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Abstract
In this paper, we present new Poisson-type inequalities for Poisson integrals with
continuous data on the boundary. The obtained inequalities are used to obtain
growth properties at infinity of positive superharmonic functions in a smooth cone.
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1 Introduction
Cartesian coordinates of a point G of Rn, n ≥ , are denoted by (X, xn), where Rn is the n-
dimensional Euclidean space and X = (x, x, . . . , xn–). We introduce spherical coordinates
for G = (r,�) (� = (θ, θ, . . . , θn–)) by |x| = r,

{
xn = r cos θ, x = r(

∏n–
j= sin θj), n = ,

xn–m+ = r(
∏m–

j= sin θj) cos θm, n ≥ ,

where  ≤ r < +∞, – 
π ≤ θn– < 

π and  ≤ θj ≤ π for  ≤ j ≤ n –  (n ≥ ).
We denote the unit sphere and the upper half unit sphere by Sn– and Sn–

+ , respectively.
Let � ⊂ Sn–. The point (,�) and the set {�; (,�) ∈ �} are identified with � and �,
respectively. Let � × � denote the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �}, where � ⊂ R+. The
set R+ × � is denoted by �n(�), which is called a cone. Especially, the set R+ × Sn–

+ is
called the upper-half space, which is denoted by Tn. Let I ⊂ R. Two sets I × � and I × ∂�

are denoted by �n(�; I) and �n(�; I), respectively. We denote �n(�; R+) by �n(�), which
is ∂�n(�) – {O}.

Let B(G, l) denote the open ball, where G ∈ Rn is the center and l >  is the radius.

Definition  Let E be a subset of �n(�). If there exists a sequence of balls {Bk}
(k = , , , . . .) with centers in �n(�) satisfying

E ⊂
∞⋃

k=

Bk ,

then we say that E has a covering {rk , Rk}, where rk is the radius of Bk and Rk is the distance
from the origin to the center of Bk (see []).
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In spherical coordinate the Laplace operator is

�n = r–�n + r–(n – )
∂

∂r
+

∂

∂r ,

where �n is the Beltrami operator. Now we consider the boundary value problem

(�n + τ )h =  on �,

h =  on ∂�.

If the least positive eigenvalue of it is denoted by τ� , then we can denote by h�(�) the
normalized positive eigenfunction corresponding to it.

We denote by ι� (> ) and –κ� (< ) two solutions of the problem t + (n – )t – τ� = ,
Then ι� + κ� is denoted by �� for the sake of simplicity.

Remark  In the case � = Sn–
+ , it follows that

(I) ι� =  and κ� = n – .
(II) h�(�) =

√
n
wn

cos θ, where wn is the surface area of Sn–.

It is easy to see that the set ∂�n(�) ∪ {∞} is the Martin boundary of �n(�). For any
G ∈ �n(�) and any H ∈ ∂�n(�) ∪ {∞}, if the Martin kernel is denoted by MK(G, H),
where a reference point is chosen in advance, then we see that (see [])

MK(G,∞) = rι� h�(�) and MK(G, O) = cr–κ� h�(�),

where G = (r,�) ∈ �n(�) and c is a positive real number.
We shall say that two positive real valued functions f and g are comparable and write

f ≈ g if there exist two positive constants c ≤ c such that cg ≤ f ≤ cg .

Remark  Let � ∈ �. Then h�(�) and dist(�, ∂�) are comparable.

Remark  Let �(G) = dist(G, ∂�n(�)). Then h�(�) and �(G) are comparable for any
(,�) ∈ � (see []).

Remark  Let  ≤ α ≤ n. Then h�(�) ≤ c(�, n){h�(�)}–α , where c(�, n) is a constant
depending on � and n (e.g. see [], pp.-).

Definition  For any G ∈ �n(�) and any H ∈ �n(�). If the Green function in �n(�) is
defined by GF�(G, H), then:

(I) The Poisson kernel can be defined by

POI�(G, H) =
∂

∂nH
GF�(G, H),

where ∂
∂nH

denotes the differentiation at H along the inward normal into �n(�).
(II) The Green potential in �n(�) can be defined by

GF�ν(G) =
∫
�n(�)

GF�(G, H) dν(H),

where G ∈ �n(�) and ν is a positive measure in �n(�).
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Definition  For any G ∈ �n(�) and any H ∈ �n(�). Let μ be a positive measure on�n(�)
and g be a continuous function on �n(�). Then:

(I) The Poisson integral with μ can be defined by

POI�μ(G) =
∫
�n(�)

POI�(G, H) dμ(H).

(II) The Poisson integral with g can be defined by

POI�[g](G) =
∫
�n(�)

POI�(G, H)g(H) dσH ,

where dσH is the surface area element on �n(�).

Definition  Let μ be defined in Definition . Then the positive measure μ′ is defined by

dμ′ =

{
∂h� (�)

∂n�
t–κ�– dμ on �n(�; (, +∞)),

 on Rn – �n(�; (, +∞)).

Definition  Let ν be any positive measure in �n(�) satisfying

GF�ν(G) 
≡ +∞ ()

for any G ∈ �n(�). Then the positive measure ν ′ is defined by

dν ′ =

{
h�(�)t–κ� dν on �n(�; (, +∞)),
 on Rn – �n(�; (, +∞)).

Definition  Let μ and ν be defined in Definitions  and , respectively. Then the positive
measure ξ is defined by

dξ =

{
t––κ� dξ ′ on �n(�; (, +∞)),
 on Rn – �n(�; (, +∞)),

where

dξ ′ =

{
∂h� (�)

∂n�
dμ(H) on �n(�; (, +∞)),

h�(�)t dν(H) on �n(�; (, +∞)).

Remark  Let � = Sn–
+ . Then

GFSn–
+

(G, H) =

{
log |G – H∗| – log |G – H| if n = ,
|G – H|–n – |G – H∗|–n if n ≥ ,

where G = (X, xn), H∗ = (Y , –yn), that is, H∗ is the mirror image of H = (Y , yn) on ∂Tn.
Hence, for the two points G = (X, xn) ∈ Tn and H = (Y , yn) ∈ ∂Tn, we have

POISn–
+

(G, H) =
∂

∂ny
GFSn–

+
(G, H) =

{
xn|G – H|– if n = ,
(n – )xn|G – H|–n if n ≥ .

RETRACTED A
RTIC

LE



Luan and Vieira Journal of Inequalities and Applications  (2017) 2017:12 Page 4 of 10

Remark  Let g(H) be a continuous function on �n(�). If dμ = |g|dσH , then we define

dμ′′ =

{
∂h� (�)

∂n�
|g|t––κ� dσH on �n(�; (, +∞)),

 on Rn – �n(�; (, +∞)).

Remark  Let � = Sn–
+ . Then we define

d� =

{
d�′
|y|n on Tn,
 on Rn – Tn,

where

d�′(y) =

{
dμ on ∂Tn,
yndν on Tn.

Definition  Let λ be any positive measure on Rn having finite total mass. Then the max-
imal function M(G;λ,β) is defined by

M(G;λ,β) = sup
<ρ< r



ρ–βλ
(
B(G,ρ)

)

for any G = (r,�) ∈ Rn – {O}, where β ≥ . The exceptional set can be defined by

EX(ε;λ,β) =
{

G = (r,�) ∈ Rn – {O};M(G;λ,β)rβ > ε
}

,

where ε is a sufficiently small positive number.

Remark  Let β >  and λ({P}) >  for any P 
= O. Then
(I) Then M(G;λ,β) = +∞.

(II) {G ∈ Rn – {O};λ({P}) > } ⊂ EX(ε;λ,β).

Recently, Qiao and Wang (see [], Corollary . with m = ) proved classical Poisson-
type inequalities for Poisson integrals in a half space. Applications of them were also de-
veloped by Pang and Ychussie (see []) and Xue and Wang (see []). In particular, Huang
(see []) further obtained Schrödinger-Poisson-type inequalities for Poisson-Schrödinger
integrals and gave their related applications.

Theorem A Let g be a measurable function on ∂Tn satisfying

∫
∂Tn

∣∣g(y)
∣∣( + |y|)–n dy < ∞. ()

Then the harmonic function POISn–
+

[g](x) =
∫
∂Tn

POISn–
+

(x, y)g(y) dy satisfies

POISn–
+

[g] = o
(|x| secn– θ

)
()

as |x| → ∞ in Tn.
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2 Results
Our first aim in this paper is to prove the following result, which is a generalization of
Theorem A. For similar results with respect to Schrödinger operator, we refer the reader
to the literature (see [, ]).

Theorem  Let POI�μ(G) 
≡ +∞ for any G = (r,�) ∈ �n(�), where μ is a positive mea-
sure on �n(�). Then

POI�μ(G) = o
(
rι�

{
h�(�)

}–α)
, ()

for any G ∈ �n(�) – EX(ε;μ′, n – α) as r → ∞, where EX(ε;μ′, n – α) is a subset of �n(�)
and has a covering {rk , Rk} of satisfying

∞∑
k=

(
rk

Rk

)n–α

< ∞. ()

Let dμ = |g|dσH for any H = (t,�) ∈ �n(�). Then we have the following result, which
generalizes Theorem A to the conical case.

Corollary  If g is a measurable function on �n(�) satisfying

∫ ∞



∫
∂�

|g(H)|dσ�

t+ι�
dt < ∞. ()

Then the Poisson integral POI�[g](G) is harmonic in �n(�) and

POI�[g](G) = o
(
rι�

{
h�(�)

}–α)
()

for any G ∈ �n(�) –EX(ε;μ′′, n – α) as r → ∞, where EX(ε;μ′′, n – α) is a subset of �n(�)
and has a covering {rk , Rk} satisfying ().

Remark  If � = Sn–
+ , then it is easy to see that () is equivalent to () and () is a finite

sum, then the set EX(ε;μ′′, ) is a bounded set and () reduces to () in the case α = n from
Remark .

Let � = Sn–
+ . We immediately have the following results from Theorem .

Corollary  If μ is a positive measure on ∂Tn satisfying POISn–
+

μ(x) 
≡ +∞ for any x =
(X, xn) ∈ Tn, then

POISn–
+

μ(x) = 
(|x|)

for any x ∈ Tn –EX(ε;μ′, n – ) as |x| → ∞, where EX(ε;μ′, n – ) is a subset of �n(�) and
has a covering {rk , Rk} satisfying

∞∑
k=

(
rk

Rk

)n–

< ∞. ()
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Corollary  Let μ be defined as in Corollary . Then

POISn–
+

μ(x) = (xn)

for any x ∈ Tn – EX(ε;μ′, n) as |x| → ∞, where EX(ε;μ′, n) is a subset of �n(�) and has a
covering {rk , Rk} satisfying

∞∑
k=

(
rk

Rk

)n

< ∞. ()

The following result is very well known. We quote it from [].

Theorem B (see []) Let  < w(G) be a superharmonic function in Tn. Then there exist a
positive measure μ on ∂Tn and a positive measure ν on Tn such that w(x) can be uniquely
decomposed as

w(x) = cxn + POISn–
+

μ(x) + GFSn–
+

ν(x), ()

where x = (X, Xn) ∈ Tn and c is a nonnegative constant.

Theorem C (see [], Theorem ) Let  < w(G) be a superharmonic function in �n(�).
Then there exist a positive measure μ on �n(�) and a positive measure ν in �n(�) such
that w(G) can be uniquely decomposed as

w(G) = c(w)MK(G,∞) + c(w)MK(G, O) + POI�μ(G) + GF�ν(G), ()

where G ∈ �n(�), c(w), and c(w) are two constants dependent of w satisfying

c(w) = inf
G∈�n(�)

w(G)
MK(G,∞)

and c(w) = inf
G∈�n(�)

w(G)
MK(G, O)

.

As an application of Theorem  and Lemma  in Section , we give the growth properties
of positive superharmonic functions at infinity in a cone.

Theorem  Let w(G) ( 
≡ +∞) (G = (r,�) ∈ �n(�)) be defined by (). Then

w(G) – c(w)MK(G,∞) – c(w)MK(G, O) = o
(
rι�

)

for any G ∈ �n(�) –EX(ε; ξ , n – ) as r → ∞, where EX(ε; ξ , n – ) is a subset of �n(�) and
has a covering {rk , Rk} satisfying ().

Theorem  immediately gives the following corollary.

Corollary  Let w(x) ( 
≡ +∞) (x = (X, xn) ∈ Tn) be defined by (). Then w(x) – cxn = o(|x|)
for any x ∈ Tn – EX(ε;�, n – ) as |x| → ∞, where EX(ε;�, n – ) is a subset of �n(�) and
has a covering satisfying ().
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3 Lemmas
In order to prove our main results we need following lemmas. In this paper let M denote
various constants independent of the variables in questions, which may be different from
line to line.

Lemma  (see [], Lemma ) Let any G = (r,�) ∈ �n(�) and any H = (t,�) ∈ �n(�), we
have the following estimates:

POI�(G, H) ≤ Mr–κ� tι�–h�(�)
∂

∂n�

h�(�) ()

for  < t
r ≤ 

 ,

POI�(G, H) ≤ Mrι� t–κ�–h�(�)
∂

∂n�

h�(�) ()

for  < r
t ≤ 

 , and

POI�(G, H) ≤ Mh�(�)t–n ∂

∂n�

h�(�) + Mrh�(�)|G – H|–n ∂

∂n�

h�(�) ()

for r
 < t ≤ r

 .

Lemma  (see [], Lemma ) If β ≥  and λ is positive measure on Rn having finite total
mass, then exceptional set EX(ε;λ,β) has a covering {rk , Rk} (k = , , . . .) satisfying

∞∑
k=

(
rk

Rk

)β

< ∞.

The estimation of the Green potential at infinity is the following, which is due to [].

Lemma  If ν is a positive measure on �n(�) such that () holds for any G ∈ �n(�). Then

GF�ν(G) = o
(
rι�

{
h�(�)

}–α)

for any G = (r,�) ∈ �n(�) – EX(ε;ν ′, n – α) as r → ∞, where EX(ε;ν ′, n – α) is a subset of
�n(�) and has a covering {rk , Rk} satisfying ().

4 Proof of Theorem 1
Let G = (r,�) be any point in the set �n(�; (L, +∞)) – EX(ε;μ′, n – α), where r is a suffi-
ciently large number satisfying r ≥ l

 .
Put

POI�μ(G) = POI
�(G) + POI

�(G) + POI
�(G),
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where

POI
�(G) =

∫
�n(�;(, 

 r])
POI�(G, H) dμ(H),

POI
�(G) =

∫
�n(�;( 

 r, 
 r))

POI�(G, H) dμ(H),

POI
�(G) =

∫
�n(�;[ 

 r,∞))
POI�(G, H) dμ(H).

We have the following estimates:

POI
�(G) ≤ Mrι� h�(�)

(



r
)–��

∫
�n(�;(, 

 r])
tι�– ∂

∂n�

h�(�) dμ(H)

≤ Mεrι� h�(�), ()

POI
�(G) ≤ Mrι� h�(�)

∫
�n(�;[ 

 r,∞))
t–κ�– ∂

∂n�

h�(�) dμ(H)

≤ Mεrι� h�(�), ()

from (), (), and [], Lemma .
By (), we write

POI
�(G) ≤POI

� (G) + POI
� (G),

where

POI
� (G) = M

∫
�n(�;( 

 r, 
 r))

tκ�+h�(�)t–n dμ′(H),

POI
� (G) = M

∫
�n(�;( 

 r, 
 r))

tκ�+rh�(�)|G – H|–n dμ′(H).

We first have

POI
� (G) ≤ Mrι� h�(�)

∫
�n(�;( 

 r,∞))
dμ′(H)

≤ Mεrι� h�(�) ()

from [], Lemma .
Next, we shall estimate POI

� (G). We can find a number k satisfying k ≥  and

�n

(
�;

(



r,



r
))

⊂ B
(

G,
r


)

for any G = (r,�) ∈ �(k), where

�(k) =
{

G = (r,�) ∈ �n(�); inf
z∈∂�

∣∣(,�) – (, z)
∣∣ < k,  < r < ∞

}
.

Then the set �n(�) can be split into two sets �(k) and �n(�) – �(k).
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Let G = (r,�) ∈ �n(�) – �(k). Then

|G – H| ≥ k′
r,

where H ∈ �n(�) and k′
 is a positive number. So

POI
� (G) ≤ Mrι� h�(�)

∫
�n(�;( 

 r,∞))
dμ′(H)

≤ Mεrι� h�(�) ()

from [], Lemma .
If G ∈ �(k), we put

Fl(G) =
{

H ∈ �n

(
�;

(



r,



r
))

; l–�(G) ≤ |G – H| < l�(G)
}

.

Since �n(�) ∩ {H ∈ Rn : |G – H| < �(G)} = ∅, we have

POI
� (G) = M

l(G)∑
i=

∫
Fl(G)

tκ�+rh�(�)|G – H|–n dμ′(H),

where l(G) is a positive integer satisfying l(G)–�(G) ≤ r
 < l(G)�(G).

By Remark  we have rh�(�) ≤ M�(G) (G = (r,�) ∈ �n(�)), and hence

∫
Fl(G)

tκ�+rh�(�)
|G – H|n dμ′(H) ≤ Mrκ�–α+{h�(�)

}–α
μ′(Fl(G)

){
l�(G)

}α–n

for l = , , , . . . , l(G).
Since G = (r,�) /∈ EX(ε;μ′, n – α), we have

μ′(Fl(G)
){

l�(G)
}α–n ≤ μ′(B

(
G, l�(G)

)){
l�(G)

}α–n ≤M
(
G;μ′, n – α

) ≤ εrα–n

for l = , , , . . . , l(G) –  and

μ′(Fl(G)(G)
){

l�(G)
}α–n ≤ μ′

(
B
(

G,
r


))(
r


)α–n

≤ εrα–n.

So

POI
� (G) ≤ Mεrι�

{
h�(�)

}–α . ()

From (), (), (), (), (), and Remark , we obtain POI�μ(G) = o(rι� {h�(�)}–α)
for any G = (r,�) ∈ �n(�; (L, +∞)) – EX(ε;μ′, n – α) as r → ∞, where L is a sufficiently
large real number. With Lemma  we have the conclusion of Theorem .
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5 Proof of Corollary 1
Let G = (r,�) be a fixed point in �n(�). Then there exists a number R satisfying
max{ r

 , } < R. There exists a positive constant M′ such that

POI�(G, H) ≤ M′rι� t–κ�–h�(�) ()

from Remark  and (), where H = (t,�) ∈ �n(�) satisfying  < r
t ≤ 

 .
Let M = M′c–

n rι� h�(�). Then we have from () and ()

∫
�n(�;(R,+∞))

∣∣g(H)
∣∣POI�(G, H) dσH ≤ M

∫ ∞

R
t–ι�–

(∫
∂�

∣∣g(t,�)
∣∣dσ�

)
dt < ∞.

For any G ∈ �n(�), it is easy to see that POI�[g](G) is finite, which means that
POI�[g](G) is a harmonic function of G ∈ �n(�). Meanwhile, Theorem  gives (). The
proof of Corollary  is completed.
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