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Abstract

In this paper, the problem of the existence of a periodic solution is studied for the
second order differential equation with a singularity of repulsive type

X(6) + F(x@O)X (1) = g(x () + @ (Ox(8) = h(t),

where g(x) is singular at x =0, ¢ and h are T-periodic functions. By using the
continuation theorem of Manéasevich and Mawhin, a new result on the existence of
positive periodic solution is obtained. It is interesting that the sign of the function ¢(t)
is allowed to change for t € [0, T].
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1 Introduction
The aim of this paper is to search for positive T-periodic solutions for a second order
differential equation with a singularity in the following form:

K(0) +f (2(0)x' () - g (x()) + p(O)x(1) = h(t), (1.1)

where f : [0,00) — R is an arbitrary continuous function, g € C((0, +00), (0, +00)), and
g(x) is singular of repulsive type at x = 0, i.e., g(x) > +oo0 asx — 0%, ¢,h: R — R are T-
periodic functions with # € L2([0, T],R) and ¢ € C([0, T], R), and the sign of the function
¢ is allowed to change for ¢ € [0, T'].

The study of the problem of periodic solutions to scalar equations with a singularity
began with work of Forbat and Huaux [1, 2], where the singular term in the equations
models the restoring force caused by a compressed perfect gas (see [3—6] and the refer-
ences therein). In the past years, many works used the methods, such as the approaches
of critical point theory [7-12], the techniques of some fixed point theorems [13-15], and
the approaches of topological degree theory, in particular, of some continuation theorems
of Mawhin (see [6, 16—22]), to study the existence of positive periodic solutions for some
second order ordinary differential equations with singularities. For example, in [15], by us-
ing a fixed point theorem in cones, the existence of positive periodic solutions to equation
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(1.1) was investigated for the conservative case, i.e., f(x) = 0. But the function ¢(¢) is re-
quired to be ¢(t) > 0 for all £ € [0, T']. The method of topological degree theory, together
with the technique of upper and lower solutions, was first used by Lazer and Solimini in
the pioneering paper [18] for considering the problem of a periodic solution to a second
order differential equations with singularities. Jebelean and Mawhin in [6] considered the

problem of a p-Laplacian Liénard equation of the form
(|¥ 2% +f@)x + gx) = h(®) (1.2)
and

(5 F7°x) + )~ gw) = (o), L3)

where p >1is a constant, f : [0, +00) — R is an arbitrary continuous function, #: R — R is
a T-periodic function with 1 € L*°([0, T, R), g : (0, +00) — (0, +00) is continuous, g(x) —
+00 as ¥ — 0*. They extended the results of Lazer and Solimini in [16] to equation (1.2)
and equation (1.3). For equation (1.3), the crucial condition is that the function g(x) is
bounded, which means that equation (1.3) is not singular at x = +o0.

By using a continuation theorem of Mawhin, Zhang in [18] studied the problem of pe-

riodic solutions of the Liénard equation with a singularity of repulsive type,
x" +fx)x’ + g(t,x) =0, (1.4)

where f : R — R is continuous, g : R x (0,+00) — R is an L2-Carathéodory function with
T-periodic in the first argument, and it is singular at x = 0, i.e., g(t,x) is unbounded as
x — 0*. Different from the equation studied in [6, 16], which is only singular at x = 0,
equation (1.4) is provided with both singularities at x = +o0o and at x = 0. In [19], Wang
further studied the existence of positive periodic solutions for a delay Liénard equation

with a singularity of repulsive type

X"+ f(x)x +g(t,x(t -1))=0. 1.5)
In [18, 19], the following balance condition between the singular force at the origin and at
infinity is needed.

(h;) There exist constants 0 < Dy < D, such that if x is a positive continuous T-periodic
function satisfying

T
/ g(t,x(0))dt =0,
0
then
D, <x(t)<D,, forsomerte€]l0,T]. (1.6)

From the proof of [18, 19], we see that the balance condition (h;) is crucial for estimating a
priori bounds of periodic solutions. Now, the question is how to investigate the existence
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of positive periodic solutions for the equations like equation (1.4) or equation (1.5) without
the balance condition (h;).

Motivated by this, in this paper, we study the existence of positive T-periodic solutions
for equation (1.1) under the condition that the sign of the function ¢ is allowed to change
for ¢ € [0, T]. For this case, the balance condition (h;) may not be satisfied. By using the
continuation theorem of Mandsevich and Mawhin, a new result on the existence of posi-

tive periodic solutions is obtained.

2 Preliminary lemmas
Throughout this paper, let Cy = {x € C(R,R) : x(t+ T') = x(¢) for all £ € R} with the norm de-
fined by |x|oo = max;c(o,r] |#(¢)|. For any T-periodic solution y(¢) with y € L'([0, T1, R), y. ()
and y_(¢) denote max{y(¢),0} and — min{y(¢), 0}, respectively, and y = % fOT y(s) ds. Clearly,
y(t) =y,(t) —y_(t) forallt e R, and y =y, —y_.

The following lemma is a consequence of Theorem 3.1 in [23].

Lemma 1 Assume that there exist positive constants My, My, and M, with 0 < My < My,
such that the following conditions hold.
1. Foreach A € (0,1], each possible positive T-periodic solution x to the equation

U’ + M ()’ — rg(u) + ho(t)u = Lh(2)

satisfies the inequalities My < x(t) < My and |x'(¢)| < M, for all t € [0, T'].

2. Each possible solution c to the equation
glc)—cop + h=0

satisfies the inequality My < ¢ < M;.
3. We have

(e(Mo) — 5Mo + B (g(My) - gM; + h) <0,

Then equation (1.1) has at least one T-periodic solution u such that My < u(t) < M
forallt €0, T].

Lemma 2 ([19]) Let x be a continuous T-periodic continuously differential function. Then,
forany T €(0,T],

T 1/2 T T 1/2
(/ |x(s)|2ds> <= (/ |x/(s)|2ds> + ﬁ|x(r)|.
0 T \Jo

In order to study the existence of positive periodic solutions to equation (1.1), we list the
following assumptions.
[H;] The function ¢(¢) satisfies the following conditions:

T nga_(s)ds
+(8)ds >0, =" ¢]o,
/0 @i(s)ds>0 o fOTgo+(s)ds €[0,1)
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and

T, THUy 0(92ds)t

o1:= —lg.| € (0,1
T ) e9ds

[H,] there are constants A > 0 and M > 0 such that g(x) € (0,A) for all x > M;
[Hs] folg(s) ds = +00.

Remark 1 If assumptions [H;]-[H;] hold, then there are constants D; and D, with 0 <
D; < D, such that

g(x) —gx+h>0 forallxe (0,D)
and
g@)—gx+h<0 forallx e (Dy,00).

Furthermore, assumption o € (0,1) in [H;] is different from the corresponding condition
fOT 0, (s)ds < % in [20].

Now, we suppose that assumptions [H;] and [H;] hold, and we embed equation (1.1)
into the following equation family with a parameter A € (0,1]:

x4+ M (x)x — Ag(x) + Ap(t)x = Ah(2), A€ (0,1]. (2.1)
Let
2= {x € Cr:&" + M (x)x' — Ag(x) + 2o(t)x = Ah(¢), . € (0,1];x(¢) > 0,Ve € [0, T },

and

g 2 ds)? A+ |h i
My < o 9079 o A o2 s 4T ([P ar)’, @2
T 0 0
Jo @+(s)ds [N 0

where

T T NT A+ IANTEN?
Ao_ﬂ(l—ffl) (fo -0 dt) +< (1—01)W> ’

A > 0 is a constant determined by assumption [Hy]. Clearly, M, and A, are all independent
of (A,x) € (0,1] x £2. Let M > 0 be determined by assumption [H;], then there is a positive
integer ko such that

Lemma 3 Assume that assumptions [H;]-[Hy] hold, then there is an integer k* > ko such
that, for each function u € §2, there is a point ty € (0, T satisfying

u(ty) < kK*M.
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Proof If the conclusion does not hold, then, for each k > kg, there is a function u; € £2

satisfying

ur(t) >kM forall t € [0, T]. (2.4)
From the definition of §2, we see

up + M (ui)up — Ag(ui) + Ap(®ug = Lh(t), 1 €(0,1], (2.5)
and by using assumption [H;],

0 <g(ux(t)) <A, forallte[0,T]. (2.6)

By integrating equation (2.5) over the interval [0, T], we have

T T T
dt = d h(t) dt,
/0 o (Ouct)dt /0 a(u(0) de + /0 (0)dt

T T T T
. dt = _ d d h(t)dt.
fo 0. (O () dt /0 o (Oui(b)dt + fo a(u(0) di + fo (o) dt

Since ¢,(¢) > 0 and ¢_(¢t) > 0 for all ¢ € [0, T], it follows from the integral mean value
theorem that there is a point £ € [0, T'] such that

T T T
(&) /0 0. (t)dt - /0 o_(S)uy(s) ds + /0 () dt + Th

T 5/ 0T 3 T .
f(fo ¢_<s)2ds> (/0 |uk(s)yzds> [ atunto)ar 1,

which together with (2.6) yields

)2 % T % 7z
wi(€) < %-4”’3( / uk(s)zds> + A*_'h'. 2.7)
fo 0. (s)ds 0 R

(o )st%( , )% A+h 1( T )”2
00_7 d — 2 d . .
7 fo 0.(5)ds /0 ur(s)*ds) + " +T /O|uk(s)| s (2.8)

On the other hand, by multiplying equation (2.5) with u;(¢), and integrating it over the

It follows from |uy oo < ur(€) + T%(foT |u}((s)|2ds)% that

interval [0, T'], we obtain

T

T 9 T T
/ | (0)] dtz—k/ g (®)) i (0) dt+A/ p(t)uz(t) dt—k/ h(t)u(t) dt
0 0 0

0
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which together with the fact of g(x) > 0 for all x > 0 gives

T T T
/ | (O dt < 2 / Q. (Dup(t) dt + A / h_ ()i (£) dt
0 0 0

T T % T %
<l | |uk<t>|2dt+(/0 |uk(t)|2dt> (/0 |h_<t)|2dt),

T 1/2
(/ |L/k(t)|2dt>
0
T 3 T i T 1
1/2 2 2 2
VAR (/0 RG] dt) +<f0 RG] dt) (/0 |h_(2)] dt) ) (2.9)

By using Lemma 2, we have

T 9 1/2 T T ) 1/2
(/ |tk (s)| ds> 5—</ |1 (s)] ds) + VT ().
0 T \Jo

Substituting (2.7) and (2.9) into the above formula,

T 172
(/ |uk(t)|2dt>
0
[Iw 1/2</ (o) dt) +</T|u (t)|2dt)%</T|h (t)|2dt>%]
+ k o k ) -

1

5 2 Jo)3 2
T (fo _(s)? ds) (/‘ () ds) . A+h)T
fo @.(s)ds 0 [

T i oA+ )T}
- d @ d 2d> alaliie ety
01(/ ()] t) T (/y o[ t) (/0 o de) + 2

where

wl»—A

o1 = T| 2, T (fo ¢-(s)* ds)?
1= 19+
Jy @i(s)ds

€ (0,1),

which is determined by assumption [H;]. This gives

T 1/2
(/ |uk(t)|2dt>
(f h_()|* dt) (f |u(6)] dt>4+% (2.10)

r }
( / |uk(t)|2dt> <A, (2.11)
0
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where

T (T e\ (A AT\
A°‘n(1—al)</o -0 dt) +< (l—cn)ﬁ) ’

It follows from (2.9) that

T 1/2 T 1
</0 |u’k(t)|2dt> <|¢+|OOA§+A0(/O |h_(t)|2dt>. (212)

Substituting (2.11)-(2.12) into (2.8), we have

T 2 1 - T 1

_ ds)? A+|h 1

< (fo;ﬂ (S) 5) Ag+ +_| | +|(ﬂ+|ooA?)Té+A0T%(/ |h—(t)|2dt> ,
fo . (s)ds (7N 0

| k|oo

which together with (2.2) yields
ur(t) <My forallte[0,T]. (2.13)

By the definition of ky, we see from (2.3) that (2.13) contradicts (2.4). This contradiction
implies that the conclusion of Lemma 3 is true. O

3 Main results
Theorem 1 Assume that [H;]-[Hs] hold. Then equation (1.1) has at leat one positive T-
periodic solution.

Proof Firstly, we will show that there exist My, M, with M; > k*M and M, > 0 such that
each positive T-periodic solution u(¢) of equation (2.1) satisfies the inequalities

u(t) < My, |u/(t)| <M,, foralltel0,T]. (3.1)
In fact, if u is an arbitrary positive T-periodic solution of equation (2.1), then
u” + M ()’ — rg(u) + hp(@®)u = Lh(t), A €(0,1]. (3.2)

This implies u € £2. So by using Lemma 3 that there is a point ¢, € [0, 7] such that

u(ty) < k*M, (3.3)
and then
T 12
|tloo < K*M + T"? (/ |M/(s)|2ds) ) (3.4)
0

Integrating (3.2) over the interval [0, T'], we have

T T T
- f g(u(®)) dt + / oB)u(t)dt = / h(t) dt. (3.5)
0 0 0
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Since g(x) — +o0 as x — 0%, we see from (3.5) that there is a point t; € [0, 7] such that
u(t)) >y, (3.6)

where y < k*M is a positive constant, which is independent of A € (0,1]. Similar to the

proof of (2.9), we have

T 1/2
(/ |u’(t)|2dt>
0
T 3 T i T 1
1/2 2 2 2
<ol < /O @) dt) +< /O )| dt) ( /0 (o) dt) . (37)

By using Lemma 2, we have

T , \¥2 T T N
(/ |u(s)| ds) 5—([ |/ (5)| ds) +V/T|ulto)
0 T \Jo
where £, is determined in (3.3). Substituting (3.7) into (3.8), we have
T 1/2
(/ |u(t)\2dt>
0
T 3 T 1/ 0T 1
<Z[|¢+|;g</ |u(t)\2dt) +</ |u(t)\2dt) (/ |h_(t)|2dt>}
T 0 0 0

+T%k*M

T (o) ([ o) ([ eora)' i
_7T|(p+|°°(./o lu(t)|” dt = /0|h,(t)| dt /0|u(t)| dt) +T2k*M,

which results in

_Z 1/2)< T ) )1/2

(1 — ol fo\u(t)| dt
< Z(/T]h_(t)fdt)i</T]u(t)|2dt>i + TIKM. (3.9)
T \Jo 0

|1/2
00

) (3.8)

Since %l(er < o1 € (0,1), it follows from (3.9) that there is a constant p > 0, which is

independent of A € (0,1], such that

T 172
(/ ‘u(t)‘zdt) <P,
0

and then by (3.7), we have

T N T , \d
(/ |u’(t)| dt) <o + (/ |h_(t)| dt) V2.
0 0
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It follows from (3.4) that

r ;
2
|u|oc<k*M+T”2|go+|;§p+(Tp>“2</ |h-(2)] dt) =My,
0

u(t) <M;, foralltel0,T].

Page 9 of 13

(3.10)

Now, if # attains its maximum over [0, T] at ¢, € [0, T], then i/ (£,) = 0 and we deduce from

(3.2) that

u'(t) = A/ [—f(u)u’ +g(u) — p(t)u + h(t)] dt

2
for all ¢ € [ty, ¢, + T). Thus, if F' =f, then

tr+T

|/ (£)| < A|F(u(®)) - F(u(t))| + A/ g(u(0)) dt

12}

t+T to+T
+k/ |go(s)|u(s)ds+k/ |h(s)|ds

2 12}

T
<21 max |F(u)| +A/ g(u(s)) ds + ATgl|uloo + ATIH].
0

OSMSMI
From (3.2), we see that
T T B
/ g(u(s)) ds = / eB)u(t)dt - Th
0 0
<T@ |uloo + Th-.
It follows from (3.10) and (3.11) that
/(0] =22 max |FGo)| + TTglluloc + TiH])
< ZA(OgaS)A(AJF(u)‘ + M T|p| + T|h|)
= )LMQ, te [0, T],
and then

’u/(t)’ <M,, foralltel0,T].

Equations (3.10) and (3.13) imply that (3.1) holds.

(3.11)

(3.12)

(3.13)

Below, we will show that there exists a constant y, € (0, ), such that each positive T-

periodic solution of equation (2.1) satisfies

u(t) >y, foralltel0,T].

(3.14)
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Suppose that u(¢) is an arbitrary positive T-periodic solution of equation (2.1), then
u” + M () — rg(u) + hop®)u = Lh(t), A €(0,1]. (3.15)

Let #; be determined in (3.6). Multiplying (3.15) by /(¢) and integrating it over the interval
[t1,2] (or [t, 41]), we get

W@ | (t1

/f u) dt— f g(u)u’dt—k/tw(t)uu’dt+A/th(t)u’dt,

2 t t
which yields the estimate

ulnr) W@ |u(t)? T
/M g(s)ds'fuT+uTl+k/0 If )| (u')” dt

®)

A

T T
A/O |<p(t)uu !dt+)»/0 |h(t)u |dt.

From (3.10) and (3.12), we get

u(ty)
/ gls)ds
u(t)

which gives

u(ty)
/ gls)ds
u(t)

A

<AMj +h max |f(u)|TMj + MMM, T + AM, T h],

<1,{<M1

<Ms;, forallte(t,t;+T], (3.16)

with

M3-M + max [f |TM§+M1M2T|<7|+M2TW.
0<u<M;

From [Hj3] there exists y, € (0, y) such that

v
/ gw)du > Ms, forallne(0,y]. (3.17)
n

Therefore, if there is a t* € [£1, £ + T such that u(¢*) < yy, then from (3.17) we get

¥
f g(s)ds > Ms,
u(t*)

which contradicts (3.16). This contradiction gives that u(f) > y, for all £ € [0, T]. So (3.14)
holds. Let my = min{Dy, ¥o} and m; € (M; + D5, +00) be two constants, then from (3.1) and
(3.14), we see that each possible positive T-periodic solution u to equation (2.1) satisfies

my < u(t) < my, |u’(t)’ <M.

This implies that condition 1 and condition 2 of Lemma 1 are satisfied. Also, we can deduce
from Remark 1 that

glc) —@c+h>0, force (0,my]
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and
glc) —pc+ h<0, force [my,+00),
which results in

(g(mo) — @mo + h) (g(m) — @my + h) < 0.

So condition 3 of Lemma 1 holds. By using Lemma 1, we see that equation (1.1) has at least
one positive T-periodic solution. The proof is complete. O

Let us consider the equation
/7 J 1
X+ f)x - — + (t)x = h(), (3.18)
x

where f : [0, +00) — R is an arbitrary continuous function, ¢,% : R — R are T-periodic
functions with & € L}([0, T],R) and ¢ € C([0, T],R), and the sign of the function ¢ is
allowed to change for t € [0,T], y > 1 is a constant. Corresponding to equation (1.1),
glx) = xl—y For this case, g(x) — +00 as x — 0%, and assumptions [H;]-[Hs] are satisfied.
Thus, by using Theorem 1, we have the following results.

Corollary 1 Assume that the function ¢(t) satisfies the following conditions:

T ngo_(s) ds
(s)ds >0, =2 ¢l0,1
/0 ©.(s)ds > o fOT oo(6)ds €[0,1)

and

oroe D, T2 o-(P ds)?
1= — 1%+l
4 Jy @u(s)ds

€ (0,1).

Then, equation (3.18) possesses at least one positive T-periodic solution.

Remark 2 Corresponding to equation (1.4) and equation (1.5), the function g(¢,x) asso-
ciated to equation (3.18) can be regarded as

glt,u) = _uiy +ou—-nh(t), (tu)el0,T] x(0,+00). (3.19)

For the case of p(t) > 0 for all £ € [0, T], we see that if x is a positive T-periodic continuous
function satisfying fOT g(t,x(t)) dt = 0, then

T T T
/0 le(t) dtz/o (p(t)x(t)dt—/o h(z) dt. (3.20)

By applying the integral mean value theorem to the term fOT @(t)x(t) dt in equation (3.20),
one can easily verify that g(¢, u) determined in (3.19) satisfies the balance condition (h;).
However, if the sign of the function ¢(¢) is changeable for ¢ € [0, T], then it is unclear from
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(3.20) whether the balance condition (h;) is satisfied. For this case, the main results of [18,

19] cannot be applied to equation (3.18).

Corollary 2 Assume that the function ¢(t) satisfies ¢(t) > 0 for all t € [0,T] with
foT @(s)ds >0, and

2
s
[@loo < <?) .

Then, equation (3.18) possesses at least one positive T-periodic solution.

Example 1 Consider the following equation:

&(8) + f (x(2)) %' (6) — xzi(t) +a(l +2sin28)x(t) = cos 2¢, (3.21)

where f is an arbitrary continuous function, & € (0, +00) is a constant. Corresponding to
equation (3.18), we have y =2, ¢(£) = a(l + 2sin2¢t) and h(t) = cos2¢, T = z. By simply

calculating, we can verify that

T 27 3 T 3 7
/0¢+(t>dt=(?+§>a, /Ow_(t)dt:(i—g)a,

T
| o) ae- 25,
; 2

and then

fOT o_(s)ds 9-27
o = _

= = €(0,1)
fOT 0.(s)ds 4T +9
and
1,7 1
T T2 _(s)?ds)2 3m+/6
o1:= =g, |2+ (foT¢ (s ds) =3a+ n\/_'
fo @.(s)ds 47 +9

Thus, if 0 <a < %(%)2, then o7 € (0,1). By using Corollary 1, we see that equation

(3.21) has at least one positive 7 -periodic solution.

Remark 3 Since the sign of ¢(£) = 1+ 2sint is changed for ¢ € [0, T'], whether the right in-
equality of (1.6) in the balance condition (h;) is satisfied remains unclear. So the conclusion

of the example cannot be obtained by using the main results in [18, 19].
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