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1 Introduction
Let Hi(x) denote the Hermite polynomials on R, which can be defined as

v 4

T (e™)e”, k=0,1,2,....

H(x) = (-1)
The normalized Hermite functions are defined by
() = (722K P Hy () exp(—4212),  k=0,1,....

The high dimensional Hermite functions on R? can be defined in the following way. For
o =(o,...,00), 0 €{0,1,...}, x = (x1,...,x4) € R%,

d
ha(x) = Hhat/(xj)~

j=1
{hy} forms a complete orthonormal basis of L*(R?). Let || = o1 + - - - + g, then we have
Lh, = (2|a| + d)ha.

A very famous reference for Hermite functions is [1].
The operator L is positive and symmetric on L*(R?). Let {T?},~o be the heat kernel
defined by

00
Tth _ e—th _ Ze—t(2n+d)73nf
n=0
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for f € L*(R%) and

Prf: Z (frha>h

la|=n

Then the Poisson semigroup is defined as

tf - Ll/ Z —t(2n+d) I/Z’P,,Lf fe 12 (Rd)

The relation between the heat kernel and the Poisson kernel is

Phf(x) = exp —t /4s) T f (%) ds. @

= h T

LetA,— 5 T andA_j=A; = - ,+xj,j:1,2,...,d. Then we can denote L as
1
Lz—i[(V+x) (V=-x)+(V-x) V+x ZAA_,+A A

We define operators Rij,j =1,2,...,d
L -1/2 L -1/2
RE=AL7?,  RE=A LY
R; and R_; are called the Riesz transforms associated with L. The definition was first sug-
gested by Thangavelu in [2].
Let ¢; be the coordinate vectors in R?, then

= (20[} + 2)1/2}10“.6/., A—/ha = (20{1‘)1/21’1(1_6]..

Therefore, for f € L*>(R?),

, 2 172 o
R f = » Na ) Ma—e;
i/ ;<2|a|+d> i hathas
00 2“1 >1/2
= Z Z (Foha)hy—c; (2)
n=0|a=n<2n+d /

and

. oj+1) 172
RLf = Z(2|a|+d> ) oo

00 2o +1 1/2
= Z Z( Z(Z}:d)> (f: ha)hawj- (3)

n=0 |a|=n

In [1], the author proved that RjL were bounded on the local Hardy spaces /#'(R¢) which
were defined by Goldberg in [3]. Thangavelu asked one question: whether it was possible
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to characterize 4'(R%) by R]L, i.e., whether the equality
K (R?) = {f e L'(R?): Rif e L'(R?),j =1,2,...,d]

is true. In [4], the author proved the boundedness of Rf on Hardy spaces H}(Rd), d>3,
where H] (R%) are the Hardy spaces for L (cf. [5]).

Proposition 1 Let j =1,2,...,d. Then the operators R]L are bounded on H(R?), that is,
there exists C > 0 satisfying

|Rf 1 = CIF s

Moreover, he characterized H}(R?) by RI.L, j=1,2,...,d. Therefore, we cannot charac-
terize 1'(R¥) by R]-L.

Remark1 When we consider the boundedness of Riesz transforms for L on Hardy spaces,
the main tool is Littlewood-Paley characterizations of Hardy spaces. In fact, we have the
following equality (cf. [4]):

LAV T a 12
tate “ ) (Ri}f):—t(ia_x] +xj>€ g f

forallj=1,2,...,d and f € L>(R?). If we prove the boundedness of Riesz transforms Rf/
on Hardy spaces, we need to consider the operator L — 2. Since the Hardy spaces H}(R?),
d > 3, associated with L defined in [5] are for nonnegative potentials, it is maybe natural

to just consider R]L. In [6], the authors proved the boundedness of th/. on L?(R%), where
they considered the semigroup generated by L + b for b < 0 on L?(R?).

In this paper, we prove that the higher ordered Riesz transforms are bounded on the
Hardy spaces associated with Hermite functions. More precisely, let

L7k, = (2]l +d) "k,
and define the m-ordered Riesz transforms as

Rijiyiy = Aig Ay -+ Ay, L2,
wherel<j<dand1<j<m.

We define Hardy space H} (RY) for d > 3 as follows (cf. [5]):
H}(RY) = {f e L'(RY) : M, f € L'(RY) },
where M f(x) = sup,. | THf ()],

Define

1
_1+|x|’

p(x)

we say a(x) is an atom for the space H}(]Rd) if there exists a ball B(xy, ) such that
(1) suppa C B(xo,7),
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() llallze < |B(xo,n)|™
(3) if r < p(xp), then [a(x)dx = 0.
The atomic quasi-norm in H}(]Rd) can be defined as

1 o = inf] D I .
In [5], the authors proved the following result.
Proposition 2 There exists C > 0 satisfying
C Wl < I Na-atom < CIf -
Let b € R?. We define
Gt (x,3) = € "Gy (x.).
Then

G110 = [ Glwf ) dy
R4

is a semigroup for the spaces L*(R?), 1 < p < 00, and ||G’t’(f)||Lp(Rd) < e‘bt|[f||w(Rd). This
semigroup is generated by the operator —(L + b).

The subordination formula is

Pb(x,y) = GP(x,y)s7% 212145 g, (5)

t o0
VA /(;
The Poisson integral of f(x) can be defined as

up(x,t) = PL(f)(x) =/def(x,y)f(y)dy

t

_ oon : =312 1> 145 o iy
\/E/Rd/() s ()s™ e P dsdy

Let

o d 172
@vxm=(ﬁ EQWM%MHF?>
and

o0 d 1/2
@vxm:(A vw%mnff) ,

where Ag = ;.

The main results of this paper are as follows.
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Theorem 1 f € H}(R?) is equivalent to Gy(f) € L"(R?) and f € L'(R?). Moreover,

Wl ~ NG 1+ Il

=AyA;, - A, L7 are bounded on H}(R?) for all 1 <
ij <d for every 1 <j < m,that is, there exists C > 0 satisfying

Theorem 2 The operators R;

iy i

IRisigigsf 112 < CIf 2

The organization of this paper is as follows. In Section 2, we give some estimations of
the heat kernel and the Poisson kernel associated with L + b. In Section 3, Theorem 1 is
proved. In Section 4, we prove Theorem 2.

Throughout the article, we use A and C to denote the positive constants, which are
independent of the main parameters and may be different at each occurrence. By B; ~ By,
we mean that there exists a constant C > 1 such that % < g—; <C.

2 Estimations of the kernels
Let GY(x,y) be the heat kernel of {T2*%}. Then the following inequality can be proved by
the Feynman-Kac formula:

GP(x,y) < Wilx - ),
where
W, (x) = (47 8)™ 2 exp(~|x[*/(41))

is the heat kernel on R4,
Since Gf (x,9) < GE(x,y), we have (cf. [7]) the following lemma.

Lemmal
(a) For N €N, there exists Cy >0

_d 5 Lp—y? \/_ \/_
b 4 60y a2

(b) There are constants 0 < <1and C > 0, for N > 0, there is Cy > 0 which satisfies for
all |h| < %32,

IR rTSTAE ViVt
Gl(x+hy) - Glxy)| < C ( > e A (1 et @)
| g y)= 6 Vi p@) " p0)
By the subordination formula, we get the following.
Lemma 2
(a) For N € N, there is Cy > 0 satisfying
-N
t t t
0<P(x,) <1+—+—> . (8)
D= N A\ 5w 0
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(b) Let0<é<1and |h|< "C%y' Then, for N € N, there are C > 0, Cy > 0 satisfying

|PE(x + h,y) - P2 (x,y)]

<C ('h_'f d (1 Lt )_N ©)
=t ) (@ + Alx - y2)@rn o o)

Proof (a) By subordination formula and Lemma 1, we have

1 o0
0 <Pl(xy) = NG / Gy, ) P dp

2
SCN/ (t ) o-Cit 2l ¢
0o \4un

; -N
NeTON J%(y)) ‘
d

(
00 t2 b
=C - —C1t (4plx—y2) ( ) —1 NI2-172 g
N/o (4u> p(x) o) H
t

-1 M—I/Z dﬂ

—Clt 4u|x—y\ )e— H—I/Z dﬂ

i) (&)
=\ pw) " 00 0

—C(t + t>N (10)
T @) T )] (@ + Al -y
By (10) and
Phxy) < d
c = A — )@
we get
0<P( ) < ‘ 1+ ¢ + AN
X, — — .
D= ammae M ow T o0

(b) By subordination formula again, we know

|PL(x + ,y) — P2 (x,y)]

1
== ‘Gt2/4u(x + h’y) t2/4 (x, ‘e 12 -2 d/J,

< CN/OO<5> e Gt (4ulxylz)< L + ¢ )N
o \4u Vappx)  App©®)

d

8 -N _d
= CN <@) < ¢ + ¢ > /00 (i) : e—Clt’z(4/1.Ix—ylz)e—uM(Ner‘/)/Z—l/Z d/,L
t px)  p®) o \4u
( :

_N 2\ -
L + L) /OO <t_) e~ Cit > @ulamy®) gt 112 gy
px)  p() o \4n

eI (e e N ¢ N
) N<T> <M+ﬁ> (£ + Alx — y|2)d+Dr2”
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We also have
|P2(x + h,y) - Pb(x,y)‘
< CN i *Clt (4plx—y12) V | MM—1/2 du
- 41 t
I °° -4
- Cy _| —clf2(4mx—y\2)e—uMa’/z_l/z du
¢ 0
g
<C (ﬂ) ( > —C{t’2(4ulx—y|2)e—uM—l/Z du
- t
|h| t
=C . 12
N< t ) (& +Ax—yPR)dDr (12)
Then (b) follows from (11) and (12). O

Let Df e y) =tk Btka (#,9). Then, by Lemma 2, we can prove (cf. [8] or [9]) the following.

Proposition 3 There are C > 0,0 <8’ <8, for N € N, there is Cy such that

-N
D2 (x, )| < C t I ;
' T @+ Cla—yP) @R o(x)  p(y)

|DP%(x + b, y) — D (x, )|

-c d ¢ Lt £\ N
N(t> ('f2+C|x—yI2)(d*”/2( o) p@))

forall |h] < "‘;”.

Lett=1 5 In lﬁ, s€(0,1). Then

1-s2\? 1 1
Gi(x,y) = ( 7 ) exp (—— (s|x +y|2 +—|x —y|2)) = Ks(x, 9). 13)
TS 4 s

The proof of the following proposition is motivated by [10].

Proposition 4 There is A > 0, for N € N and |x — /| < 'x;y‘, we can find Cy > 0 such
that

2
@) [tA;Gl(x,y)] <Cut? exp (— |xAty| )(1 ,oi %) ;

(b) [tA;Gl(x,y) — tA,GL ()]

=] _d lx —y/? NN
st eXp<_ At ><1+p(x)+p@)> '

Page 7 of 17
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Proof By
0
|4,G.(x,9)| = 7 Gi®9) +%Gi(,9)
]

< +|%Gi(x,9)| =N + Iy,

9
_G X
o, +(%, %)

Lis

=1
and £ = 5 In %

1 1|x—y?
L < Clles’% exp (—Zs|x +y|2) exp <_Z > S)/| )

1 1|x—y?
< Clxls‘% exp <——s|x +y|2> exp (—— bl )
4 4 s

Ifx-y<O0,then x| <|x-y|.So

1 |x—y)? _ —y|?
I, < CS_%|x—y| exp __M < Cs"% exp _M
4 s 8s

)
<t exp (@)

~s,s— 0%, fors e (0, %], we have

8t

Ifx-y>0,then |x| < |x+y|.So

1 1|x—y?
12§Cs'%|x+y|exp (—Es|x+y|2) exp (—le ) )

s
+. - 2 +. x_ 2
< Cs_% exp| - bl < Ct_% exp —| ol .
4s 4t
Therefore,
31\ . d lx —y[? _d lx —yI?
[th| < C(t2 + t2)e t 2exp| - o <Ct2exp|- o ) (14)

When s € [%,1),

1 )
I, < Clxjlexp <—— (s|x +y|2 + M))
4 s
1 a2
< Clxls‘% exp <_Z (slx +y)% + bl >>
s

1 _ a2
< Clls eyt + b=y fexp (=g s+ F20))
N

a2
< Cexp (—%)
S

Since ¢ = %lng >sforse [%,1), we get

2
I, < Cexp (—%)
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Therefore,

2 2
\tl,| < Cte™ exp (-%) <Cr¥exp (- > . ty | ) (15)

By (13), we get

9 1 1
a—ijs(x,y) =-3 (s(x; +y) + ;(x,- - y;))Ks(x,y),

and
1 1
L <C|slx+yl + ;|xj -yl | Ks(x,9) < C| slx + y| + ;Ix—y| Ki(x, ).

Therefore, when s € (0, %], we have

d lx —y1? d lx —y|?
I <Cs 2 ——2 | <(Ct?2 — .
1 < Cs"2exp < = ) < exp ( »

When s € [%,1), we have

2 a2
IIECexp<—|x8y| >§Cexp(—|x8ty| )
S

Then
tiGb(x,y) <Ct(1+t’%l)e’btexp _Ix—ylz <crt exp _Ix—y|2 . (16)
dx; ! - 8t )~ 8t
By (14)-(16), we get
b _d lx -y
|tA;Gl(x,y)| < Ct 2 exp| - o) (17)

Similar to the proof of (17), for any N > 0, we can prove

_ a2
(Ve e 6L )| = O exp (<520 )

and

_ a2
|64, Gl (6,9)| < Cnt 8 exp (— I 83' )

Since p(x) = %‘x‘, we get % = /t(1 + |x]). Then, for N > 0,

N py a2
<£> |tA;GP(x,9)| < Cnt 2 exp (—%) (18)
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Since x and y are symmetric, we also have

N 2
(%) |t4,GY(w,9)| < Cnt eXP<—|x8ty| > (19)

Then (a) follows from (17)-(19).
(b) Note that

|tA;G (x,y) — tA;GL (x, )]

+ |Gl (¥, y) - t2,GY (. ) |

8
O b
‘ta G( ,y) 8, x,
=N +/2.

For /5, let
1
©(2) = @y,5(2) = zjexp (—Za(s, z, y)>,

where a(s,z,y) = slz + y1* + Lz - y|%.
Then

ad 1 1
B—Z(Z) = ((Sjk - %zj(zk + k) — gzj(zk —yk)> exp (—Za(s, z,y)).

Therefore

1
‘ C(1+s|2||2+y|+ IZIlz—yl)eXp(—Za(s,z,y))
<145+ 14 Sas29)
+ S Z|+ —= 1/2 Z| ) eXp —Sa 52,

1
Cl1+s"(lz=yl +1z+y]) + 1,2(|Z yl+IZ+yI)>eXP<—§a(s,z,y)>

c(1+s+1)exp (——Iz 3 >

1
< Cs ——z—y*). 20
< Cs exp( 16Slz yl) (20)

32/(

IA

Let0 =Ax+(1-A)x",0< A <1 Then

Jo = te’bt|x1’.l(s (x’,y) —le(s(x¢y)|

< Ct_‘m’x — | sup|Ve(0)|
0

—x 0 —y|?
< C't,"d/2u sup exp —| )
S 0 16s

| 1o -yI?
< crar® )
T PP\ T ey




Huang Journal of Inequalities and Applications (2017) 2017:99

When |x — x| < @, we can get |0 — y| ~

)

lx —yI*

_ap |
< Ct dl2
2= At

x—x'|
——exp| -
P P

FOI']I,

0 0
= [t—Gl(x,y) - t—GP(x,
h }axj z(x y) o%; t(xy)’

0 0
= e | — K, (¥, y) - —Ki(x,
o, () - o S(x y)’
oy 1 1
=te s(xj + ;) + ;(x,» —-9;) | exp —Za(s,x,y)

1

. <s(x;. )+ y,)) exp (—Za(s,x/, »)

)

Let
1 1
VY (z) = ¥y6(2) = <S(Zj +5) + ;(Zj —w)) exp (‘Z“(S’ z,y)).

Then

oY
0zZk

1 1 1
<@=[G+;)W‘5(“%fW+;@‘”O

X <s(zk + k) + %(zk - yk)):| exp (—%a(s, z,%)

Therefore, similar to the proofs of (20) and (21), we can prove

’—(z) < Cslexp (——oc(s z,y))

and

]1<Cehtsup|Vw Hx x‘
x - yI?

< thd/Z | yr

x—x'|
—exp| -
7 p

Inequalities (21) and (22) show

)

lx —yI*
At

-] _
e

d
2

4Gy (x,3) - t4,G) (x',9)| < Cn

(-
w (-

Then, similar to the proof of (a), we have

lx —yI?
At

[ — '
t

d
2

|tA; G} (x,y) - tA;G} (x',y)| < Cn

This completes the proof of Proposition 4.

Page 11 of 17

| — y|. Therefore, there exists A > 0 such that

)
(22)
)
) i)
|
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The subordination formula gives the following lemma.

Lemma 3
(a) For N €N, there is Cx > 0 satisfying

-N
) t t t
AP < Oy (1 N pTy)) ' )

(b) Forany N >0 and |x —x'| < @, there are C >0, Cy > 0, so that

|tA;P; (x,9) — tAPL (¥, )|

N fiantd t PULIDLI S (24)
= N( t >(t2+A|x—y|2)(”l*”/2(+W+p—(y)) '

3 Square function characterizations of H] (R)

We define square functions

o0 d 1/2
1) = (f Dy (x)lz—t)
0

t

and

o0 dydt\"?
stro=([ [ ol se)
x—yl<t

where D2*f (x) = £X(9kPf) (x) for k =1,2,....
The proof of the following lemma can be found in [4].

Lemma 4 Iff € L{(R?), we have f € H}(R?) is equivalent to f € H} ,(R?) for b > 0.
Then, by Lemma 4, we can prove (cf. Section 8 in [11] or [12]) the following.

Proposition 5 f € H}(Rd) is equivalent to its area integral Sf’kf e LNRY) and f € L\(R?).

Moreover,

bk
Wiy, ~ Wl ~ IS2F o+ W
Motivated by [13], we can prove the following.

Lemma 5 There is C > 0 satisfying
st f | = Clors 1
Proof Let

F@)(t) = (0fe ™M) @), Vixs) = eI F().
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Then
Vi, s)(t) = e—s«/m(atke—t«/Lbe)(x) _ (atkef(sﬁ)«/Lbe)(x)‘
Therefore
/ ’V(x,s)(t)‘thk_l dt = / Katke—(sn)«/mf) (x)’2t2k‘1 dt
0 0
+00 9
_ / (85 VERF) ) (£ - 5P .

Hence

sup/‘owo|V(x,s)(t)\ztﬂ(_1 dt < /0+Oo|(tk8tke_’mf)(x)|

>0

d
- (@)

Let X = L%((0, 00), %1 dt). Then

su(I))He_s“/mF(x) ”x =GP fx) et (Rd).

Therefore F € Hy(R?), here Hy(R?) is a vector-valued Hardy space. Therefore Sf’lF (x) €
LY(R?), where

~ +00 d dt 1/2
e = ([ [ ool
0 |z—y|<2t

By

~ +00 d dt
e R I e
0 [x—y|<2t 4

- f f f |(-t«/L+b)e*fmf(y)(s)|2s2“ds¢
0 [x—y|<2t JO

d+1

+00  pH00 )
— / / / | (_M)k+le—(s+t)Mf(y)|
0 0 |x—y|<2t
x 179521 dy dt ds
+00 400 )
- / / / | (_M)k+le—t«/IEf(y) ’
0 s |x—y|<2(t-s)
x (t — )7V dydt ds
+00 t
= / / / |(_ /L + b)k+le—t\/Lbe(y)|2
0 0 J|x—y|<2(t-s)
x (t—s)74s* L dy dsdt
+00  pt/2 9
=[] Ve R )
0 0 lx—y|<2(t-s)
x (t =) 4% dy dsdt

+00  pt/2
> f f f (—VL+ ) e VEbs(y) P45 dy ds di
0 0 [x—y|<t
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1 +00
W/O /I‘ ‘ |(—t /T + b)k+1€_tvL+bf(y)i2t_l_2n dydt
x—y|<t

LI biest gy (2 DV AL L bkelpp 2
) 2"22k/0 /Ix—y<t|Dt ON i = g (S

we get |57 f 1 < CIGY (Nl 0
By Lemma 5, we can prove the following.

Proposition 6 f € H(RY) is equivalent to Go'*f € L\(RY) and f € L'(R?). Moreover,

Wiy, ~ NG N a + 1N

Similar to the proof of Lemma 14 in [9], we have the following.

Lemma 6 Let a be an Hz’oo—atom. Then we can find a constant C > 0 satisfying

||gb(ﬂ) ||Ll S C'

As pointed out in [14], we cannot get that an operator is bounded on H7(R?) by just
proving that it is uniformly bounded on atoms. But we have the following lemma (cf. p.316,
Theorem 7.3 in [15]).

Lemma 7 Let T be an integral operator with the kernel in the Campanato space A gap-1)
and satisfy | Ta|» < C for all the H"-atom a(x), then T is a bounded operator from
HY(R?) to LP(RY).

In the following, we prove Df (x,y) = tAij (,7) belongs to BMOy, which is defined
in [8].

Lemma 8 Foreveryt >0 and x € R?, we have D?(x,y) € BMO.
Proof For any ball B(yo, ), if r < p(y0) and r < t, then by Lemma 3(b) we have

1 ) 1/2
b b
|B|1/2 (/B|Dt(x,y)—D,(x,yo)| dy)

2 _ 1/2
< ly = yol 2 dy
- B\ t 1 +172|x — yo[2)2+

< Ct"d(g) <cr. (25)

If t <7< p(yo), then by Lemma 3(a)

1
|B|1/2

1/2
< / | DY (x, ) —Df(x,yo)lzdy> <ct. (26)
B
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If r > p(y0), then by Lemma 3(a) we have

1 5 1/2
b

i > 2
< Cr- d
= </B @ +t72|x = yo|?)d+ y)

<Ct 4 ?BV? < . (27)

Then Lemma 8 follows from (25)-(27). O
Now, let us prove Theorem 1.

Proof of Theorem 1 When f € LY(R?) and G, (f) € L'(R?), by Proposition 5 and Lemma 5,

we have

Wl < CWA I, < CUIS O + 11} < UG O o + 171}
< G 1+ 1N }-
Therefore, f € H} (R%).

The reverse can be proved by Lemmas 6, 7 and 8.
Theorem 1 is proved. d

4 Riesz transform associated with L
We introduce the following version of Riesz transform:

R’ =A(L+b)"?, j=1,2,...,d,b>0.

Iff e L (RY), then
2 172
RL,b = —7 » Ra | a—e;
= ;(2|a|+d+b) {f hadha-g

— = 2@] 1/2
=2 2 (m) (o ha, "

n=0 |a|=n
We can prove the following.

Theorem 3 Letj=1,2,...,d. Then RjL’b are bounded operators on Hi(Rd), that is, there is
C > 0 satisfying

b
IR = Clf .
Proof When f € L*(R?), following (28), it is not difficult to check

DY™IRES = —tAjuy(x, t) (29)
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for j=1,2,...,d. As H}(R?) N L*(R¥) is dense in H}(R?) (see [11]), we can assume f €
H}(R?) N L*(R?). Then, by Lemma 5, Theorem 1, Proposition 6 and (29), we get

IRy < CIR L, < Clai /)],

[o¢] dt 1/2
= CH (/ |tAjub(x,t)|27>
0

= C”gb(f)”Ll = C”f”]—[i

Il

This proves Theorem 3. d
The proof of the following lemma can be found in [16].
Lemma 9 If§ € R and f € L>(R?), then
ALLPf = (L +2)PASf,
forj=1,2,...,d.
Now, we can prove Theorem 2.

Proof of Theorem 2 Since H} (RY) N L2(R?) is dense in H} (RY) (see [11]), we can assume
f € H} (RY) N L*(R?). We prove Theorem 2 by an inductive argument.

When m =1, Theorem 2 has been proved in [4]. We assume that Theorem 2 holds for
m —1, by Lemma 9 and Theorem 3,

||Rl'1,-2...imL"”/2f||Hi |4y (L +20m-1)) "4, -- .AimL—<m—1)/2f||H2

A

||Ai2 .. .AimL—(mfl)/zf“Hi < |[f||H%.
Therefore Theorem 2 holds. g

5 Conclusions

In this paper, we consider the Riesz transforms of higher order associated with a harmonic
oscillator and prove the boundedness of them on the Hardy space. It is well known that
the Riesz transforms play an important role in the study of harmonic analysis and partial
differential equations. These results are very good progress on the harmonic analysis of
Hermite operators.
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