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1 Introduction

A real-valued function ¢ : I € R — R is said to be convex on I if the inequality

V(06 + (1-0)¢) <0y (&) + (L-0)¥(¢) 1.1)

holds forall §,¢ € Iand 6 € [0,1]. v is said to be concave on I if inequality (1.1) is reversed.
Let ¢ : 1 € R — R be a convex function on the interval I, and c;, ¢; € [ with ¢; < ¢;. Then

the double inequality

w(“”)s ! /Czw@dssw 12)

2 Cy — (1 2

is known in the literature as the Hermite-Hadamard inequality for convex functions [1-
3]. Both inequalities hold in the reversed direction if ¥ is concave on the interval L. In
particular, many classical inequalities for means can be derived from (1.2) for appropriate
particular selections of the function .

Recently, the improvements, generalizations, refinements and applications for the
Hermite-Hadamard inequality have attracted the attention of many researchers [4-22].

Dragomir and Agarwal [23] proved the following results connected with the right hand
part of (1.2).

Theorem 1.1 (See [23], Lemma 2.1) Let { : I° € R — R be a differentiable mapping on 1°.
Then the identity
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Y(c) + ¥(co) B 1

2 C—C Jg

CpE)de = 2

Y/ (0cy + (1-0)cy) db

holds for all ¢, ¢y € 1° with ¢ < ¢ if ¥’ € L[y, ¢3], where 1° denotes the interior of 1.

Theorem 1.2 (See [23], Theorem 2.2) Let ¢ : I° € R — R be a differentiable mapping
on I°. Then the inequality

Y(c1) + ¥(co) —c)(IY/ (el + [ (c2)])
- / vf@)ds’ -

holds for ci1, ¢ € 1° with ¢ < ¢y if || is convex on [c1, ¢3].

Making use of Theorem 1.1, Pearce and Pecari¢ [24] established Theorem 1.3 as follows.

Theorem 1.3 (See [24], Theorem 1) Let ¢;,co e IC R withci <cy, Y :I°CR —> R bea
differentiable mapping on 1° and q > 1. Then the inequality

V() + ¥(e)
- [P vierde| <

is valid if the mapping || is convex on the interval [cy, ¢3].

[wf (el + 1y’ (cz)w]”q
2

Next, we recall several elementary definitions and important results in the theory of
conformable fractional calculus, which will be used throughout the article, we refer the
interested reader to [25-32].

The conformable fractional derivative of order 0 < & <1 for a function v : (0,00) — R
at £ > 0 is defined by

Dy (§)(€) = fim LETE) -V E)

e—>0 €

and the fractional derivative at 0 is defined as D, (¥)(0) = limg_, o+ Do (¥)(&).
The (left) fractional derivative starting from ¢; of a function ¥ : [¢;,00) — R of order
0 <o <1is defined by

V(& +eE —c)™) -y ()

€

DS (¥)(§) = lim

and we write D% (y) = DY(y) = Do (V) if ¢; = 0. For more details see [26].
Let o € (0,1] and v, ¢ be «-differentiable at & > 0. Then we have

%(s”)zng"‘“, neR,

z—ag(c)zo, ceR,

2 @)+ x0() ~ars (VE) +att(46), aack
;—E(w(s)¢(s)) ¥ d:g (¢(s>)+¢(s)—g(1/f(s))



Chu et al. Journal of Inequalities and Applications (2017) 2017:93 Page 3 of 12

do (w(g)) (E) 7 (W (€)) - B(&) 5 (¥ ()

do \ $(&) (¢(§))2 ’

dy,

E(ww)(s)) v(@®) S(¢($)) (1.3)

where v is differentiable at ¢(£) in equation (1.3). In particular,

‘ &.

(o) - g L

dE (v(®)

&..
m

if ¢ is differentiable.
Let a € (0,1] and 0 < ¢; < ¢3. A function v : ¢}, c;] — R is said to be a-fractional inte-

grable on [¢j, ¢p] if the integral

/c Y(E) dot = / Y(EEds

exists and is finite. All the a-fractional integrable functions on [c;,¢;] are denoted by

LY ([e1, e2)).
It is well known that

[ verz@©de=vorz- [ senzmeds

if ¥, : [c1,¢2] = R are two functions such that ¥ ¢ is differentiable.
Very recently, Anderson [33] established a Hermite-Hadamard type inequality for frac-

tional differentiable functions as follows.

Theorem 1.4 Let« € (0,1] and v : [c1,¢c2] — R be an a-fractional differentiable function.
Then the inequality

Y (c1) ‘2F V(c2) (1.4)

%/ Zlﬂ(g)daff
2~ Jg

holds if D, () is increasing on [c1, ¢3]. Moreover, if the function V is decreasing on [c1, ¢3],

then one has

o(452) = %% [ vods 15
6= Jag

Remark 1.5 We clearly see that inequalities (1.4) and (1.5) reduce to inequality (1.2) if

a=1.

The main purpose of the article is to present an identity and several Hermite-Hadamard
type inequalities for conformable fractional integrals, establish some inequalities for cer-
tain special means of two positive real numbers and give the error estimations for the

trapezoidal formula.
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2 Main results

In order to prove our main results we need a lemma, which we present in this section.

Lemma2.1 Leta €(0,1],c1,¢2 € Rwith0 <c; < cpand  : [c1,¢2] — R be an a-fractional
differentiable function on (c1, c3). Then the identity

Y(c) ; Y(c) B - (i . ] 2 e duE
2 1 Ja
1
- 72((0;_ ccllz [/0 ((Ocr+(1- 9)@)20‘_1 - (0 + (1 9)cz)a_1)
h — O

x Do () (0ct + (1 - 0)c2)0 d,0
of (6er + (1= 0)ex) ™ = (6cr + (1—0)er)™)
x Do () (0cy + (1 - 0)c) 0" dae}
holds if Do (¥) € Lg([e1, ¢2]).
Proof Let & =6c; + (1 - 0)c,. Then making use of integration by parts, we get
fo 1((ecl +(1=0)es) ™ = (8er + (1= 0)c2) ™ )Dy () (Bcr + (1 - O)cy) d6
+ /01((9c1 +(1=0)cr)™ ™ =& (Bcr + (1= 0)ca)* ) Dy (W) (61 + (1= 6)cy) b
= fol((ec1 +(1=0)c2)" = )Y/ (01 + (1= 0)cy) db

1
i / ((0c1 + (1 =0)ca) =)/ (et + (1= 0)cy) dO
0

Y(0c +(1-0)cr) |

€l —C

= ((901 +(1- 9)cz)a - cg‘)

0
Y(@c +(1-6)cy) a0

1

—/ a(961+(1—0)02)a71(01—02)
0 C1 —Cy

1

) Y(fcr + (1-0)ca)

+((0cr + 1= 0)cs)” = ¢ s

0
Y(@cr +(1-6)cy) a0

—C

1
- /0 a(@cl +(1- 6’)02)0[71(01 —-c3)

1 2
To-a [(c‘ﬁ‘ _C%)w(cl)_“/q W(%‘)daé]
1

Cy — (1

+

[(cg—cf)wcz)—a / zw@)das}

o

S5 () + (o) - " v©) et @.1)

G- C—C Jg

20

Therefore, Lemma 2.1 follows easily from (2.1). O
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Remark 2.2 We clearly see that the identity given in Lemma 2.1 reduces to the identity
given in Theorem 1.1 if o = 1.

Theorem 2.3 Let @ € (0,1], ¢1,¢c2 € R with 0 < ¢ < ¢y and ¥ : [c1,¢2] = R be an a-
differentiable function. Then the inequality

‘Vf ca)+¥(e) /
4¢3
©-a [(II// ()| + [/ (c2))(5¢% = 7¢¥ + crcs™ + C‘l“cz)]
< (2.2)
25— &) 12

holds if Dy () € LL([c1, c2]) and || is convex on [cy, c3].

Proof 1t follows from Lemma 2.1 and the convexities of the functions £ — £*~! and § —

—£% on (0, 00) together with the convexity of || on [, ¢;] that

“/f a +W(C2
©@-a ' o o ’
—2(62_c1)|:/ (01 + A =0)ca)” =) [/ (0cr + (1 = 0)ca) | O

1
+/ (5 = (0c1 + (1= 0)c2)*) ¥ (Bcx + (1—9)C2)’d9i|
0

-
2(c2 -

1
+ /0 (cg - ((1 —0)cy + Gcg))‘xﬂ/(@cl +(1- G)CZ)MO]

1
5 [/ (61 + (1 =0)c))" ™ (Ber + (1= 0)cs) — &)W/ (Ber + (1 - 6)cy)| db

_ 1
< % UO (=) +0¢5™) (Ber + (1 - 0)ca) — &) ¥/ (Ber + (1 - 0)cy) | do
2 1

1
+ /0 (c5 = (A=0)ct +6c5)) | (b1 + (1-6)ca)| de]
_ 1
< % |:/0 (@ -0 +0c5™)(0cr + (1 -0)ca) — )
270

x [A=-0)y' ()] + 6]y (2)]]do
1
+/0 (cg—(u—@)c‘f+9c§))[(1—9)|¢’(c1)|+9|1p/(cz)|]d9]

—aTl1 1 1 1
i [ i Salv@|+ Sag @]+ Sad v (@)

e PLAACURED 12

1
¢y — 4

+ %q Lolv'(@)] + _Cl o |v(c)| + Cz|1ﬁ (c)] + —CzW ()|
1 1 1 1 1
- 5¢‘f|¢/(01)| - EC‘HW(Cz)‘ + 503|W(01)| + 503|W(02)| - §0?|W/(Cl)|

1 1 1
- gclf‘|1/f/(cz)| - gCg|1ﬁ,(cl)| - gcg|1ﬁ,(62)|]

-0 [(It/f’(cl)l + Y (e))(5¢§ =7 +erc§ ™ + 62‘162)]
C2(c§ =) 12 ’
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Remark 2.4 Let « = 1. Then inequality (2.2) becomes

‘vf(cl);t/f(@) _ < 2290y ()] + ¥ (@)]]:

G- 1

Theorem 2.5 Let o« € (0,1], g> 1, c;,cp e R with 0 < ¢ < ¢y and ¥ : [c1,¢3] > R be an
a-differentiable function on (c1, c3). Then the inequality

‘I/f(cl) +Y(e)
2

< — @ -
= 2(c5 - w)

+ (B1(e) ™ {Ba(@) ¥ (c1)| " + Bs(@) ¥ (e2)| "} ] (2.3)

[(A1< ))1 Y A @)W ()| + As(e) |/ (c2) |}

is valid if Do () € LL ([c1, c2]) and |¢'|? is convex on [c1, 2], where

Coz+1 Ca+1 Coz+1 Ca+1
A = 71 2 - Ct’ B - g b L 2 )
@=] @D - Cz):| “ @)= [(a +1)(er - o)
r a+1 a+2 a+2 o
Ar@)= | 2 L0 -4,
L@+ D(ci—c2) (a+D)(a+2)(c1—c)? 2
Byoy= |9, 6", d7-a”
|2 (@+1)(a-c) (a+D)(a+2)(c—c)?]
A ( ) r Ctlx+1 Czlx+2 Cg+2 Ctlx
o) = — _ =
} @+ 1)(ci-c) (@+D)a+2)(ci—c2)® 2
Bs(a) = E - il + G g .
|2 (@+1)(ci—c2)  (o+1)(o+2)(c; —c2)?

Proof From Lemma 2.1 and the well-known Hoélder mean inequality together with the
convexity of [{/'|7 on the interval [¢;, ¢;] we clearly see that

ll/f(cl) + Y (c2) _
2

- 1
) ‘ﬁ |:_/ ((961 +(1- 9)C2)2a_1 —c (ch +(1- e)cz)a—l)
27" 0

x Do (W) (0t + (1 - 6)cy) do

1
+ /0 ((Ber + (1 =0)cr)™ ™ = (6cr + (1= 6)cr)" ) Du(¥) (Ber + (1 - 6)cy) d@} ’

_ 1
2(062 Ccl ) [/ ((9c1 +(1- Q)CZ)a - c‘f)|1/f’(9c1 +(1- 9)62)|d9
20
1
+/0 ( (901 +(1-90) cz) )!1# (961 +(1-90) cz)’d6:| (2.4)

1
/(; ((Bcr + (1= 0)c2)” =) |¥' (er + 1= 0)ca) | do
1 1-1/q
< (/ ((901 +(1- G)CQ)a - ci‘) d@)
0
1/q

1
x(/ ((961+(1—9)CQ)a—c‘l”)|1//’(9c1+(1—9)cz)|qd9> : (2.5)
0
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1
/ (5 = (0cr + (1= 0)c) )|/ (et + 1= 0)ca) | do
0
=< (/l(cg‘ — (B + (1 - 9)62)0‘) d@)
0
1/q

1
x(/ (Cg—(0c1+(1—9)cz)u)|1ﬂ/(9c1+(1—9)cz)|qd9> : (2.6)
0

1-1/q

1
/ ((6cr + (1= 0)c2)” = )|/ (et + A= 0)co)|" d
0
1
< /0 ((0c1 + A =0)c2)" =) [A-0)|¥'(c)|" +0]¥ (c2)|"] dO
1
= |w’(c1)|qf ((Bcr + (1= 0)c)" =) -0)do
0

1
+ |1ﬂ/(cz)|q/ ((Bcr + (1= 0)c2)" )0 do
0

TN -5t -t cf
=) La+1ﬂq—c»*Ka+1ﬂa+zxq—ca2'§1
T o+l ot -yt a
+[v ()] [(a )a-c) @+)@+@-a? ?]’ @7)
1
/0 (cg‘ - (901 +(1- 9)@)“) W’(Gcl +(1- 9)62) ‘qdé
1
< / (&5 = (Bcr + (1= 0)c2)*) [A-0) ¥/ (cr)|" + 0]y (c2)|"] dO
0
1
= |¢/(c1)|‘7/ (5= (0c1 + (1= 0)c)*)1-0)do
0
1
+ |1/f’(c2)|qf0 (5 = (0cr+ (1= 0)c2) )0 dO
~ , p ﬁ C¢21+1 C({t+2 _ Cg+2
'*wwn[2+m+nm—q)+w+DW+mm—@P}
ol 6 ! G-
+ )] fi'wa+1xQ—cg*Xa+1xa+2xq—wﬁ2} (28)
Therefore, inequality (2.3) follows easily from (2.4)-(2.8). (]

Remark 2.6 Let @ =1. Then inequality (2.3) becomes

1 €
|W(Cl);¢(02) ~ 62_C1/ I/f(‘g‘)dé‘
1 Cr—C 1-1/g , q / a\Vaq
55(2 ) (A2 (@)]" + AsO|¥(e2)[*)

+ B[ ()| + B ()] 9 ()|} 7]

with
2
— 2
A= 228, gy lara) f2an
3 6(c1—ca)
As() =229 =229

6 3
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Theorem 2.7 Let a € (0,1], g > 1, ¢c1,¢co € R with 0 < ¢; < ¢y and ¥ : [c1,¢2] — R be an
a-differentiable function on (c1, c2). Then the inequality

Ve ryle) o (o
et [Preds

¢ -c ,{ Cila) ,{ Cale)
“2E-d) [AI(“)‘” <A1<a>> F By (Bl(a) ﬂ 22

holds if Do () € LL([c1,c2]) and || is concave on [c1,ca], where Ay(e) and By () are
defined as in Theorem 2.5, and Cy(«) and Cy(«) are defined by

[ a?-g? da-a) [dlare) 4P -g”
Cile) = [(Ot +2)(c1 —c2) - 2 i|, Cle)= [ 2 B (@ +2)(c1 - 62)]'

Proof It follows from the concavity of || and the Holder mean inequality that

@' ()] +A-0)|¥'()|)! <o ()] + @ -0)|¥' ()|" < ¥/ (Bcr + 1 -0)ca)|?,
¥/ (Ocr + A= 0)ca)| = O]9/ (1) + (1= 0)| ¥ (c2)

’

which implies that || is also concave. Making use of Lemma 2.1 and the Jensen integral
inequality, we have

‘w(cl) + Y (c2) _
2

o
¢

L f T ) det
_Cl 4]
1

‘ -0

2(c5 - cf) |:./o (0 + @ =0)e2)™ ™ — i (s + (1= 0)ex)™)

x Dy () (0ct + (1 - 6)cy) do

1
+ /0 ((9c1 +(1- 9)02)2%1 -5 (901 +(1- 6)02)0[71)Da(1/f)(601 +(1- 0)cz) d9:| ‘

G-

) [/01((9c1 +(1=0)c2)” =) [ (Ocr + (1 - 0)ca) | dO
1
+/ (5 = (Ocr + (1= 0)c2)*) ¥ (Bcx + (1—9)02)|d9:|, (2.10)
0
1
/0 ((Bcr + (1~ 9)02)a - c‘l") W’(Gcl +(1- 9)02) ‘ do

< ( /0 (01 + (1= 0)cr)" _cg)de)

3 w’(fol 00+ 000 ~6e+0-0j0)d)
Ji(Ocr + (1= 0)cr) — ) db

- Al(a)w’(cl(“)>, (2.11)

Aq(a)

1
f (¢§ = (0cr + (1= 0)c2) )|/ (et + 1= 0)ca) | do
0

< (c;’ - /01((9c1 +(Q —e)cz)“)d9>
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) ( [ = (Ber + (1= 0)ca)*)(Ocr + (1 - 9)c2)d9)

XY
J3(c§ = Oci + (1= 0)cr)2) do
= Bi(a)y’ (CZ(a) ) 2.12)
By ()
Therefore, inequality (2.9) follows easily from (2.10)-(2.12). O

Remark 2.8 Let « = 1. Then inequality (2.9) leads to
Y (c1) + ¥ () 1 =
e L My
C—C Jg
- ¢ -a [W(ZC% -+ 5c1cz) . 1p,(c% -2¢2 + clcg)i|.
4 3(c2a — 1) 3(ca —c1)
3 Applications to special means of real numbers
Let o € (0,1], 7 € R, r #0,—« and a,b > 0 with a # b. Then the arithmetic mean A(a, b),

logarithmic mean L(a, b) and («, 7)th generalized logarithmic mean L, (4, b) of a and b
are defined by

a+b a-b a(b* — gy T
Aa,b) = T, L(a,b) = m, L(a,r)(ar b) = [m}

respectively. Then from Theorems 2.3 and 2.5 together with the convexities of the func-
tions £ — £ and & — 1/£ on the interval (0, 00) we get several new inequalities for the

arithmetic, logarithmic and generalized logarithmic means as follows.

Theorem 3.1 Letci,c; e RwithO<cy<cy, r>1,g>1anda €(0,1]. Then we have

|A(c;,c§) - Lfa,r)(ChCZ)i

r(ca —c1)(5¢5 = 7¢5 + 1§ + C({HCZ)A(M |
- 12(c5 — cf)

|A(cf, ¢h) = L, (c1,02))|

r(ca —c1)
T 2(c§ - )

+ (B1(@) ™ {Bo@) 1|1 + By (a)leal D0} 1],

"Lleal ™),

e [(A1(@) T As(@) e+ Ag(@)lea| DY

(co —c1)(5¢¢ =7¢* + i+ ™ ley)
2 1 2 1 A2 62),

12(c§ — ¢

|A(cthe3) = L ylen )| <

A(ch ;') - Lig e ea [(A1(@) " As(@)er| ™ + As(a)lea) 2}

|—2(2 oz)

+ (B1(Ot))l_1/q{BZ(“)|C1|_2q + Bs(a)|ca| 1} %]’

where A;j(@), Ax(), As(a), Bi(a), Bo(ew) and Bs(w) are defined as in Theorem 2.5.
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4 Applications to the trapezoidal formula
Let A be a division ¢; =&y <& < --- < §,_1 <&, = ¢3 of the interval [c;, ¢;] and consider the

quadrature formula
)
[ v©de 1w 8)+Ew ),

where

Zl YiE) + «//(sm) Gt
o
i=0
is the trapezoidal version and E, (1, A) denotes the associated approximation error. In this

section, we are going to derive several new error estimations for the trapezoidal formula.

Theorem 4.1 Let o € (0,1], ¢c;,c € R with 0 < ¢1 < ¢, ¥ : [c1,¢0] = R be an a-
differentiable function on (c1,¢;) and A be a division ¢; =&y <& <+ <& 1 <&, =¢ of

the interval [c1, c2]. Then the inequality

1
[Ea(¥, A)| < %0 max {

n-1
D[} (G — &) (568, — 7867 + £:&07 + 677 6
i=0

holds if Dy () € L ([c1, c2]) and || is convex on [c1, cz].

Proof Applying Theorem 2.3 on the subinterval [&;,&;,1] (i =0,1,...,n— 1) of the division

A, we have
. . o _ g §iv1
|1ﬁ(§l) +21//(§z+1) ( i+l $l ) _ w(g__
o §i
< (§i+1 _gi) |:(|1/f (St)l + |¢ (€z+1)|)(5gl+1 5 + SZ ,+1 + 'i:a 1&+1):| (4.1)
20 12

It follows from (4.1) and the convexity of |/’(§)| on the interval [¢j, c;] that

[E. (¥, A)| =
V(&) + ¥ (En) (EF - &) [
e |
n-1 )
YE) + Y (En) (B -8 [5n
SZO 3 ) W
Zl@,ﬂ— 6 [(W(an+|w/(si+1>|)(ssl+112 760 + ££07] +s;“a+1)]
i=0
Ly 19/ E) + 19 o)) (555, — 767 + 68" + & '6in)
= 12a (&1 — &)
i 2
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n-1

Z(sm £) (587, — 7EF + EELT + £ ) max{ ¥ (&)

= 12 ’ |¢/(Ei+l)|}

1 ’
< mmax{{w

n-1
D} D (i — 60565, ~ 767 + E& 6 m).
i=0

Making use of arguments analogous to the proof of Theorem 4.1, we get Theorem 4.2

immediately.

Theorem 4.2 Let o € (0,1], g > 1, c1,c2 € R with 0 < ¢y < ¢z, ¥ : [c1, 2] = R be an «-
differentiable function on (c1, c2) and A be a division c; =&y <& <--- <&,1 <&, =co of the

interval [c1,¢;]. Then the inequality

B8 <3 E =8 (@) Ay @[+ As) |9 G )

i=0

+ (Bi(@) " Bo(@)| ¥ (€)]7 + Bs(@) ¥ (€)| "} ]

holds if Dy () € LL([c1, c2]) and |y’ |1 is convex on [cy, c2], where Aj (), Ax(e), As(et), By (@),
B () and Bs(«) are defined as in Theorem 2.5.

5 Conclusion

In this work, we find an identity and several Hermite-Hadamard type inequalities for con-
formable fractional integrals, present some new inequalities for the arithmetic, logarith-
mic and generalized logarithmic means of two positive real numbers and provide the error

estimations for the trapezoidal formula.
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