
Agarwal et al. Journal of Inequalities and Applications  (2017) 2017:55 
DOI 10.1186/s13660-017-1318-y

R E S E A R C H Open Access

Certain Hermite-Hadamard type
inequalities via generalized k-fractional
integrals
Praveen Agarwal1*, Mohamed Jleli2 and Muharrem Tomar3

*Correspondence:
goyal.praveen2011@gmail.com
1Department of Mathematics,
Anand International College of
Engineering, Jaipur, 303012, India
Full list of author information is
available at the end of the article

Abstract
Some Hermite-Hadamard type inequalities for generalized k-fractional integrals
(which are also named (k, s)-Riemann-Liouville fractional integrals) are obtained for a
fractional integral, and an important identity is established. Also, by using the
obtained identity, we get a Hermite-Hadamard type inequality.
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1 Introduction
Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and
a, b ∈ I with a < b. The following inequality

f
(

a + b


)
≤ 

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


(.)

holds. This double inequality is known in the literature as a Hermite-Hadamard integral
inequality for convex functions [].

Sarikaya et al. established the following results for Riemann-Liouville fractional inte-
grals.

Theorem . (see Theorem  in []) Let f : [a, b] →R be a positive function with  ≤ a < b
and f ∈ L[a, b]. If f is a convex function on [a, b], then the following inequality for fractional
integrals holds:

f
(

a + b


)
≤ �( + α)

(b – a)α
[
Jα
a+ f (b) + Jα

b– f (a)
] ≤ f (a) + f (b)


(.)

with α > , where the symbols Jα
a+ and Jα

b– denote the left-sided and right-sided Riemann-
Liouville fractional integrals of the order α ∈R

+ that are defined by

Jα
a+ f (x) =


�(α)

∫ x

a
f (t)(x – t)α– dt ( ≤ a < x ≤ b)

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1318-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1318-y&domain=pdf
mailto:goyal.praveen2011@gmail.com


Agarwal et al. Journal of Inequalities and Applications  (2017) 2017:55 Page 2 of 10

and

Jα
b– f (x) =


�(α)

∫ b

x
f (t)(t – x)α– dt ( ≤ a ≤ x < b)

respectively. Here �(·) denotes the classical gamma function [], Chapter .

Theorem . (see Theorem  in []) Let f : [a, b] →R be a differentiable mapping on (a, b)
with a < b. If f ′ ∈ L[a, b], then the following inequality for Riemann-Liouville fractional
integrals holds:

∣∣∣∣ f (a) + f (b)


–
�(α + )
(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]∣∣∣∣

≤ b – a
(α + )

(
 –


α

)(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣) (.)

with α > .

The Pochhammer k-symbol (x)n,k and the k-gamma function �k are defined as follows
(see []):

(x)n,k := x(x + k)(x + k) · · · (x + (n – )k
)

(n ∈N; k > ) (.)

and

�k(x) := lim
n→∞

n!kn(nk)
x
k –

(x)n,k

(
k > ; x ∈ C \ kZ–


)
, (.)

where kZ–
 := {kn : n ∈ Z

–
}. It is noted that the case k =  of (.) and (.) reduces to the

familiar Pochhammer symbol (x)n and the gamma function �. The function �k is given
by the following integral:

�k(x) =
∫ ∞


tx–e– tk

k dt
(�(x) > 

)
. (.)

The function �k defined on R
+ is characterized by the following three properties: (i) �k(x+

k) = x�k(x); (ii) �k(k) = ; (iii) �k(x) is logarithmically convex. It is easy to see that

�k(x) = k
x
k –�

(
x
k

) (�(x) > ; k > 
)
. (.)

We want to recall the preliminaries and notations of some well-known fractional integral
operators that will be used to obtain some remarks and corollaries.

The (k, s)-Riemann-Liouville fractional integral operator s
kJ α

a of order α >  for a real-
valued continuous function f (t) is defined as (see [], p., .. Definition):

s
kJ α

a f (x) =
(s + )– α

k

k�k(α)

∫ x

a

(
xs+ – ts+) α

k –tsf (t) dt, (.)

where k > , β >  and s ∈R \ {–}.
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The most important feature of (k, s)-fractional integrals is that they generalize some
types of fractional integrals (Riemann-Liouville fractional integral, k-Riemann-Liouville
fractional integral, generalized fractional integral and Hadamard fractional integral).
These important special cases of the integral operator s

kJ α
a are mentioned below.

() For k = , the operator in (.) yields the following generalized fractional integrals
defined by Katugompola in []:

r
aJ α

t f (x) =
(r + )–α

�(α)

∫ x

a

(
xr+ – tr+)α–trf (t) dt. (.)

() Firstly by taking k = , after that by taking limit r → –+ and using L’Hôpital’s rule,
the operator in (.) leads to the Hadamard fractional integral operator [, ]. That is,

lim
r→–+

r
aJ α

t f (x) = lim
r→–+

(r + )–α

�(α)

∫ x

a

f (t)tr

(xr+ – tr+)–α
dt

=


�(α)

∫ x

a
lim

r→–+
f (t)tr

(
r + 

xr+ – tr+

)–α

dt

=


�(α)

∫ x

a
f (t) lim

r→–+

(
r + 

xr+ – tr+

)–α dt
t

=


�(α)

∫ x

a
f (t)

(
lim

r→–+

r + 
xr+ – tr+

)–α dt
t

=


�(α)

∫ x

a

(
log

x
t

)
f (t)

dt
t

= HJ α
[
f (t)

]
(.)

(see [], p., eq. (.)).
() If we take s =  in (.), operator (.), reduces to the k-Riemann-Liouville fractional

integral operator, which has been firstly defined by Mubeen and Habibullah in [].
This relation is as follows:

J α
a,k f (x) =


k�k(α)

∫ x

a
(x – t)

α
k –f (t) dt. (.)

() Again, taking s =  and k = , operator (.) gives us the Riemann-Liouville
fractional integration operator

Jα
a+ f (x) =


�(α)

∫ x

a
(x – t)α–f (t) dt. (.)

In recent years, these fractional operators have been studied and used to extend espe-
cially Grüss, Chebychev-Grüss and Pólya-Szegö type inequalities. For more details, one
may refer to the recent works and books [, –].

2 Main results
Let f : I◦ → R be a given function, where a, b ∈ I◦ and  < a < b < ∞. We suppose that
f ∈ L∞(a, b) such that s

kJα
a+ f (x) and s

kJα
b– f (x) are well defined. We define functions

f̃ (x) := f (a + b – x), x ∈ [a, b]
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and

F(x) := f (x) + f̃ (x), x ∈ [a, b].

Hermite-Hadamard’s inequality for convex functions can be represented in a (k, s)-
fractional integral form as follows by using the change of variables u = t–a

x–a ; we have from
(.)

s
kJ α

a f (x) = (x – a)
(s + )– α

k

k�k(α)

∫ 



(ux + ( – u)a)s

((ux + ( – u)a)s+ – ts+)
α
k –

× f
(
ux + ( – u)a

)
ds, (.)

where x > a.

Theorem . Let α, k >  and s ∈ R \ {–}. If f is a convex function on [a, b], then we
have

f
(

a + b


)
≤ (s + )

α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
]

≤ f (a) + f (b)


. (.)

Proof For u ∈ [, ], let ξ = au + ( – u)b and η = ( – u)a + bu. Using the convexity of f , we
get

f
(

a + b


)
= f

(
ξ + η



)
≤ 


f (ξ ) +




f (η).

That is,

f
(

a + b


)
≤ 


f
(
au + ( – u)b

)
+




f
(
( – u)a + bu

)
. (.)

Now, multiplying both sides of (.) by

(b – a)
(s + )– α

k

k�k(α)
(ub + ( – u)a)s

[bs+ – (ub + ( – u)a)s+]– α
k

and integrating over (, ) with respect to u, we get

(b – a)
(s + )– α

k

k�k(α)
f
(

a + b


)∫ 



(ub + ( – u)a)s du
[bs+ – (ub + ( – u)a)s+]– α

k

≤ 


(b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (au + ( – u)b) du
[bs+ – (ub + ( – u)a)s+]– α

k

+



(b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (( – u)a + bu) du
[bs+ – (ub + ( – u)a)s+]– α

k
.
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Note that we have

∫ 



(ub + ( – u)a)s du
[bs+ – (ub + ( – u)a)s+]– α

k
=

k(bs+ – as+)
α
k

α(s + )(b – a)
.

Using the identity

f̃
(
( – u)a + bu

)
= f

(
au + ( – u)b

)
,

and from (.), we obtain

(b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (au + ( – u)b) du
[bs+ – (ub + ( – u)a)s+]– α

k
= s

kJα
a+ f̃ (b)

and

(b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (( – u)a + bu) du
[bs+ – (ub + ( – u)a)s+]– α

k
= s

kJα
a+ f (b).

Accordingly, we have

(bs+ – as+)
α
k

(s + )
α
k �k(α + k)

f
(

a + b


)
≤

s
kJα

a+ F(b)


. (.)

Similarly, multiplying both sides of (.) by

(b – a)
(s + )– α

k

k�k(α)
(ub + ( – u)a)s

[(bu + ( – u)a)s+ – as+]– α
k

,

integrating over (, ) with respect to u, and from (.), we also get

(bs+ – as+)
α
k

(s + )
α
k �k(α + k)

f
(

a + b


)
≤

s
kJα

b– F(a)


. (.)

By adding inequalities (.) and (.), we get

f
(

a + b


)
≤ (s + )

α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
]
,

which is the left-hand side of inequality (.).
Since f is convex, for u ∈ [, ], we have

f
(
au + ( – u)b

)
+ f

(
( – u)a + bu

) ≤ f (a) + f (b). (.)

Multiplying both sides of (.) by

(b – a)
(s + )– α

k

k�k(α)
(ub + ( – u)a)s

[bs+ – (ub + ( – u)a)s+]– α
k
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and integrating over (, ) with respect to u, we get

(b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (au + ( – u)b) du
[bs+ – (ub + ( – u)a)s+]– α

k

+ (b – a)
(s + )– α

k

k�k(α)

∫ 



(ub + ( – u)a)sf (( – u)a + bu) du
[bs+ – (ub + ( – u)a)s+]– α

k

≤ (b – a)
(s + )– α

k

k�k(α)
[
f (a) + f (b)

] ∫ 



(ub + ( – u)a)s du
[bs+ – (ub + ( – u)a)s+]– α

k
.

That is,

s
kJα

a+ F(b) ≤ (bs+ – as+)
α
k

(s + )
α
k �k(α + k)

[
f (a) + f (b)

]
. (.)

Similarly, multiplying both sides of (.) by

(b – a)
(s + )– α

k

k�k(α)
(ub + ( – u)a)s

[(ub + ( – u)a)s+ – as+]– α
k

and integrating over (, ) with respect to u, we also get

s
kJα

b– F(a) ≤ (bs+ – as+)
α
k

(s + )
α
k �k(α + k)

[
f (a) + f (b)

]
. (.)

Adding inequalities (.) and (.), we obtain

(s + )
α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
] ≤ f (a) + f (b)


,

which is the right-hand side of inequality (.). So the proof is complete. �

We want to give the following function that we will use later: For α, k >  and s ∈R\{–},
let ∇α,s : [, ] →R be the function defined by

∇α,s(t) : =
((

ta + ( – t)b
)s+ – as+) α

k –
((

bt + ( – t)a
)s+ – as+) α

k

+
(
bs+ –

(
tb + ( – t)a

)s+) α
k –

(
bs+ –

(
ta + ( – t)b

)s+) α
k .

In order to prove our main result, we need the following identity.

Lemma . Let α, k >  and s ∈ RI◦. If f is a differentiable function on I◦ such that f ′ ∈
L[a, b] with a < b, then we have the following identity:

f (a) + f (b)


–
(s + )

α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
]

=
(b – a)

(bs+ – as+)
α
k

∫ 


∇α,s(t)f ′(ta + ( – t)b

)
dt. (.)
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Proof Using integration by parts, we obtain

s
kJα

a+ F(b) =
(bs+ – as+)

α
k

(s + )
α
k �k(α + k)

F(a) +
(b – a)

(s + )
α
k �k(α + k)

×
∫ 



[(
bs+ –

(
bu + ( – u)a

)s+)] α
k F ′(bu + ( – u)a

)
du. (.)

Similarly, we get

s
kJα

b– F(a) =
(bs+ – as+)

α
k

(s + )
α
k �k(α + k)

F(b) –
(b – a)

(s + )
α
k �k(α + k)

×
∫ 



[(
bu + ( – u)a

)s+ – as+] α
k F ′(bu + ( – u)a

)
du. (.)

Using the fact that F(x) = f (x) + f̃ (x) and by simple computation, from equalities (.) and
(.), we get

(bs+ – as+)
α
k

(b – a)

(
f (a) + f (b)


–

(s + )
α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
])

=
∫ 



[((
bu + ( – u)a

)s+ – as+) α
k –

(
bs+ –

(
bu + ( – u)a

)s+) α
k
]

× F ′(bu + ( – u)a
)

du. (.)

Note that we have

F ′(bu + ( – u)a
)

= f ′(bu + ( – u)a
)

– f ′(au + ( – u)b
)
, u ∈ [, ].

Then we can easily obtain

∫ 



((
bu + ( – u)a

)s+ – as+) α
k F ′(bu + ( – u)a

)
du

=
∫ 



((
ta + ( – t)b

)s+ – as+) α
k f ′(ta + ( – t)b

)
dt

–
∫ 



((
bt + ( – t)a

)s+ – as+) α
k f ′(ta + ( – t)b

)
dt (.)

and

∫ 



(
bs+ –

(
bu + ( – u)a

)s+) α
k F ′(bu + ( – u)a

)
du

=
∫ 



(
bs+ –

(
ta + ( – t)b

)s+) α
k f ′(ta + ( – t)b

)
dt

–
∫ 



(
bs+ –

(
bt + ( – t)a

)s+) α
k f ′(ta + ( – t)b

)
dt. (.)

Thus, the desired inequality (.) follows from inequalities (.), (.) and (.). �
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For α, k > , we introduce the following operator:

�(s, x, y) :=
∫ a+b



a
|x – u|∣∣ys+ – us+∣∣ α

k du –
∫ b

a+b


|x – u|∣∣ys+ – us+∣∣ α
k du,

s ∈R \ {–}, x, y ∈ [a, b].
Using Lemma ., we can obtain the following (k, s)-fractional integral inequality.

Theorem . Let α, k >  and s ∈ R \ {–}. If f is a differentiable function on I◦ such that
f ′ ∈ L[a, b] with a < b and |f ′| is convex on [a, b], then

∣∣∣∣ f (a) + f (b)


–
(s + )

α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
]∣∣∣∣

≤ �(s,α, a, b)
(bs+ – as+)

α
k (b – a)

(∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣), (.)

where

�(s,α, a, b) = �(s, b, b) + �(s, a, b) – �(s, b, a) – �(s, a, a).

Proof Using Lemma . and the convexity of |f ′|, we obtain

∣∣∣∣ f (a) + f (b)


–
(s + )

α
k �k(α + k)

(bs+ – as+)
α
k

[s
kJα

a+ F(b) + s
kJα

b– F(a)
]∣∣∣∣

≤ (b – a)
(bs+ – as+)

α
k

∫ 



∣∣∇α,s(t)
∣∣∣∣f ′(ta + ( – t)b

)∣∣dt

≤ (b – a)
(bs+ – as+)

α
k

(∣∣f ′(a)
∣∣ ∫ 


t
∣∣∇α,s(t)

∣∣dt +
∣∣f ′(b)

∣∣ ∫ 


( – t)

∣∣∇α,s(t)
∣∣dt

)
. (.)

Note that

∫ 


t
∣∣∇α,s(t)

∣∣dt =


(b – a)

∫ b

a

∣∣℘(u)
∣∣(b – u) du,

where

℘(u) =
(
us+ – as+) α

k –
(
(b + a – u)s+ – as+) α

k

+
(
bs+ – (b + a – u)s+) α

k –
(
bs+ – us+) α

k , u ∈ [a, b].

Observe that ℘ is a non-decreasing function on [a, b]. Moreover, we have ℘(a) = –(bs+ –
as+)

α
k <  and ℘( a+b

 ) = . Thus, we have

⎧⎨
⎩

℘(u) ≤  if a ≤ u ≤ a+b
 ,

℘(u) >  if a+b
 < u ≤ b.
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So, we obtain

(b – a)
∫ 


t
∣∣∇α,s(t)

∣∣dt = ζ + ζ + ζ + ζ,

where

ζ =
∫ a+b



a
(b – u)

(
bs+ – us+) α

k du –
∫ b

a+b


(b – u)
(
bs+ – us+) α

k du,

ζ = –
∫ a+b



a
(b – u)

(
us+ – as+) α

k du +
∫ b

a+b


(b – u)
(
us+ – as+) α

k du,

ζ =
∫ a+b



a
(b – u)

(
(b + a – u)s+ – as+) α

k du –
∫ b

a+b


(b – u)
(
(b + a – u)s+ – as+) α

k du,

ζ = –
∫ a+b



a
(b – u)

(
bs+ – (b + a – u)s+) α

k du +
∫ b

a+b


(b – u)
(
bs+ – (b + a – u)s+) α

k du.

Observe that ζ = �(s, b, b) and ζ = –�(s, b, a). Using the change of variable v = a + b – u,
we get ζ = –�(s, a, a) and ζ = �(s, a, b). Thus, we obtain

∫ 


t
∣∣∇α,s(t)

∣∣dt =
�(s, b, b) + �(s, a, b) – �(s, b, a) – �(s, a, a)

(b – a) . (.)

Similarly,

∫ 


( – t)

∣∣∇α,s(t)
∣∣dt =

�(s, b, b) + �(s, a, b) – �(s, b, a) – �(s, a, a)
(b – a) . (.)

So, the desired inequality (.) follows from inequalities (.), (.) and (.). �

3 Conclusions
Lastly, we conclude this paper by remarking that we have obtained a Hermite-Hadamard
inequality, an identity and a Hermite-Hadamard type inequality for a generalized k-
fractional integral operator. Therefore, by suitably choosing the parameters, one can fur-
ther easily obtain additional integral inequalities involving the various types of fractional
integral operators from our main results.
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