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Abstract
This paper introduces a new extragradient-type method to solve the multiple-sets
split equality problem (MSSEP). Under some suitable conditions, the strong
convergence of an algorithm can be verified in the infinite-dimensional Hilbert
spaces. Moreover, several numerical results are given to show the effectiveness of our
algorithm.
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1 Introduction
The split feasibility problem (SFP) was first presented by Censor et al. []; it is an inverse
problem that arises in medical image reconstruction, phase retrieval, radiation therapy
treatment, signal processing etc. The SFP can be mathematically characterized by finding
a point x that satisfies the property

x ∈ C, Ax ∈ Q, (.)

if such a point exists, where C and Q are nonempty closed convex subsets of Hilbert spaces
H and H, respectively, and A : H → H is a bounded and linear operator.

There are various algorithms proposed to solve the SFP, see [–] and the references
therein. In particular, Byrne [, ] introduced the CQ-algorithm motivated by the idea
of an iterative scheme of fixed point theory. Moreover, Censor et al. [] introduced an
extension upon the form of SFP in  with an intersection of a family of closed and
convex sets instead of the convex set C, which is the original of the multiple-sets split
feasibility problem (MSSFP).

Subsequently, an important extension, which goes by the name of split equality problem
(SEP), was made by Moudafi []. It can be mathematically characterized by finding points
x ∈ C and y ∈ Q that satisfy the property

Ax = By, (.)
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if such points exist, where C and Q are nonempty closed convex subsets of Hilbert spaces
H and H, respectively, H is also a Hilbert space, A : H → H and B : H → H are two
bounded and linear operators. When B = I , the SEP reduces to SFP. For more information
about the methods for solving SEP, see [, ].

This paper considers the multiple-sets split equality problem (MSSEP) which general-
izes the MSSFP and SEP and can be mathematically characterized by finding points x and
y that satisfy the property

x ∈
t⋂

i=

Ci and y ∈
r⋂

j=

Qj such that Ax = By, (.)

where r, t are positive integers, {Ci}t
i= ∈ H and {Qj}r

j= ∈ H are nonempty, closed and
convex subsets of Hilbert spaces H and H, respectively, H is also a Hilbert space, A :
H → H, B : H → H are two bounded and linear operators. Obviously, if B = I , the
MSSEP is just right MSSFP; if t = r = , the MSSEP changes into the SEP. Moreover, when
B = I and t = r = , the MSSEP reduces to the SFP.

One of the most important methods for computing the solution of a variational inequal-
ity and showing the quick convergence is an extragradient algorithm, which was first in-
troduced by Korpelevich []. Moreover, this method was applied for finding a common
element of the set of solutions for a variational inequality and the set of fixed points of
a nonexpansive mapping, see Nadezhkina et al. []. Subsequently, Ceng et al. in []
presented an extragradient method, and Yao et al. in [] proposed a subgradient extra-
gradient method to solve the SFP. However, all these methods to solve the problem have
only weak convergence in a Hilbert space. On the other hand, a variant extragradient-
type method and a subgradient extragradient method introduced by Censor et al. [, ]
possess strong convergence for solving the variational inequality.

Motivated and inspired by the above works, we introduce an extragradient-type method
to solve the MSSEP in this paper. Under some suitable conditions, the strong convergence
of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Finally, several
numerical results are given to show the feasibility of our algorithm.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let I denote the identity operator on H .

Next, we recall several definitions and basic results that will be available later.

Definition . A mapping T : H → H goes by the name of
(i) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(ii) firmly nonexpansive if

‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ;

(iii) contractive on x if there exists  < α <  such that

‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ H ;
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(iv) monotone if

〈Tx – Ty, x – y〉 ≥ , ∀x, y ∈ H ;

(v) β-inverse strongly monotone if there exists β >  such that

〈Tx – Ty, x – y〉 ≥ β‖Tx – Ty‖, ∀x, y ∈ H .

The following properties of an orthogonal projection operator were introduced by
Bauschke et al. in [], and they will be powerful tools in our analysis.

Proposition . ([]) Let PC be a mapping from H onto a closed, convex and nonempty
subset C of H if

PC(x) = arg min
y∈C

‖x – y‖, ∀x ∈ H ,

then PC is called an orthogonal projection from H onto C. Furthermore, for any x, y ∈ H
and z ∈ C,

(i) 〈x – PCx, z – PCx〉 ≤ ;
(ii) ‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉;

(iii) ‖PCx – z‖ ≤ ‖x – z‖ – ‖PCx – x‖.

The following lemmas provide the main mathematical results in the sequel.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H , let
T : C → H be α-inverse strongly monotone, and let r >  be a constant. Then, for anyx, y ∈
C,

∥∥(I – rT)x – (I – rT)y
∥∥ ≤ ‖x – y‖ + r(r – α)

∥∥T(x) – T(y)
∥∥.

Moreover, when  < r < α, I – rT is nonexpansive.

Lemma . ([]) Let {xk} and {yk} be bounded sequences in a Hilbert space H , and let {βk}
be a sequence in [, ] which satisfies the condition  < lim infk→∞ βk ≤ lim supk→∞ βk < .
Suppose that xk+ = (–βk)yk +βkxk for all k ≥  and lim supk→∞(‖yk+ –yk‖–‖xk+ –xk‖) ≤
. Then limk→∞ ‖yk – xk‖ = .

The lemma below will be a powerful tool in our analysis.

Lemma . ([]) Let {ak} be a sequence of nonnegative real numbers satisfying the condi-
tion ak+ ≤ ( – mk)ak + mkδk ,∀k ≥ , where {mk}, {δk} are sequences of real numbers such
that

(i) {mk} ∈ [, ] and
∑∞

k= mk = ∞ or, equivalently,

∞∏

k=

( – mk) = lim
k→∞

k∏

j=

( – mj) = ;
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(ii) lim supk→∞ δk ≤  or
(ii)’

∑∞
k= δkmk is convergent. Then limk→∞ ak = .

3 Main results
In this section, we propose a formal statement of our present algorithm. Review the
multiple-sets split equality problem (MSSEP), without loss of generality, suppose t > r
in (.) and define Qr+ = Qr+ = · · · = Qt = H. Hence, MSSEP (.) is equivalent to the
following problem:

find x ∈
t⋂

i=

Ci and y ∈
t⋂

j=

Qj such that Ax = By. (.)

Moreover, set Si = Ci × Qi ∈ H = H × H (i = , , . . . , t), S =
⋂t

i=Si, G = [A, –B] : H →
H, the adjoint operator of G is denoted by G∗, then the original problem (.) reduces to

finding w = (x, y) ∈ S such that Gw = . (.)

Theorem . Let � �= ∅ be the solution set of MSSEP (.). For an arbitrary initial point
w ∈ S, the iterative sequence {wn} can be given as follows:

⎧
⎨

⎩
vn = PS{( – αn)wn – γnG∗Gwn},
wn+ = PS{wn – μnG∗Gvn + λn(vn – wn)},

(.)

where {αn}∞n= is a sequence in [, ] such that limn→∞ αn = , and
∑∞

n= αn = ∞, and
{γn}∞n=, {λn}∞n=, {μn}∞n= are sequences in H satisfying the following conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γn ∈ (, 
ρ(G∗G) ), limn→∞(γn+ – γn) = ;

λn ∈ (, ), limn→∞(λn+ – λn) = ;

μn ≤ 
ρ(G∗G)λn, limn→∞(μn+ – μn) = ;

∑∞
n=( γn

λn
) < ∞.

(.)

Then {wn} converges strongly to a solution of MSSEP (.).

Proof In view of the property of the projection, we infer ŵ = PS(ŵ – tG∗Gŵ) for any t > .
Further, from the condition in (.), we get that μn ≤ 

ρ(G∗G)λn, it follows that I – μn
λn

G∗G
is nonexpansive. Hence,

‖wn+ – ŵ‖
=

∥∥PS
{

wn – μnG∗Gvn + λn(vn – wn)
}

– PS
{

ŵ – tG∗Gŵ
}∥∥

=
∥∥∥∥PS

{
( – λn)wn + λn

(
I –

μn

λn
G∗G

)
vn

}
– PS

{
( – λn)ŵ + λn

(
I –

μn

λn
G∗G

)
ŵ

}∥∥∥∥

≤ ( – λn)‖wn – ŵ‖ + λn

∥∥∥∥

(
I –

μn

λn
G∗G

)
vn –

(
I –

μn

λn
G∗G

)
ŵ

∥∥∥∥

≤ ( – λn)‖wn – ŵ‖ + λn‖vn – ŵ‖. (.)
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Since αn →  as n → ∞ and from the condition in (.), γn ∈ (, 
ρ(G∗G) ), it follows that

αn ≤  – γnρ(G∗G)
 as n → ∞, that is, γn

–αn
∈ (, 

ρ(G∗G) ). We deduce that

‖vn – ŵ‖
=

∥∥PS
{

( – αn)wn – γnG∗Gwn
}

– PS
(
ŵ – tG∗Gŵ

)∥∥

≤ ( – αn)
(

wn –
γn

 – αn
G∗Gwn

)
–

{
αnŵ + ( – αn)

(
ŵ –

γn

 – αn
G∗Gŵ

)}

≤
∥∥∥∥–αnŵ + ( – αn)

[
wn –

γn

 – αn
G∗Gwn – ŵ +

γn

 – αn
G∗Gŵ

]∥∥∥∥, (.)

which is equivalent to

‖vn – ŵ‖ ≤ αn‖–ŵ‖ + ( – αn)‖wn – ŵ‖. (.)

Substituting (.) in (.), we obtain

‖wn – ŵ‖ ≤ ( – λn)‖wn – ŵ‖ + λn
(
αn‖–ŵ‖ + ( – αn)‖wn – ŵ‖)

≤ ( – λnαn)‖wn – ŵ‖ + λnαn‖–ŵ‖
≤ max

{‖wn – ŵ‖,‖–ŵ‖}.

By induction,

‖wn – ŵ‖ ≤ max
{‖w – ŵ‖,‖–ŵ‖}.

Consequently, {wn} is bounded, and so is {vn}.
Let T = PS – I . From Proposition ., one can know that the projection operator PS is

monotone and nonexpansive, and PS – I is nonexpansive.
Therefore,

wn+ =
I + T



[
( – λn)wn + λn

(
 –

μn

λn
G∗G

)
vn

]

=
I – λn


wn +

λn



(
I –

μn

λn
G∗G

)
vn +

T


[
( – λn)wn + λn

(
I –

μn

λn
G∗G

)
vn

]
,

that is,

wn+ =
 – λn


wn +

 + λn


bn, (.)

where bn =
λn(I– μn

λn G∗G)vn+T[(–λn)wn+λn(I– μn
λn G∗G)vn]

+λn
.

Indeed,

‖bn+ – bn‖

≤ λn+

 + λn+

∥∥∥∥

(
I –

μn+

λn+
G∗G

)
vn+ –

(
I –

μn

λn
G∗G

)
vn

∥∥∥∥ +
∣∣∣∣

λn+

 + λn+
–

λn

 + λn

∣∣∣∣
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×
∥∥∥∥

(
I –

μn

λn
G∗G

)
vn

∥∥∥∥ +
T

 + λn+

{
( – λn+)wn+ + λn+

(
I –

μn+

λn+
G∗G

)
vn+

–
[

( – λn)wn + λn

(
I –

μn

λn
G∗G

)
vn

]}
+

∣∣∣∣


 + λn+
–


 + λn

∣∣∣∣

×
∥∥∥∥T

[
( – λn)wn + λn

(
I –

μn

λn
G∗G

)
vn

]∥∥∥∥. (.)

For convenience, let cn = (I – μn
λn

G∗G)vn. By Lemma . in Shi et al. [], it follows that
(I – μn

λn
G∗G) is nonexpansive and averaged. Hence,

‖bn+ – bn‖

≤ λn+

 + λn+
‖cn+ – cn‖ +

∣∣∣∣
λn+

 + λn+
–

λn

 + λn

∣∣∣∣‖cn‖

+
T

 + λn+

{
( – λn+)wn+ + λn+cn+ –

[
( – λn)wn + λncn

]}

+
∣∣∣∣


 + λn+

–


 + λn

∣∣∣∣
∥∥T

[
( – λn)wn + λncn

]∥∥

≤ λn+

 + λn+
‖cn+ – cn‖ +

∣∣∣∣
λn+

 + λn+
–

λn

 + λn

∣∣∣∣‖cn‖

+
 – λn+

 + λn+
‖wn+ – wn‖ +

λn+

 + λn+
‖cn+ – cn‖ +

λn – λn+

 + λn+
‖wn‖

+
λn+ – λn

 + λn+
‖cn‖ +

∣∣∣∣


 + λn+
–


 + λn

∣∣∣∣
∥∥T

[
( – λn)wn + λncn

]∥∥. (.)

Moreover,

‖cn+ – cn‖

=
∥∥∥∥

(
I –

μn+

λn+
G∗G

)
vn+ –

(
I –

μn

λn
G∗G

)
vn

∥∥∥∥

≤ ‖vn+ – vn‖
=

∥∥PS
[
( – αn+)wn+ – γnG∗Gwn+

]
– PS

[
( – αn)wn – γnG∗Gwn

]∥∥

≤ ∥∥(
I – γn+G∗G

)
wn+ –

(
I – γn+G∗G

)
wn + (γn – γn+)G∗Gwn

∥∥

+ αn+‖–wn+‖ + αn‖wn‖
≤ ‖wn+ – wn‖ + |γn – γn+|

∥∥G∗Gwn
∥∥ + αn+‖–wn+‖ + αn‖wn‖. (.)

Substituting (.) in (.), we infer that

‖bn+ – bn‖

≤
∣∣∣∣

λn+

 + λn+
–

λn

 + λn

∣∣∣∣‖cn‖ +
λn – λn+

 + λn+
‖wn‖ +

λn+ – λn

 + λn+
‖cn‖

+ ‖wn+ – wn‖ +
∣∣∣∣


 + λn+

–


 + λn

∣∣∣∣
∥∥T

[
( – λn)wn + λncn

]∥∥

+ |γn – γn+|‖wn‖ + αn+‖–wn+‖ + αn‖wn‖. (.)
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By virtue of limn→∞(λn+ – λn) = , it follows that limn→∞ | λn+
+λn+

– λn
+λn

| = . Moreover,
{wn} and {vn} are bounded, and so is {cn}. Therefore, (.) reduces to

lim sup
n→∞

(‖bn+ – bn‖ – ‖wn+ – wn‖
) ≤ . (.)

Applying (.) and Lemma ., we get

lim
n→∞‖bn – wn‖ = . (.)

Combining (.) with (.), we obtain

lim
n→∞‖xn+ – xn‖ = .

Using the convexity of the norm and (.), we deduce that

‖wn+ – ŵ‖

≤ ( – λn)‖wn – ŵ‖ + λn‖vn – ŵ‖

≤ ( – λn)‖wn – ŵ‖ + λn

∥∥∥∥–αnŵ

+ ( – αn)
[

wn –
γn

 – αn
G∗Gwn –

(
ŵ –

γn

 – αn
G∗Gŵ

)]∥∥∥∥


≤ ( – λn)‖wn – ŵ‖ + λnαn‖–ŵ‖

+ ( – αn)λn

[
‖wn – ŵ‖ +

γn

 – αn

(
γn

 – αn
–


ρ(G∗G)

)∥∥G∗Gwn – G∗Gŵ
∥∥

]

≤ ‖wn – ŵ‖ + λnαn‖–ŵ‖ + λnγn

(
γn

 – αn
–


ρ(G∗G)

)∥∥G∗Gwn – G∗Gŵ
∥∥,

which implies that

λnγn

(


ρ(G∗G)
–

γn

 – αn

)∥∥G∗Gwn – G∗Gŵ
∥∥

≤ ‖wn – ŵ‖ – ‖wn+ – ŵ‖ + λnαn‖–ŵ‖

≤ ‖wn+ – wn‖
(‖wn – ŵ‖ + ‖wn+ – ŵ‖) + λnαn‖–ŵ‖.

Since lim infn→∞ λnγn( 
ρ(G∗G) – γn

–αn
) > , limn→∞ αn =  and limn→∞ ‖wn+ – wn‖ = , we

infer that

lim
n→∞

∥∥G∗Gwn – G∗Gŵ
∥∥ = . (.)

Applying Proposition . and the property of the projection PS , one can easily show that

‖vn – ŵ‖

=
∥∥PS

[
( – αn)wn – γnG∗Gwn

]
– PS

[
ŵ – γnG∗Gŵ

]∥∥
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≤ 〈
( – αn)wn – γnG∗Gwn –

(
ŵ – γnG∗Gŵ

)
, vn – ŵ

〉

=


{∥∥wn – γnG∗Gwn –

(
ŵ – γnG∗Gŵ

)
– αnwn

∥∥ + ‖vn – ŵ‖

–
∥∥( – αn)wn – γnG∗Gwn –

(
ŵ – γnG∗Gŵ

)
– vn + ŵ

∥∥}

≤ 

{‖wn – ŵ‖ + αn‖–wn‖

∥∥wn – γnG∗Gwn –
(
ŵ – γnG∗Gŵ

)
– αnwn

∥∥

+ ‖vn – ŵ‖ –
∥∥wn – vn – γnG∗G(wn – ŵ) – αnwn

∥∥}

≤ 

{‖wn – ŵ‖ + αnM + ‖vn – ŵ‖ – ‖wn – vn‖

+ γn
〈
wn – vn, G∗G(wn – ŵ)

〉

+ αn〈wn, wn – vn〉 –
∥∥γnG∗G(wn – ŵ) + αnwn

∥∥}

≤ 

{‖wn – ŵ‖ + αnM + ‖vn – ŵ‖

– ‖wn – vn‖ + γn‖wn – vn‖
∥∥G∗G(wn – ŵ)

∥∥

+ αn‖wn‖‖wn – vn‖
}

≤ ‖wn – ŵ‖ + αnM – ‖wn – vn‖ + γn‖wn – vn‖
∥∥G∗G(wn – ŵ)

∥∥

+ αn‖wn‖‖wn – vn‖, (.)

where M >  satisfies

M ≥ sup
k

{
‖–wn‖

∥∥wn – γnG∗Gwn –
(
ŵ – γnG∗Gŵ

)
– αnwn

∥∥}
.

From (.) and (.), we get

‖wn+ – ŵ‖

≤ ( – λn)‖wn – ŵ‖ + λn‖vn – ŵ‖

≤ ‖wn – ŵ‖ – λn‖wn – vn‖ + αnM + γn‖wn – vn‖
∥∥γnG∗G(wn – ŵ)

∥∥

+ αn‖wn‖‖wn – vn‖,

which means that

λn‖wn – vn‖ ≤ ‖wn+ – wn‖
(‖wn – ŵ‖ + ‖wn+ – ŵ‖) + αnM

+ γn‖wn – vn‖
∥∥γnG∗G(wn – ŵ)

∥∥

+ αn‖wn‖‖wn – vn‖.

Since limn→∞ αn = , limn→∞ ‖wn+ – wn‖ =  and limn→∞ ‖G∗Gwn – G∗Gŵ‖ = , we infer
that

lim
n→∞‖wn – vn‖ = .
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Finally, we show that wn → ŵ. Using the property of the projection PS , we derive

‖vn – ŵ‖

=
∥∥∥∥PS

[
( – αn)

(
wn –

γn

 – αn
G∗Gwn

)]

– PS

[
αnŵ + ( – αn)

(
ŵ –

γn

 – αn
G∗Gŵ

)]∥∥∥∥


≤
〈
( – αn)

(
I –

γn

 – αn
G∗G

)
(wn – ŵ) – αnŵ, vn – ŵ

〉

≤ ( – αn)‖wn – ŵ‖‖vn – ŵ‖ + αn〈ŵ, ŵ – vn〉

≤  – αn


(‖wn – ŵ‖ + ‖vn – ŵ‖) + αn〈ŵ, ŵ – vn〉,

which equals

‖vn – ŵ‖ ≤  – αn

 + αn
‖wn – ŵ‖ +

αn

 – αn
〈ŵ, ŵ – vn〉. (.)

It follows from (.) and (.) that

‖wn+ – ŵ‖

≤ ( – λn)‖wn – ŵ‖ + λn‖vn – ŵ‖

≤ ( – λn)‖wn – ŵ‖ + λn

{
 – αn

 + αn
‖wn – ŵ‖ +

αn

 – αn
〈ŵ, ŵ – vn〉

}

≤
(

 –
αnλn

 + αn

)
‖wn – ŵ‖ +

αnλn

 – αn
〈ŵ, ŵ – vn〉. (.)

Since γn
–αn

∈ (, 
ρ(G∗G) ), we observe that αn ∈ (,  – γnρ(G∗G)

 ), then

αnλn

 – αn
∈

(
,

λn( – γnρ(G∗G))
γnρ(G∗G)

)
,

that is to say,

αnλn

 – αn
〈ŵ, ŵ – vn〉 ≤ λn( – γnρ(G∗G))

γnρ(G∗G)
〈ŵ, ŵ – vn〉.

By virtue of
∑∞

n=( λn
γn

) < ∞, γn ∈ (, 
ρ(G∗G) ) and 〈ŵ, ŵ – vn〉 is bounded, we obtain

∑∞
n=( λn(–γnρ(G∗G))

γnρn(G∗G) )〈ŵ, ŵ – vn〉 < ∞, which implies that

∞∑

n=

αnλn

 – αn
〈ŵ, ŵ – vn〉 ≤ ∞.

Moreover,

∞∑

n=

αnλn

 – αn
〈ŵ, ŵ – vn〉 =

∞∑

n=

αnλn

 + αn

 + αn

 – αn
〈ŵ, ŵ – vn〉, (.)
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Table 1 ε = 10–5, P = 3, M = 3, N = 3

n t

Sequence (3.3) 60 0.078
Tian’s (3.15)’ 117 0.093
Byrne’s (1.2) 1, 845 1.125

Table 2 ε = 10–10, P = 3, M = 3, N = 3

n t

Sequence (3.3) 120 0.156
Tian’s (3.15) 294 0.29
Byrne’s (1.2) 8, 533 2.734

Table 3 ε = 10–5, P = 10, M = 10, N = 10

n t

Sequence (3.3) 63 0.093
Tian’s (3.15) 426 0.469
Byrne’s (1.2) 2, 287 1.313

Table 4 ε = 10–10, P = 10, M = 10, N = 10

n t

Sequence (3.3) 123 0.25
Tian’s (3.15) 948 0.906
Byrne’s (1.2) 13, 496 2.437

it follows that all the conditions of Lemma . are satisfied. Combining (.), (.) and
Lemma ., we can show that wn → ŵ. This completes the proof. �

4 Numerical experiments
In this section, we provide several numerical results and compare them with Tian’s []
algorithm (.)’ and Byrne’s [] algorithm (.) to show the effectiveness of our pro-
posed algorithm. Moreover, the sequence given by our algorithm in this paper has strong
convergence for the multiple-sets split equality problem. The whole program was writ-
ten in Wolfram Mathematica (version .). All the numerical results were carried out on
a personal Lenovo computer with Intel(R)Pentium(R) N CPU . GHz and RAM
. GB.

In the numerical results, A = (aij)P×N , B = (bij)P×M , where aij ∈ [, ], bij ∈ [, ] are all
given randomly, P, M, N are positive integers. The initial point x = (, , . . . , ), and y =
(, , . . . , ), αn = ., λn = ., γn = .

ρ(G∗G) , μn = .
ρ(G∗G) in Theorem ., ρn

 = ρn
 = . in

Tian’s (.)’ and γn = . in Byrne’s (.). The termination condition is ‖Ax – By‖ < ε. In
Tables -, the iterative steps and CPU are denoted by n and t, respectively.
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