
– xjKs(x, y)

∣
∣

≤ Ct–d/∣∣x – x′∣∣ sup
θ

∣
∣∇ϕ(θ )

∣
∣

≤ Ct–d/ |x – x′|
s

sup
θ

exp

(
–

|θ – y|
s

)

≤ Ct–d/ |x – x′|
t

sup
θ

exp

(
–

|θ – y|
t

)
.
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When |x – x′| ≤ |x–y|
 , we can get |θ – y| ∼ |x – y|. Therefore, there exists A >  such that

J ≤ Ct–d/ |x – x′|
t

exp

(
–

|x – y|
At

)
. ()

For J,

J =
∣∣
∣∣t

∂

∂xj
Gb

t
(
x′, y

)
– t

∂

∂xj
Gb

t (x, y)
∣∣
∣∣

= te–bt
∣
∣∣
∣

∂

∂xj
Ks

(
x′, y

)
–

∂

∂xj
Ks(x, y)

∣
∣∣
∣

= te–bt
∣∣
∣∣

(
s(xj + yj) +


s

(xj – yj)
)

exp

(
–




α(s, x, y)
)

–
(

s
(
x′

j + yj
)

+

s
(
x′

j – yj
)
)

exp

(
–




α
(
s, x′, y

)
)∣

∣∣∣.

Let

ψ(z) = ψy,s(z) =
(

s(zj + yj) +

s

(zj – yj)
)

exp

(
–




α(s, z, y)
)

.

Then

∂ψ

∂zk
(z) =

[(
s +


s

)
δjk –




(
s(zj + yj) +


s

(zj – yj)
)

×
(

s(zk + yk) +

s

(zk – yk)
)]

exp

(
–




α(s, z, y)
)

.

Therefore, similar to the proofs of () and (), we can prove

∣
∣∣∣
∂ψ

∂zk
(z)

∣
∣∣∣ ≤ Cs– exp

(
–




α(s, z, y)
)

and

J ≤ Ce–bt sup
θ

∣
∣∇ψ(θ )

∣
∣
∣
∣x – x′∣∣

≤ Ct–d/ |x – x′|
t

exp

(
–

|x – y|
At

)
. ()

Inequalities () and () show

∣∣tAjGb
t (x, y) – tAjGb

t
(
x′, y

)∣∣ ≤ CN
|x – x′|

t
t– d

 exp

(
–

|x – y|
At

)
.

Then, similar to the proof of (a), we have

∣
∣tAjGb

t (x, y) – tAjGb
t
(
x′, y

)∣∣ ≤ CN
|x – x′|

t
t– d

 exp

(
–

|x – y|
At

)(
 +

√
t

ρ(x)
+

√
t

ρ(y)

)–N

.

This completes the proof of Proposition . �
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The subordination formula gives the following lemma.

Lemma 
(a) For N ∈N, there is CN >  satisfying

∣∣tAjPb
t (x, y)

∣∣ ≤ CN
t

(t + A|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

. ()

(b) For any N >  and |x – x′| ≤ |x–y|
 , there are C > , CN > , so that

∣∣tAjPb
t (x, y) – tAjPb

t
(
x′, y

)∣∣

≤ CN

( |x – x′|
t

)
t

(t + A|x – y|)(d+)/

(
 +

t
ρ(x)

+
t

ρ(y)

)–N

. ()

3 Square function characterizations of H1
L (Rd)

We define square functions

Gb,k
L f (x) =

(∫ ∞



∣∣Db,k
t f (x)

∣∣ dt
t

)/

and

Sb,k
L f (x) =

(∫ ∞



∫

|x–y|<t

∣
∣Db,k

t f (y)
∣
∣ dy dt

td+

)/

,

where Db,k
t f (x) = tk(∂k

t Pb
t f )(x) for k = , , . . . .

The proof of the following lemma can be found in [].

Lemma  If f ∈ L(Rd), we have f ∈ H
L(Rd) is equivalent to f ∈ H

L+b(Rd) for b > .

Then, by Lemma , we can prove (cf. Section  in [] or []) the following.

Proposition  f ∈ H
L(Rd) is equivalent to its area integral Sb,k

L f ∈ L(Rd) and f ∈ L(Rd).
Moreover,

‖f ‖H
L+b

∼ ‖f ‖H
L
∼ ∥

∥Sb,k
L f

∥
∥

L + ‖f ‖L .

Motivated by [], we can prove the following.

Lemma  There is C >  satisfying

∥
∥Sb,k+

L f
∥
∥

L ≤ C
∥
∥Gb,k

L f
∥
∥

L .

Proof Let

F(x)(t) =
(
∂k

t e–t
√

L+bf
)
(x), V (x, s) = e–s

√
L+bF(x).
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Then

V (x, s)(t) = e–s
√

L+b(∂k
t e–t

√
L+bf

)
(x) =

(
∂k

t e–(s+t)
√

L+bf
)
(x).

Therefore
∫ +∞



∣
∣V (x, s)(t)

∣
∣tk– dt =

∫ +∞



∣
∣(∂k

t e–(s+t)
√

L+bf
)
(x)

∣
∣tk– dt

=
∫ +∞

s

∣∣(∂k
t e–t

√
L+bf

)
(x)

∣∣(t – s)k– dt.

Hence

sup
s>

∫ +∞



∣∣V (x, s)(t)
∣∣tk– dt ≤

∫ +∞



∣∣(tk∂k
t e–t

√
L+bf

)
(x)

∣∣ dt
t

=
(
Gb,k

L f (x)
).

Let X = L((,∞), tk– dt). Then

sup
s>

∥
∥e–s

√
L+bF(x)

∥
∥

X = Gb,k
L f (x) ∈ L(

R
d).

Therefore F ∈ H
X(Rd), here H

X(Rd) is a vector-valued Hardy space. Therefore S̃b,
L F(x) ∈

L(Rd), where

S̃b,
L F(x) =

(∫ +∞



∫

|z–y|<t

∥
∥Db,

t F(y)
∥
∥

X
dy dt
td+

)/

.

By

(
S̃b,

L F(x)
) =

∫ +∞



∫

|x–y|<t

∥∥Db,
t (x)

∥∥
X

dy dt
td+

=
∫ +∞



∫

|x–y|<t

∫ +∞



∣∣(–t
√

L + b)e–t
√

L+bF(y)(s)
∣∣sk– ds

dy dt
td+

=
∫ +∞



∫ +∞



∫

|x–y|<t

∣
∣(–

√
L + b)k+e–(s+t)

√
L+bf (y)

∣
∣

× t–dsk– dy dt ds

=
∫ +∞



∫ +∞

s

∫

|x–y|<(t–s)

∣
∣(–

√
L + b)k+e–t

√
L+bf (y)

∣
∣

× (t – s)–dsk– dy dt ds

=
∫ +∞



∫ t



∫

|x–y|<(t–s)

∣
∣(–

√
L + b)k+e–t

√
L+bf (y)

∣
∣

× (t – s)–dsk– dy ds dt

≥
∫ +∞



∫ t/



∫

|x–y|<(t–s)

∣∣(–
√

L + b)k+e–t
√

L+bf (y)
∣∣

× (t – s)–dsk– dy ds dt

≥
∫ +∞



∫ t/



∫

|x–y|<t

∣
∣(–

√
L + b)k+e–t

√
L+bf (y)

∣
∣t–dsk– dy ds dt
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=


kk

∫ +∞



∫

|x–y|<t

∣∣(–t
√

L + b)k+e–t
√

L+bf (y)
∣∣t––n dy dt

=


kk

∫ +∞



∫

|x–y|<t

∣
∣Db,k+

t f (y)
∣
∣ dy dt

td+ =


kk

(
Sb,k+

L f (x)
),

we get ‖Sb,k+
L f ‖L ≤ C‖Gb,k

L (f )‖L . �

By Lemma , we can prove the following.

Proposition  f ∈ H
L(Rd) is equivalent to Gb,k

L f ∈ L(Rd) and f ∈ L(Rd). Moreover,

‖f ‖H
L+b

∼ ∥∥Gb,k
L f

∥∥
L + ‖f ‖L .

Similar to the proof of Lemma  in [], we have the following.

Lemma  Let a be an H,∞
L -atom. Then we can find a constant C >  satisfying

∥∥Gb(a)
∥∥

L ≤ C.

As pointed out in [], we cannot get that an operator is bounded on Hp
L (Rd) by just

proving that it is uniformly bounded on atoms. But we have the following lemma (cf. p.,
Theorem . in []).

Lemma  Let T be an integral operator with the kernel in the Campanato space �d(/p–)

and satisfy ‖Ta‖Lp ≤ C for all the Hp,q
L -atom a(x), then T is a bounded operator from

Hp
L (Rd) to Lp(Rd).

In the following, we prove Db
t (x, y) = tAjPb

t (x, y) belongs to BMOL, which is defined
in [].

Lemma  For every t >  and x ∈R
d , we have Db

t (x, y) ∈ BMOL.

Proof For any ball B(y, r), if r < ρ(y) and r < t, then by Lemma (b) we have


|B|/

(∫

B

∣∣Db
t (x, y) – Db

t (x, y)
∣∣ dy

)/

≤ Cr–d/
(∫

B

( |y – y|
t

) t–d

( + t–|x – y|)d+ dy
)/

≤ Ct–d
(

r
t

)
≤ Ct–d. ()

If t ≤ r < ρ(y), then by Lemma (a)


|B|/

(∫

B

∣
∣Db

t (x, y) – Db
t (x, y)

∣
∣ dy

)/

≤ Ct–d. ()
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If r ≥ ρ(y), then by Lemma (a) we have


|B|/

(∫

B

∣
∣Db

t (x, y)
∣
∣ dy

)/

≤ Cr–d/
(∫

B

t–d

( + t–|x – y|)d+ dy
)/

≤ Ct–dr–d/|B|/ ≤ Ct–d. ()

Then Lemma  follows from ()-(). �

Now, let us prove Theorem .

Proof of Theorem  When f ∈ L(Rd) and Gb(f ) ∈ L(Rd), by Proposition  and Lemma ,
we have

‖f ‖H
L

≤ C‖f ‖H
L+b

≤ C
{∥∥Sb,

L (f )
∥
∥

L + ‖f ‖L
} ≤ C

{∥∥Gb,
L (f )

∥
∥

L + ‖f ‖L
}

≤ C
{∥∥Gb(f )

∥∥
L + ‖f ‖L

}
.

Therefore, f ∈ H
L(Rd).

The reverse can be proved by Lemmas ,  and .
Theorem  is proved. �

4 Riesz transform associated with L
We introduce the following version of Riesz transform:

RL,b
j = Aj(L + b)–/, j = , , . . . , d, b > .

If f ∈ L(Rd), then

RL,b
j f =

∑

α

(
αj

|α| + d + b

)/

〈f , hα〉hα–ej

=
∞∑

n=

∑

|α|=n

(
αj

n + d + b

)/

〈f , hα〉hα–ej . ()

We can prove the following.

Theorem  Let j = , , . . . , d. Then RL,b
j are bounded operators on H

L(Rd), that is, there is
C >  satisfying

∥
∥RL,b

j f
∥
∥

H
L
≤ C‖f ‖H

L
.

Proof When f ∈ L(Rd), following (), it is not difficult to check

Db+,
t RL,b

j f = –tAjub(x, t) ()
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for j = , , . . . , d. As H
L(Rd) ∩ L(Rd) is dense in H

L(Rd) (see []), we can assume f ∈
H

L(Rd) ∩ L(Rd). Then, by Lemma , Theorem , Proposition  and (), we get

∥
∥RL,b

j f
∥
∥

H
L

≤ C
∥
∥RL,b

j f
∥
∥

H
L+b+

≤ C
∥
∥Gb+,

L
(
RL,b

j f
)∥∥

L

= C
∥∥∥
∥

(∫ ∞



∣∣tAjub(x, t)
∣∣ dt

t

)/∥∥∥
∥

L

≤ C
∥∥Gb(f )

∥∥
L ≤ C‖f ‖H

L
.

This proves Theorem . �

The proof of the following lemma can be found in [].

Lemma  If β ∈R and f ∈ L(Rd), then

AjLβ f = (L + )βAjf ,

for j = , , . . . , d.

Now, we can prove Theorem .

Proof of Theorem  Since H
L(Rd) ∩ L(Rd) is dense in H

L(Rd) (see []), we can assume
f ∈ H

L(Rd) ∩ L(Rd). We prove Theorem  by an inductive argument.
When m = , Theorem  has been proved in []. We assume that Theorem  holds for

m – , by Lemma  and Theorem ,

∥∥Rii···im L–m/f
∥∥

H
L

=
∥∥Ai

(
L + (m – )

)–/Ai · · ·Aim L–(m–)/f
∥∥

H
L

≤ ∥
∥Ai · · ·Aim L–(m–)/f

∥
∥

H
L
≤ ‖f ‖H

L
.

Therefore Theorem  holds. �

5 Conclusions
In this paper, we consider the Riesz transforms of higher order associated with a harmonic
oscillator and prove the boundedness of them on the Hardy space. It is well known that
the Riesz transforms play an important role in the study of harmonic analysis and partial
differential equations. These results are very good progress on the harmonic analysis of
Hermite operators.
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