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Abstract
This paper formulates an infected predator-prey model with Beddington-DeAngelis
functional response from a classical deterministic framework to a stochastic
differential equation (SDE). First, we provide a global analysis including the global
positive solution, stochastically ultimate boundedness, the persistence in mean, and
extinction of the SDE system by using the technique of a series of inequalities.
Second, by using Itô’s formula and Lyapunov methods, we investigate the asymptotic
behaviors around the equilibrium points of its deterministic system. The solution of
the stochastic model has a unique stationary distribution, it also has the
characteristics of ergodicity. Finally, we present a series of numerical simulations of
these cases with respect to different noise disturbance coefficients to illustrate the
performance of the theoretical results. The results show that if the intensity of the
disturbance is sufficiently large, the persistence of the SDE model can be destroyed.

Keywords: stochastic eco-epidemiology model; Hölder inequality and Chebyshev
inequality; asymptotic behavior; persistence in mean; stationary distribution

1 Introduction
Mathematical inequalities play a large role in mathematics analysis and its application.
Recently, the inequality technique was applied to impulsive differential systems [, ] and
stochastic differential systems [–], thus some new results were obtained.

Predation can have far-reaching effects on biological communities. Thus many scien-
tists have studied the interaction between predator and prey [–]. Interaction between
predator and prey is hard to avoid being influenced by some factors. One of the most
common factors is the disease. Therefore, there are many scholars who have studied the
infected predator-prey systems [–]. For instance, Hadeler and Freedman [] consid-
ered a predator-prey system with parasitic infection. They proved the epidemic threshold
theorem for where there is coexistence of the predator with the uninfected prey. Han and
Ma [] analyzed four modifications of a predator-prey model to include an SIS or SIR
parasitic infection. They obtained the thresholds and global stability results of the four
systems.

Species may be subject to uncertain environmental disturbances, such as fluctuations
of birth rate and death rate, food, habitat and water, etc. These phenomena can be de-
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scribed by stochastic processes. Recently, the stochastic predator-prey systems have re-
ceived much attention from scholars [–]. Zhang and Jiang [] studied a stochas-
tic three species eco-epidemiological system. They analyzed the stochastic stability and
asymptotic behaviors around the equilibrium points of its deterministic model. Liu and
Wang [] considered a two-species non-autonomous predator-prey model with white
noise. They obtained the sufficient criteria for extinction, non-persistence in the mean,
and weak persistence in the mean.

The functional response of predator is a very important factor of predator-prey system,
which reflects the average consumption rate of predator to prey. Therefore, many schol-
ars prefer to study the predator-prey system with functional response [–]. For in-
stance, Wang and Wei [] explored a predator-prey system with strong Allee effect and
an Ivlev-type functional response. Liu and Beretta [] studied a predator-prey model
with a Beddington-DeAngelis functional response. Some biologists have argued that in
many instances, especially when predators have to hunt for food and, therefore, have to
share or compete for food, the functional response in a prey-predator model should be
predator-dependent. This view has been supported by some practical observations [,
]. Skalski and Gilliam [] collected observation data from  predator-prey commu-
nities, they found that three predator-dependent functional responses (Crowley-Martin
[], Hassell-Varley [] and Beddington-DeAngelis [, ]) were in agreement with the
observation data, and in many instances, the Beddington-DeAngelis type looked better
than the other two.

The Beddington-DeAngelis type functional response of per capita feeding rate can be
expressed as follows:

F(x, y) =
axy

 + px + qy
,

where a (units: time–) represents the effects of capture rate on the feeding rate, p (units:
prey–) denotes the effects of handling time on the feeding rate, q (units: predator–) repre-
sents the magnitude of interference among predators. Compared with the Holling II func-
tional response, the Beddington-DeAngelis type functional response has an additional
term qy in the denominator. In other words, this type of functional response is affected by
both predator and prey. Therefore, the effect of mutual interference on the dynamics of
population is worth studying.

To the best of our knowledge, the research on global asymptotic behaviors of a stochas-
tic infected predator-prey system with Beddington-DeAngelis has not gone very far yet.
Therefore, according to a deterministic predator-prey model, this paper investigates the
stationary distribution and ergodic property of a stochastic infected predator-prey with
Beddington-DeAngelis and explores the influence of white noise on the persistence in
mean and extinction of the predator-prey-disease system.

First of all, a deterministic predator-prey system is described in [] by

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = X(t)[b – aX(t) – aS(t)
+pX(t)+qS(t) ],

Ṡ(t) = S(t)[–c – aS(t) + aX(t)
+pX(t)+qS(t) – βI(t)],

İ(t) = I(t)[–d – aI(t) + βS(t)],

()
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where X(t) is the population density of prey at time t, S(t) and I(t), respectively, stand
for the densities of susceptible predator and infected predator at time t, b is the intrinsic
growth rate of X(t), c is the natural mortality rate of S(t), d is the diseased death rate of
I(t). a, a, a, respectively, stand for the density coefficients of X(t), S(t) and I(t). a

is the captured rate of X(t), a
a

is the conversion rate from X(t) to S(t), β represents the
infection rate from S(t) to I(t), p, q >  are constant coefficients.

Second, the world is full of uncertainty and random phenomena, so species in the
ecosystem may be subject to different forms of random interference. In this paper, we
assume that the disturbance in the environment affects not only the rate of predation but
also the infection rate of the disease, so that

a → a + σḂ, a → a + σḂ, β → β + σ Ḃ,

where B(t) and B(t) are standard Brownian motions, σ 
,σ 

, and σ  are the intensities
of the Brownian motions.

Taking into account the effects of random interference gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = X(t)[b – aX(t) – aS(t)
+pX(t)+qS(t) ] dt – σS(t)X(t)

+pX(t)+qS(t) dB(t),

dS(t) = S(t)[–c – aS(t) + aX(t)
+pX(t)+qS(t) – βI(t)] dt

+ σS(t)X(t)
+pX(t)+qS(t) dB(t) – σS(t)I(t) dB(t),

dI(t) = I(t)[–d – aI(t) + βS(t)] dt + σS(t)I(t) dB(t).

()

The rest of this paper is organized as follows. In the next section, we consider the exis-
tence of a global positive solution and the stochastically ultimate boundedness of model
(). In Section , we study the global asymptotic behaviors of model () around the equilib-
rium points of its deterministic system. In addition, we explore the stationary distribution
and ergodic property of model (). In Section , we obtain the conditions for the persis-
tence in mean and extinction of model (). In the last section, we summarize our main
results and give some numerical simulations.

Throughout this paper, let (�,F , {F}t≥,P) be a complete probability space with a filtra-
tion {Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous while
F contains all P-null sets). The function Bi(t) (i = , ) is a Brownian motion defined on
the complete probability space �. For an integrable function X(t) on [, +∞), we define
〈X(t)〉 = 

t
∫ t

 X(s) ds, 〈X(t)〉∗ = lim inft→+∞〈X(t)〉, 〈X(t)〉∗ = lim supt→+∞〈X(t)〉.

2 Global positive solution and stochastically ultimate boundedness
2.1 Global positive solution
Due to the physical meaning, variables S(t), I(t), and Y (t) in model () should remain
nonnegative for t ≥ . We next prove that this is actually the case and, furthermore, the
positive solution is unique.

Lemma . For any initial value (X(), S(), I()) ∈ R
+, model () has a local unique pos-

itive solution (X(t), S(t), I(t)) on t ∈ [, τe), where τe is the explosion time.

Theorem . For any initial value (X(), S(), I()) ∈ R
+, model () has a unique positive

solution (X(t), S(t), I(t)) ∈ R
+ on t ≥  with probability .
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Proof By Lemma ., we only need to prove that τe = ∞ a.s. To this end, let k >  be a
sufficiently large constant such that X(), S() and I() all lie in [ 

k
, k]. For each k ≥ k

(k ∈ N+), define the stopping time

τk = inf

{

t ∈ [, τe] : X(t) /∈
(


k

, k

)

, S(t) /∈
(


k

, k

)

or I(t) /∈
(


k

, k

)}

.

As is easy to see, τk is a monotonically increasing function when k → ∞. Let τ∞ =
limk→∞τk , thus τ∞ ≤ τe a.s. Now we need to prove τ∞ = ∞ a.s., otherwise, there exist two
constants T >  and ε ∈ (, ) such that P{τ∞ ≤ T} > ε. Thus, there is an integer k ≥ k

such that

P{τ∞ ≤ T} > ε, k ≥ k. ()

Define a C-function V : R
+ → R+,

V (X, S, I) = X –  – ln X + S –  – ln S + I –  – ln I.

The non-negativity of the function V (X, S, I) can be seen by u –  – ln u ≥ , u > .
Applying Itô’s formula to the stochastic differential system () yields

dV = LV dt –
σ(X – )S
 + pX + qS

dB(t) +
σ(S – )X
 + pX + qS

dB(t)

– σ (S – )I dB(t) + σ (I – )S dB(t),

where

LV = (X – )
(

b – aX –
aS

 + pX + qS

)

+
σ 

S

( + pX + qS)

+ (S – )
(

–c – aS +
aX

 + pX + qS
– βI

)

+
σ 

X

( + pX + qS)

+ (I – )(–d – aI + βS) +


σ S +



σ I

= bX – aX –
aSX

 + pX + qS
– b + aX +

aS
 + pX + qS

+
σ 

S

( + pX + qS)

– cS – aS +
aXS

 + pX + qS
+ c + aS –

aX
 + pX + qS

+ βI

+
σ 

X

( + pX + qS) +


σ I – dI – aI + d + aI – βS +



σ S

≤ –
[

aX – (b + a)X –
a

q
–

σ 


q

]

–
[

aS –
(

a +
a

p

)

S – c –
σ 


p

]

–
[
aI – (β + a)I – d

]
+



σ (S + I).
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Since

d( σ
σ

X + S + I)
dt

+
(

σ

σ
X + S + I

)

=
σ

σ
X

(

 + b – aX –
aS

 + pX + qS

)

+ S
(

 – c – aS +
aX

 + pX + qS
– βI

)

+ I[ – d – aI + βS]

≤ –
σ

σ

[
aX – (b + )X

]
–

[

aS –
(

 +
a

p

)

S
]

–
(
aI – I

)

≤  · max

{
σ(b + )

σa
,

( + a
p )

a
,


a

}

≤ C,

where C is a positive constant.
Then we have

σ

σ
X(t) + S(t) + I(t) ≤

(
σ

σ
X() + S() + I()

)

e–t + C
(
 – e–t)

≤ e–t
(

σ

σ
() + S() + I() + C

(
et – 

)
)

≤ max

{
σ

σ
X() + S() + I(), C

}

and

lim sup
t→∞

(
σ

σ
X(t) + S(t) + I(t)

)

≤ C. ()

Therefore, we have

LV ≤ –
[

aX – (b + a)X –
a

q
–

σ 


q

]

–
[

aS –
(

a +
a

p

)

S – c –
σ 


p

]

–
[
aI – (β + a)I – d

]
+ σ C



≤ K,

where K is a positive constant.
So we have

dV ≤ K dt –
σ(X – )S
 + pX + qS

dB(t) +
σ(S – )X
 + pX + qS

dB(t)

– σ (S – )I dB(t) + σ (I – )S dB(t). ()

Integrating () from  to τk ∧ T and taking expectation on both sides, we have

EV
(
X(τk ∧ T), S(τk ∧ T), I(τk ∧ T)

) ≤ V
(
X(), S(), I()

)
+ KT . ()
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Let �k = {τk ≤ T}, from inequality () we can see that P(�k) ≥ ε. Note that, for every
ω ∈ �k , there exists at least one of X(τk ,ω), S(τk ,ω), I(τk ,ω) that equals either k or 

k . As a
result, we have

V
(
X(τk ∧ T), S(τk ∧ T), I(τk ∧ T)

) ≥ (k –  – ln k) ∧
(


k

–  – ln

k

)

. ()

Applying equation () and equation (), we get

V
(
X(), S(), I()

)
+ KT

≥ E
[
�k(ω)V

(
X(τk ∧ T), S(τk ∧ T), I(τk ∧ T)

)]

≥ ε(k –  – ln k) ∧
(


k

–  – ln

k

)

,

where �k is the indicator function of �k .
When k → ∞, we have

∞ > V
(
X(), S(), I()

)
+ KT = ∞.

This is a contradiction. So τ∞ = ∞. �

2.2 Stochastically ultimate boundedness
Theorem . shows that R

+ is the positive invariant set of model (). Now we prove the
stochastically ultimate boundedness of model ().

Definition . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(),
S(), I()) ∈ R

+. If, for any ε ∈ (, ), there exists a χ (= χ (ω)) >  such that the solution of
model () satisfies

lim sup
t→∞

P
{∣
∣
(
X(t), S(t), I(t)

)∣
∣ > χ

}
< ε,

then model () has stochastically ultimate boundedness.

Lemma . The following elementary inequality will be used frequently in the sequel.
() xr ≤  + r(x – ), x ≥ ,  ≥ r ≥ ,
() n(–p/)∧|x|p ≤ ∑n

i= xp
i ≤ n(–p/)∨|x|p,

where Rn
+ := {x ∈ Rn : xi > ,  ≤ i ≤ n}, n ∈ R+, p > .

Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+, then (X(t), S(t), I(t)) is stochastically ultimate boundedness.

Proof Define

V (X, S, I) = X

 + S


 + I


 ,

(
X(t), S(t), I(t)

) ∈ R
+.
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Applying Itô’s formula to stochastic differential system () yields

dV = LV dt –
σX 

 S
( + pX + qS)

dB(t) +
σS 

 X
( + pX + qS)

dB(t)

–


σS


 I dB(t) +



σ I


 S dB(t),

where

LV =



X



(

b – aX –
aS

 + pX + qS

)

–
σ 

X 
 S

( + pX + qS)

+



S



(

–c – aS +
aX

 + pX + qS
– βI

)

–
σ 

S 
 X

( + pX + qS)

+



I

 (–d – aI + βS) –



σ S


 I –



σ I


 S

≤ –



aX

 +




bX

 –




aS

 +

a

p
S


 –




aI

 +



βI


 S.

Applying the Hölder inequality ab ≤ ap

p + bq

q , 
p + 

q =  (p, q > ), we have

I

 S ≤ 


I


 +




S

 .

Therefore,

LV ≤ –



aX

 +




(b + )X

 –




(

a –


β

)

S

 +




(
a

p
+ 

)

S



–



(

a –


β

)

I

 + I


 –

(
X


 + S


 + I



)

≤ H – V (X, S, I),

where H >  is a positive constant.
Thus

dV ≤ [
H – V (X, S, I)

]
dt –

σX 
 S

( + pX + qS)
dB(t) +

σS 
 X

( + pX + qS)
dB(t)

–


σS


 I dB(t) +



σ I


 S dB(t).

Applying Itô’s formula to etV (X, S, I) yields

d
(
etV (X, S, I)

)
= et[V (X, S, I) dt + dV (X, S, I)

]

≤ etH dt + et
[

–
σX 

 S
( + pX + qS)

dB(t) +
σS 

 X
( + pX + qS)

dB(t)

–


σS


 I dB(t) +



σ I


 S dB(t)

]

.
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So we have

etEV (X, S, I) ≤ V
(
X(), S(), I()

)
+ H

(
et – 

)

and

lim sup
t→+∞

EV (X, S, I) ≤ H.

Applying the second inequality of Lemma . and letting n = , p = 
 , we have



 ∧∣∣

(
X(t), S(t), I(t)

)∣
∣


 ≤ V (X, S, I).

Thus, we obtain

lim sup
t→+∞

E
∣
∣
(
X(t), S(t), I(t)

)∣
∣


 ≤ H .

Therefore, for any ε > , set χ = H

ε , applying the Chebyshev inequality, we have

P
{∣
∣
(
X(t), S(t), I(t)

)∣
∣ > χ

} ≤ E|(X(t), S(t), I(t))| 
√

χ
,

that is,

lim sup
t→∞

P
{∣
∣
(
X(t), S(t), I(t)

)∣
∣ > χ

} ≤ ε. �

3 Asymptotic behaviors
System () has three equilibrium points []: (i) when R = ab

c(a+pb) < , system () has
an equilibrium point E(K , , ); (ii) when R = ab

c(a+pb) >  and R = ab
(c+ da

β
)(a+pb+ qda

β
)

<

, system () has another disease free equilibrium point E(X, S, ); (iii) when R =
ab

(c+ da
β

)(a+pb+ qda
β

)
> , system () has a positive equilibrium point E(X∗, S∗, I∗). For its

stochastic system (), however, these equilibrium points do not exist.
In this section, we study the asymptotic behaviors of model () around the three equi-

librium points E(K , , ), E(X, S, ), and E(X∗, S∗, I∗) of its deterministic model (), re-
spectively.

3.1 Asymptotic behaviors around the equilibrium point E1 of system (1)
When R < , system () has an equilibrium point E(K , , ) = ( b

a
, , ), but it is not the

equilibrium point of system (). In this subsection, we study the asymptotic behaviors of
system () around E(K , , ).

Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+. If R <  and K = b
a

≤ c
a

, then

lim sup
t→∞


t

∫ t



[(
X(θ ) – K

) + S(θ ) + I(θ )
]

dθ ≤ σ 
K

qW
,

where W = min{a, aa
a

, aa
a

}.
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Proof Note that (K , , ) is the equilibrium point of system (), where K = b
a

.
Define

V (X, S, I) =
(

X – K – K ln
X
K

)

+
a

a
(S + I).

Applying Itô’s formula to stochastic differential system () yields

dV =LV dt –
σ(X – K)S
 + pX + qS

dB(t) +
aσSX

a( + pX + qS)
dB(t), ()

where

LV = (X – K)
[

b – aX –
aS

 + pX + qS

]

+
σ 

KS

( + pX + qS)

+
a

a

[

S
(

–c – aS +
aX

 + pX + qS
– βI

)

– I(d + aI – βS)
]

= (X – K)
[

b – a(X – K) – aK –
aS

 + pX + qS

]

+
σ 

KS

( + pX + qS)

+
a

a

[

S
(

–c – aS +
aX

 + pX + qS
– βI

)

– I(d + aI – βS)
]

≤ –a(X – K) +
aKS

 + pX + qS
+

σ 
KS

( + pX + qS) –
a

a

(
cS + aS + aI)

≤ –a(X – K) + a

(

K –
c

a

)

S +
σ 

K
q –

aa

a
S –

aa

a
I

≤ –a(X – K) –
aa

a
S –

aa

a
I +

σ 
K

q .

Integrating equation () from  to t, we obtain

V (t) – V () ≤ –
∫ t


a

(
X(θ ) – K

) dθ –
aa

a

∫ t


S(θ ) dθ

–
aa

a

∫ t


I(θ ) dθ +

σ 
K

q t + M(t), ()

where

M(t) =
∫ t



[

–
σ(X(θ ) – K)S(θ )
 + pX(θ ) + qS(θ )

+
aσS(θ )X(θ )

a( + pX(θ ) + qS(θ ))

]

dB(θ )

is a real-valued continuous local martingale.
Thus

lim sup
t→+∞

〈M, M〉t

t
= lim sup

t→+∞

t

∫ t



[

–
σ(X(θ ) – K)S(θ )
 + pX(θ ) + qS(θ )

+
aσS(θ )X(θ )

a( + pX(θ ) + qS(θ ))

]

dθ

≤ C
[

σ 


q +
a

σ



a
q

]

< +∞.

Applying the strong law of large numbers, we obtain limt→+∞ M(t)
t = .
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Dividing equation () by t and taking the limit superior, we have

lim sup
t→∞


t

∫ t



[

a
(
X(θ ) – K

) +
aa

a
S(θ ) +

aa

a
I(θ )

]

dθ ≤ σ 
K

q ,

thus

lim sup
t→∞


t

∫ t



[
a

(
X(θ ) – K

) + S(θ ) + I(θ )
]

dθ ≤ σ 
K

qW
. �

Corollary . From Theorem ., when σ = , we have

LV ≤ –a(X – K) –
aa

a
S –

aa

a
I ≤ ,

thus when R <  and K = b
a

≤ c
a

hold, the equilibrium point E(K , , ) of system () is
globally asymptotically stable.

Remark . From Theorem ., if the interference intensity is sufficiently small, the so-
lution of model () will fluctuate around the equilibrium point E(K , , ). Moreover, the
fluctuation intensity is related with the disturbance intensity: the fluctuation intensity is
positively correlated with the value of σ.

3.2 Asymptotic behaviors around the equilibrium point E2 of system (1)
When R >  and R < , system () has an equilibrium point E(X, S, ), but it is not the
equilibrium point of system (). In this subsection, we study the asymptotic behaviors of
system () around E(X, S, ).

Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+. If R > , R <  and aq > ap, then we have

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X

) +
(
S(θ ) – S

) + I(θ )
]

dθ ≤ U

W
,

where

U =
σ 

X
q +

a( + pX)
a( + qS)

(
σ 

S
p +

σ S


C


)

and

W = min

{

a –
ap

q
,

aa( + pX)
a( + qS)

,
aa( + pX)

a( + qS)

}

.

Proof Noting that (X, S, ) is the equilibrium point of system (), thus

b – aX –
aS

 + pX + qS
= , c + aS –

aX
 + pX + qS

= .
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Define

V (X, S, I) =
(

X – X – X ln
X
X

)

+
a( + pX)
a( + qS)

(

S – S – S ln
S
S

)

+
a( + pX)
a( + qS)

I

:= V +
a( + pX)
a( + qS)

V +
a( + pX)
a( + qS)

V.

Applying Itô’s formula to stochastic differential system () yields

dV = LV dt –
σ(X – X)S
 + pX + qS

dB(t),

where

LV = (X – X)
[

b – aX –
aS

 + pX + qS

]

+
σ 

XS

( + pX + qS)

= (X – X)
[

b – a(X – X) – aX –
aS

 + pX + qS

]

+
σ 

XS

( + pX + qS)

= (X – X)
[

–a(X – X) + a
pS(X – X) – (S – S)( + pX)
( + pX + qS)( + pX + qS)

]

+
σ 

XS

( + pX + qS)

= – a(X – X) +
apS(X – X)

( + pX + qS)( + pX + qS)
–

a( + pX)(S – S)(X – X)
( + pX + qS)( + pX + qS)

+
σ 

XS

( + pX + qS) .

Similarly,

dV = LV dt +
σ(S – S)X
 + pX + qS

dB(t) – σ (S – S)I dB(t),

where

LV = (S – S)
[

–c – aS +
aX

 + pX + qS
– βI

]

+
σ 

SX

( + pX + qS) +
σ S


I

= (S – S)
[

–c – a(S – S) – aS +
aX

 + pX + qS
– βI

]

+
σ 

SX

( + pX + qS) +
σ S


I

= (S – S)
[

–a(S – S) + a
(X – X)( + qS) – qX(S – S)
( + pX + qS)( + pX + qS)

– βI
]

+
σ 

SX

( + pX + qS) +
σ S


I

= – a(S – S) + a
( + qS)(X – X)(S – S)

( + pX + qS)( + pX + qS)
– a

qX(S – S)

( + pX + qS)( + pX + qS)

– βI(S – S) +
σ 

SX

( + pX + qS) +
σ S


I.
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Also, we have

dV = I(t)[–d – aI + βS] dt + σSI dB(t).

Hence

dV = LV dt –
σ(X – X)S
 + pX + qS

dB(t) +
a( + pX)
a( + qS)

[
σ(S – S)X
 + pX + qS

dB(t)

– σ (S – S)I dB(t) + σSI dB(t)
]

, ()

where

LV = LV +
a( + pX)
a( + qS)

LV +
a( + pX)
a( + qS)

LV

= – a(X – X) +
apS(X – X)

( + pX + qS)( + pX + qS)
–

a( + pX)(S – S)(X – X)
( + pX + qS)( + pX + qS)

+
σ 

XS

( + pX + qS) +
a( + pX)
a( + qS)

[

–a(S – S) + a
( + qS)(X – X)(S – S)

( + pX + qS)( + pX + qS)

– a
qX(S – S)

( + pX + qS)( + pX + qS)
– βI(S – S) +

σ 
SX

( + pX + qS) +
σ S


I

+ I(–d – aI + βS)
]

≤ –
(

a –
ap

q

)

(X – X) –
aa( + pX)

a( + qS)
(S – S) –

aa( + pX)
a( + qS)

I

+
a( + pX)
a( + qS)

(βS – d)I +
σ 

XS

( + pX + qS)

+
a( + pX)
a( + qS)

(
σ 

SX

( + pX + qS) +
σ S


I

)

.

Since βS < d, thus

LV ≤ –
(

a –
ap

q

)

(X – X) –
aa( + pX)

a( + qS)
(S – S) –

aa( + pX)
a( + qS)

I

+
σ 

X
q +

a( + pX)
a( + qS)

(
σ 

S
p +

σ 
 S


C


)

.

Integrating both sides of equation () from  to t yields

V (t) – V () ≤
∫ t



[

–
(

a –
ap

q

)
(
X(θ ) – X

)

–
aa( + pX)

a( + qS)
(
S(θ ) – S

) –
aa( + pX)

a( + qS)
I(θ )

]

dθ

+
[

σ 
X

q +
a( + pX)
a( + qS)

(
σ 

S
p +

σ S


C


)]

t + M(t) + M(t), ()
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where

M(t) =
∫ t



[

–
σ(X(θ ) – X)S(θ )
 + pX(θ ) + qS(θ )

+
a( + pX)
a( + qS)

σ(S(θ ) – S)X(θ )
 + pX(θ ) + qS(θ )

]

dB(θ )

and

M(t) =
∫ t



aσ ( + pX)SI(θ )
a( + qS)

dB(θ )

are real-valued continuous local martingales.
Thus

lim sup
t→+∞

〈M, M〉t

t

= lim sup
t→+∞


t

∫ t



[

–
σ(X(θ ) – X)S(θ )
 + pX(θ ) + qS(θ )

+
a( + pX)
a( + qS)

σ(S(θ ) – S)X(θ )
 + pX(θ ) + qS(θ )

]

dθ

≤ C


[
σ 


q +

a
σ


( + pX)

a
p( + qS)

]

< +∞

and

lim sup
t→+∞

〈M, M〉t

t
= lim sup

t→+∞

t

∫ t



[
aσ ( + pX)SI(θ )

a( + qS)

]

dθ

≤ C


[
a

σ
S( + pX)

( + qS)

]

< +∞.

Applying the strong law of large numbers, we have limt→+∞ Mi(t)
t =  (i = , ).

Dividing equation () by t and taking the limit superior, we have

lim sup
t→+∞


t

∫ t



[(

a –
ap

q

)
(
X(θ ) – X

) +
aa( + pX)

a( + qS)
(
S(θ ) – S

)

+
aa( + pX)

a( + qS)
I(θ )

]

dθ ≤ σ 
X

q +
a( + pX)
a( + qS)

(
σ 

S
p +

σ S


C


)

.

Thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X

) +
(
S(θ ) – S

) + I(θ )
]

dθ ≤ U

W
. �

Corollary . From Theorem ., when σ = σ = σ = , we have

LV ≤ –
(

a –
ap

q

)

(X – X) –
aa( + pX)

a( + qS)
(S – S) –

aa( + pX)
a( + qS)

I ≤ ,

thus when aq > ap, R >  and R <  hold, the equilibrium point E(X, S, ) of system ()
is globally asymptotically stable.
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Remark . From Theorem ., if the interference intensity is sufficiently small, the so-
lution of model () will fluctuates around the equilibrium point E(X, S, ). Moreover, the
fluctuation intensity is related with the disturbance intensity: the fluctuation intensity is
positively correlated with the value of σ,σ and σ .

3.3 Asymptotic behaviors around the positive equilibrium point E3 of system (1)
When R > , system () has a positive equilibrium point E(X∗, S∗, I∗), but it is not the
equilibrium point of model (). Now, we explore the asymptotic behaviors of system ()
around E(X∗, S∗, I∗).

X(t) is a temporally homogeneous Markov process in El , which is given by the stochastic
differential equation

dX(t) = b(X) dt +
k∑

m=

σm(x) dBm(t),

where El ⊂ Rl represents a l-dimensional Euclidean space.
The diffusion matrix of X(t) is given by

�(x) =
(
ai,j(x)

)
, ai,j(x) =

k∑

m=

σ i
m(x)σ j

m(x).

Assumption . ([]) Assume that there is a bounded domain U ⊂ El with regular
boundary, satisfying the following conditions:

() In the domain U and some of its neighbors, the minimum eigenvalue of the
diffusion matrix A(x) is nonzero.

() When x ∈ El\U , the mean time τ at which a path starting from x to the set U is
limited, and supx∈H Exτ < ∞ for every compact subset H ⊂ El .

Lemma . ([]) When Assumption . holds, the Markov process X(t) has a stationary
distribution μ(·) with density in El . Let f (x) be a function integrable with respect to the
measure μ, where x ∈ El , then, for any Borel set B ⊂ El , we have

lim
t→∞P(t, x, B) = μ(B)

and

Px

{

lim
T→∞


T

∫ T


f
(
x(t)

)
dt =

∫

El

f (x)μ(dx)
}

= .

Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+. If aq > ap and R >  hold, then

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X∗) +

(
S(θ ) – S∗) +

(
I(θ ) – I∗)]dθ ≤ U

W
,

where

U =
σ 

X∗

q +
a( + pX∗)
a( + qS∗)

(
σ 

S∗

p +
C

σ



(
S∗ + I∗)

)
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and

W = min

{

a –
ap

q
,

aa( + pX∗)
a( + qS∗)

,
aa( + pX∗)

a( + qS∗)

}

.

Proof Noting that (X∗, S∗, I∗) is the equilibrium point of system (), thus

⎧
⎪⎪⎨

⎪⎪⎩

b – aX∗ – aS∗
+pX∗+qS∗ = ,

–c – aS∗ + aX∗
+pX∗+qS∗ – βI∗ = ,

βS∗ – d – aI∗ = .

Define

V (X, S, I) =
(

X – X∗ – X∗ ln
X
X∗

)

+
a( + pX∗)
a( + qS∗)

(

S – S∗ – S∗ ln
S
S∗

)

+
a( + pX∗)
a( + qS∗)

(

I – I∗ – I∗ ln
I
I∗

)

:= V +
a( + pX∗)
a( + qS∗)

V +
a( + pX∗)
a( + qS∗)

V.

Applying Itô’s formula to the stochastic differential system () yields

dV = LV dt –
σ(X – X∗)S
 + pX + qS

dB(t),

where

LV =
(
X – X∗)

[

b – aX –
aS

 + pX + qS

]

+
σ 

X∗S

( + pX + qS)

=
(
X – X∗)

[

b – a
(
X – X∗) – aX∗ –

aS
 + pX + qS

]

+
σ 

X∗S

( + pX + qS)

=
(
X – X∗)

[

–a
(
X – X∗) + a

pS∗(X – X∗) – (S – S∗)( + pX∗)
( + pX∗ + qS∗)( + pX + qS)

]

+
σ 

X∗S

( + pX + qS)

= –a
(
X – X∗) +

apS∗(X – X∗)

( + pX∗ + qS∗)( + pX + qS)
+

σ 
X∗S

( + pX + qS)

–
a( + pX∗)(S – S∗)(X – X∗)
( + pX∗ + qS∗)( + pX + qS)

.

Similarly,

dV = LV dt +
σ(S – S∗)X
 + pX + qS

dB(t) – σ
(
S – S∗)I dB(t),

where
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LV =
(
S – S∗)

[

–c – aS +
aX

 + pX + qS
– βI

]

+
σ 

S∗X

( + pX + qS) +


σ S∗I

=
(
S – S∗)

[

–c – a
(
S – S∗) – aS∗ +

aX
 + pX + qS

– β
(
I – I∗) – βI∗

]

+
σ 

S∗X

( + pX + qS) +


σ S∗I

=
(
S – S∗)

[

–a
(
S – S∗) + a

(X – X∗)( + qS∗) – qX∗(S – S∗)
( + pX∗ + qS∗)( + pX + qS)

– β
(
I – I∗)

]

+
σ 

S∗X

( + pX + qS) +


σ S∗I

= – a
(
S – S∗) + a

( + qS∗)(X – X∗)(S – S∗)
( + pX∗ + qS∗)( + pX + qS)

– β
(
I – I∗)(S – S∗)

– a
qX∗(S – S∗)

( + pX∗ + qS∗)( + pX + qS)
+

σ 
S∗X

( + pX + qS) +


σ S∗I.

Also, we have

dV = LV dt + σ
(
I – I∗)S dB(t),

where

LV =
(
I – I∗)[–d – aI + βS] +



σ I∗S

=
(
I – I∗)[–d – a

(
I – I∗) – aI∗ + β

(
S – S∗) + βS∗] +



σ I∗S

= –a
(
I – I∗) + β

(
S – S∗)(I – I∗) +



σ I∗S.

Then we have

dV = LV dt –
σ(X – X∗)S
 + pX + qS

dB(t) +
a( + pX∗)
a( + qS∗)

[
σ(S – S∗)X
 + pX + qS

dB(t)

– σ
(
S – S∗)I dB(t) + σ

(
I – I∗)S dB(t)

]

,
()

where

LV = LV +
a( + pX∗)
a( + qS∗)

LV +
a( + pX∗)
a( + qS∗)

LV

= – a
(
X – X∗) +

apS∗(X – X∗)

( + pX∗ + qS∗)( + pX + qS)
+

σ 
X∗S

( + pX + qS)

–
a( + pX∗)(S – S∗)(X – X∗)
( + pX∗ + qS∗)( + pX + qS)

+
a( + pX∗)
a( + qS∗)

[

–a
(
S – S∗) – a

(
I – I∗)

+ a
( + qS∗)(X – X∗)(S – S∗)

( + pX∗ + qS∗)( + pX + qS)
– a

qX∗(S – S∗)

( + pX∗ + qS∗)( + pX + qS)

+
σ 

S∗X

( + pX + qS) +
σ S∗


I +

σ I∗


S

]
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≤ –
(

a –
ap

q

)
(
X – X∗) –

aa( + pX∗)
a( + qS∗)

(
S – S∗) –

aa( + pX∗)
a( + qS∗)

(
I – I∗)

+
σ 

X∗

q +
a( + pX∗)
a( + qS∗)

[
σ 

S∗

p +
Cσ 


(
S∗ + I∗)

]

.

It is easy to see that, for any

φ < min

{(

a –
ap

q

)

X∗,
aa( + pX∗)

a( + qS∗)
S∗,

aa( + pX∗)
a( + qS∗)

I∗
}

,

the ellipsoid

–
(

a –
ap

q

)
(
X – X∗) –

aa( + pX∗)
a( + qS∗)

(
S – S∗)

–
aa( + pX∗)

a( + qS∗)
(
I – I∗) + φ = 

lies entirely in R
+. Let U to be any neighborhood of the ellipsoid with Ū ⊆ E = R

+, thus
for any x ∈ U\El , we have LV ≤ –M (M is a positive constant). Therefore, condition () in
Assumption . is satisfied. Moreover, there exists a G = min{σ 

 x
 ,σ 

 x
,σ 

 x
, (x, x, x) ∈

U} >  such that

∑

i,j=

( ∑

k=

aik(x)ajk(x)

)

ξiξj = σ 
 x

ξ

 + σ 

 x
ξ


 + σ 

 x
ξ


 ≥ G‖ξ‖

for all x ∈ Ū , ξ ∈ R, which means condition () in Assumption . is satisfied. Therefore,
the stochastic model () has a unique stationary distribution μ(·), it also has the ergodic
property.

Integrating equation () from  to t on both sides yields

V (t) – V () ≤
∫ t



[

–
(

a –
ap

q

)
(
X(θ ) – X∗) –

aa( + pX∗)
a( + qS∗)

(
S(θ ) – S∗)

–
aa( + pX∗)

a( + qS∗)
(
I(θ ) – I∗)

]

dθ

+
[

σ 
X∗

q +
a( + pX∗)
a( + qS∗)

(
σ 

S∗

p +
C

σ



(
S∗ + I∗)

)]

+ M(t) + M(t), ()

where

M(t) =
∫ t



[

–
σ(X(θ ) – X∗)S(θ )
 + pX(θ ) + qS(θ )

+
a( + pX∗)
a( + qS∗)

σ(S(θ ) – S∗)X(θ )
 + pX(θ ) + qS(θ )

]

dB(θ )

and

M(t) =
∫ t



a( + pX∗)
a( + qS∗)

[
–σ

(
S(θ ) – S∗)I(θ ) + σ

(
I(θ ) – I∗)S(θ )

]
dB(θ )

are real-valued continuous local martingales.
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Thus

lim sup
t→+∞

〈M, M〉t

t

= lim sup
t→+∞


t

∫ t



[
a( + pX∗)
a( + qS∗)

σ(S(θ ) – S∗)X(θ )
 + pX(θ ) + qS(θ )

–
σ(X(θ ) – X∗)S(θ )
 + pX(θ ) + qS(θ )

]

dθ

≤ C


[
σ 


q +

a
σ


( + pX∗)

a
p( + qS∗)

]

< +∞

and

lim sup
t→+∞

〈M, M〉t

t
= lim sup

t→+∞

t

∫ t



(
σS∗I(θ ) – σ I∗S(θ )

) dθ ≤ C
σ

(S∗ + I∗) < +∞.

Applying the strong law of large numbers, we have limt→+∞ Mi(t)
t =  (i = , ).

Dividing equation () by t and taking the limit superior, we have

lim sup
t→+∞


t

∫ t



[(

a –
ap

q

)
(
X(θ ) – X∗) +

aa( + pX∗)
a( + qS∗)

(
S(θ ) – S∗)

+
aa( + pX∗)

a( + qS∗)
(
I(θ ) – I∗)

]

dθ

≤ σ 
X∗

q +
a( + pX∗)
a( + qS∗)

[
σ 

S∗

p +
C

σ



(
S∗ + I∗)

]

,

thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X∗) +

(
S(θ ) – S∗) +

(
I(θ ) – I∗)]dθ ≤ U

W
. ()

�

Corollary . From Theorem ., when σ = σ = σ = , we have

LV ≤ –
(

a –
ap

q

)
(
X – X∗) –

aa( + pX∗)
a( + qS∗)

(
S – S∗) –

aa( + pX∗)
a( + qS∗)

(
I – I∗)

≤ .

Thus when aq > ap and R >  hold, the positive equilibrium point E(X∗, S∗, I∗) of sys-
tem () is globally asymptotically stable.

Remark . From Theorem ., if the interference intensity is sufficiently small, the so-
lution of model () will fluctuates around the equilibrium point E(X∗, S∗, I∗). Moreover,
the fluctuation intensity is related with the disturbance intensity: the fluctuation intensity
is positively correlated with the value of σ,σ and σ .

Remark . If the conditions in Theorem . are hold, then the solution of model () has
a unique stationary distribution, it also has the ergodic property.
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4 Persistence in mean and extinction
When we consider a biological population system, persistence in mean and extinction are
two very important properties. In this section, we investigate the persistence in mean and
extinction of system ().

Since there is no equilibrium point in system (), we cannot determine the persistence
of system () by proving the stability of the equilibrium point as a deterministic system.

Definition . ([]) The definition of persistence in mean and extinction are given as
follows:

() The species X(t) is said to be in extinction if limt→+∞X(t) = .
() The species X(t) is said to be in persistence in mean if limt→+∞〈X(t)〉∗ > .

Lemma . ([]) Let X(t) ∈ C(� × [, +∞), R+).
() If there exist T > ,λ > ,λ, ni, when t ≥ T , we have

ln X(t) ≤ λt – λ

∫ t


X(s) ds +

j∑

i=

niB(t) a.s.,

then
⎧
⎨

⎩

〈X〉∗ ≤ λ
λ

a.s., if λ ≥ ;

limt→+∞ X(t) =  a.s., if λ < .

() If there exist T > ,λ > ,λ > , ni, when t ≥ T , we have

ln X(t) ≥ λt – λ

∫ t


X(s) ds +

j∑

i=

niB(t) a.s.,

then 〈X〉∗ ≥ λ
λ

a.s.

4.1 Persistence in mean
Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+. Model () has persistence in mean if conditions aq > ap, R > , and

� = max{σ,σ,σ } < min

{

X∗
√

W

U
, S∗

√
W

U
, I∗

√
W

U

}

hold, that is,

lim inf
t→+∞


t

∫ t


X(θ ) dθ > , lim inf

t→+∞

t

∫ t


S(θ ) dθ > , lim inf

t→+∞

t

∫ t


I(θ ) dθ > ,

where

U =
X∗

q +
a( + pX∗)
a( + qS∗)

(
S∗

p +
C

(S∗ + I∗)


)

,

U and W are defined in Theorem ..
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Proof Applying equation () in Theorem . we have

⎧
⎪⎪⎨

⎪⎪⎩

lim supt→+∞

t
∫ t

 (X(θ ) – X∗) ≤ U
W

,

lim supt→+∞

t
∫ t

 (S(θ ) – S∗) ≤ U
W

,

lim supt→+∞

t
∫ t

 (I(θ ) – I∗) ≤ U
W

.

()

Applying the inequality a – ab ≤ a + (a – b) to X(t), we have

X ≥ X∗


–

(X – X∗)

X∗ .

Therefore

U =
σ 

X∗

q +
a( + pX∗)
a( + qS∗)

[
σ 

S∗

p +
C

σ



(
S∗ + I∗)

]

≤ �
[

X∗

q +
a( + pX∗)
a( + qS∗)

(
S∗

p +
C

(S∗ + I∗)


)]

= �U.

When � < X∗
√

W
U

, we have

lim inf
t→+∞


t

∫ t


X(θ ) dθ ≥ X∗


– lim sup

t→+∞

t

∫ t



(X(θ ) – X∗)

X∗ dθ

≥ X∗


–

U

WX∗

≥ X∗


–

σ U

WX∗

> .

Similarly, when � < S∗
√

W
U

, we have

lim inf
t→+∞


t

∫ t


S(θ ) dθ ≥ S∗


– lim sup

t→+∞

t

∫ t



(S(θ ) – S∗)

S∗ dθ

≥ S∗


–

U

WS∗

≥ S∗


–

σ U

WS∗

> .

When � < I∗
√

W
U

, we have

lim inf
t→+∞


t

∫ t


I(θ ) dθ ≥ I∗


– lim sup

t→+∞

t

∫ t



(I(θ ) – I∗)

I∗ dθ

≥ I∗


–

U

WI∗
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≥ I∗


–

σ U

WI∗

> . �

Remark . From Theorem ., when R > , aq > ap and the intensity of random dis-
turbance is sufficiently small, system () will persistence in mean. This shows that bio-
logical populations can resist a small environmental disturbance to maintain the original
persistence.

4.2 Extinction
Extinction and persistence in mean are closely related, so we also concern ourselves with
the situation of population extinction. In this subsection, we point out the conditions of
predator extinction.

Theorem . Let (X(t), S(t), I(t)) be the solution of model () with initial value (X(), S(),
I()) ∈ R

+. If one of the following conditions holds:
() σ > max{ a√

c ,√ap},

() R∗ = a
pc – σ


pc < ,σ ≤ √ap,

then

lim
t→+∞ X(t) =

b
a

, lim
t→+∞ S(t) = , lim

t→+∞ I(t) = .

Proof Applying Itô’s formula to the second equation of stochastic differential system ()
yields

d ln S(t) =
[

–c –
σ I


–

σ 
X

( + pX + qS) – aS +
aX

 + pX + qS
– βI

]

dt

+
σX

 + pX + qS
dB(t) – σ I dB(t)

≤
[

–c – aS –
σ 




(
X

 + pX + qS
–

a

σ 


)

+
a


σ 



]

dt

+
σX

 + pX + qS
dB(t) – σ I dB(t). ()

Case I. When σ > max{ a√
c ,√ap}, inequality () takes its maximum value on the

interval [, 
p ] at a

σ


, so we have

d ln S(t) ≤
[

–c – aS +
a


σ 



]

dt +
σX

 + pX + qS
dB(t) – σ I dB(t).

Integrating () from  to t and dividing it by t, we get


t

ln
S(t)
S()

≤ a


σ 


–c–a
〈
S(t)

〉
+ t–

∫ t



σX(θ )
 + pX(θ ) + qS(θ )

dB(θ )– t–
∫ t


σ I(θ ) dB(θ ).

Applying Lemma ., we obtain

lim
t→+∞ S(t) = .
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Case II. When R∗ = a
pc – σ


pc <  and σ ≤ √ap, inequality () takes its maximum

value on the interval [, 
p ] at 

p , so we have

d ln S(t) ≤
[

a

p
–

σ 


p – c – aS
]

dt +
σX

 + pX + qS
dB(t) – σ I dB(t).

Integrating () from  to t and dividing it by t, we obtain


t

ln
S(t)
S()

≤ a

p
–

σ 


p – c – a
〈
S(t)

〉
+ t–

∫ t



σX(θ )
 + pX(θ ) + qS(θ )

dB(θ )

– t–
∫ t


σ I(θ ) dB(θ )

= c
(

a

cp
–

σ 


cp – 
)

– a
〈
S(t)

〉
+ t–

∫ t



σX(θ )
 + pX(θ ) + qS(θ )

dB(θ )

– t–
∫ t


σ I(θ ) dB(θ )

= c
(
R∗ – 

)
– a

〈
S(t)

〉
+ t–

∫ t



σX(θ )
 + pX(θ ) + qS(θ )

dB(θ )

– t–
∫ t


σ I(θ ) dB(θ ).

Applying Lemma ., we obtain

lim
t→+∞ S(t) = .

Applying Itô’s formula to the third equation of stochastic differential system (), one has

d ln I(t) =
[

–d –
σ S


– aI + βS

]

dt + σS dB(t).

Since limt→+∞S(t) = , there is an arbitrarily small constant ε >  such that when t > T , we
have – σS

 + βS < ε, thus

ln I(t) =
(

–d – aI + βS –
σ S



)

dt + σS dB(t)

≤ (ε – d – aI) dt + σS dB(t). ()

Integrating equation () from  to t and dividing it by t yields


t

ln
I(t)
I()

≤ ε – d – a
〈
I(t)

〉
+ t–

∫ t


σS(θ ) dB(θ ).

Applying Lemma . and the arbitrariness of ε, we obtain

lim
t→+∞ I(t) = .
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Similarly,

d ln X(t) =
(

b – aX –
aS

 + pX + qS
–

σ 
S

( + pX + qS)

)

dt –
σS

 + pX + qS
dB(t).

Since limt→+∞ S(t) = , there is an arbitrarily small constant ε >  such that when t > T ,
we have S

+pX+qS < ε, thus

d ln X(t) ≥ (
b – aX – aε – σ 

ε
)dt –

σS
 + pX + qS

dB(t).

Integrating the above equation from  to t and dividing it by t, one has


t

ln
X(t)
X()

≥ b – aε – σ 
ε

 – a
〈
X(t)

〉
– t–

∫ t



σS(θ )
 + pX(θ ) + qS(θ )

dB(θ ).

Applying Lemma . and the arbitrariness of ε, we obtain

lim
t→+∞ X(t) ≥ b

a
. ()

On the other hand,

d ln X(t) =
(

b – aX –
aS

 + pX + qS
–

σ 
S

( + pX + qS)

)

dt –
σS

 + pX + qS
dB(t)

≤ (b – aX) dt –
σS

 + pX + qS
dB(t). ()

Integrating equation () from  to t and dividing it by t, we have


t

ln
X(t)
X()

≤b – a
〈
X(t)

〉
– t–

∫ t



σS(θ )
 + pX(θ ) + qS(θ )

dB(θ ).

Applying Lemma ., we obtain

lim
t→+∞ X(t) ≤ b

a
. ()

From () and (), we have

lim
t→+∞ X(t) =

b
a

. �

Remark . From Theorem ., if the intensity of random disturbance is sufficiently large
or R∗ <  and σ ≤ √ap, the predator population will be extinct.

5 Conclusions and numerical simulations
This paper investigates a stochastic infected predator-prey model with Beddington-
DeAngelis functional response. The existence of a global positive solution of model () is
first proved, then we show the stochastically ultimate boundedness of the solution. In addi-
tion, by using the Lyapunov method and Itô’s formula, we study the asymptotic properties
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Figure 1 Time sequence diagram and phase portrait of model (2). (a) The deterministic model; (b) the
Brownian motion model with σ12 = σ21 = σ = 0.5; (c) phase portrait: the red ◦ is corresponding to the
deterministic model, while the blue ◦ represents the stochastic model.

and stationary distribution of the solution of model () around the equilibrium points of
its deterministic. At last, we discuss the persistence in mean and extinction of model ().
The biological significance of the result shows that the external environment disturbance
may have a certain effect on the stability of the biological system: the population’s abil-
ity to adapt to the environment is limited. If the disturbance in the environment is small
enough, the stability of the population will not be destroyed; if large disturbances occur in
the environment, it may lead to the extinction of species.

We next give some numerical simulations to support our results. We consider the fol-
lowing discrete equations:

⎧
⎪⎪⎨

⎪⎪⎩

Xn+ = Xn + Xn[b – aXn – aSn
+pXn+qSn

]�t – σSnXn
+pXn+qSn

�Wk ,

Sn+ = Sn + Sn[–c – aSn + aXn
+pXn+qSn

– βIn]�t + σXnSn
+pXn+qSn

�Wk – σSnIn�Wk ,

In+ = In + In[βSn – d – aIn]�t + σSnIn�Wk ,

where �t = ., �Wik � W (tk+) – W (tk) obeys the Gaussian distribution N(,�t).
In Figure , we choose X() = , S() = , I() = , b = , c = ., d = ., a = ., a =

., a = ., a = ., a = .,β = ., p = , q = , and step size �t = ..
Under this condition,

E = (K , , ) = (., , ), R = ., K =
b

a
= . ≤ c

a
= .

The numerical simulation of Figure  is consistent with our conclusion in Theorem ..
In Figure , we choose X() = , S() = , I() = , b = ., c = ., d = ., a = ., a =

., a = ., a = ., a = .,β = ., p = , q = , and step size �t = ..
Under this condition,

E = (X, S, ) = (., ., ), aq = . > ap = .,

R =  > , R = . < .

In Figure (a), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X

) +
(
S(θ ) – S

) + I(θ )
]

dθ ≤ U

W
= ..
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Figure 2 Time sequence diagram and phase portrait of model (2). (a)-(c) are a Brownian motion model
with σ12 = σ21 = σ = 0.1, 0.2, 0.4, respectively. (d)-(f) are phase portraits of (a)-(c), respectively. The red ◦ is
corresponding to the deterministic model, while the blue ◦ represents the stochastic model.

In Figure (b), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X

) +
(
S(θ ) – S

) + I(θ )
]

dθ ≤ U

W
= ..

In Figure (c), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X

) +
(
S(θ ) – S

) + I(θ )
]

dθ ≤ U

W
= ..

Figure  shows that the solution of model () fluctuates around the equilibrium
E(., ., ). In addition, the fluctuation intensity is related with the disturbance in-
tensity: with the increase of σ,σ,σ , the fluctuation intensity is also increasing. These
all meet the conditions of Theorem ..

In Figure , we choose X() = , S() = , I() = , b = , c = ., d = ., a = ., a =
., a = , a = ., a = .,β = ., p = , q = , and step size �t = ..

Under this condition,

E =
(
X∗, S∗, I∗) = (., ., .),

aq = . > ap = ., R = . > .

In Figure (a), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X∗) +

(
S(θ ) – S∗) +

(
I(θ ) – I∗)]dθ ≤ U

W
= ..
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Figure 3 Time sequence diagram and phase portrait of model (2). (a) The Brownian motion model with
σ12 = σ21 = σ = 0.03, 0.06, 0.1, respectively. (d)-(f) are phase portraits of (a)-(c), respectively. The red ◦ is
corresponding to the deterministic model, while the blue ◦ represents the stochastic model.

In Figure (b), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X∗) +

(
S(θ ) – S∗) +

(
I(θ ) – I∗)]dθ ≤ U

W
= ..

In Figure (c), we choose σ = σ = σ = ., thus

lim sup
t→+∞


t

∫ t



[(
X(θ ) – X∗) +

(
S(θ ) – S∗) +

(
I(θ ) – I∗)]dθ ≤ U

W
= ..

Figure  shows that the solution of model () fluctuates around E(., .,
.). In addition, the fluctuation intensity is related with the disturbance intensity: with
the increase of σ,σ and σ , the fluctuation intensity is also increasing. These all meet
the conditions of Theorem ..

In Figure , we choose X() = , S() = , I() = , b = , c = ., d = ., a = ., a =
., a = , a = ., a = .,β = ., p = , q = , and step size �t = .. Figure  shows
that the solution of model () fluctuates up and down in a small neighborhood. According
to the density functions in Figure (b)-(d), we see that there is a stationary distribution.
This is in line with our conclusions.

In Figure , we choose X() = , S() = , I() = , b = , c = ., d = ., a = ., a =
., a = ., a = ., a = .,β = ., p = ., q = ., and step size �t = ..

In this condition,

E =
(
X∗, S∗, I∗) = (., ., .),

aq = . > ap = ., R = . > .
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Figure 4 Time sequence diagram and density function of model (2) with σ12 = σ21 = σ = 0.01. (a) Time
sequence diagram; (b)-(d) the density functions of X(t), S(t), I(t), respectively.

Figure 5 Persistence in mean and extinction of model (2). (a) The deterministic model; (b) persistence in
mean of model (2); (c) extinction of model (2).

In Figure (b), we choose σ = σ = σ = .. In this case,

� = max{σ,σ,σ } = . < min

{

X∗
√

W

U
, S∗

√
W

U
, I∗

√
W

U

}

= .,

which satisfies the conditions in Theorem .. Figure (b) shows that X(t), S(t), I(t) have
persistence in mean, this is in line with our conclusion in Theorem ..

In Figure (c), we choose σ = σ = . and

σ = . > max

{
a√

c
,
√

ap
}

= .,
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which satisfies the conditions in Theorem .. Figure (c) shows that S(t), I(t) are extinct
and

lim
t→+∞ X(t) =

b
a

= ,

this is in line with our conclusion in Theorem ..
To sum up, we have the following conclusions:
I. Asymptotic behaviors

() When R <  and Ka < c, the solution of model () is fluctuating around E.
Therefore, the intensity of the fluctuation is positively correlated with σ.

() When R > , R <  and aq > ap, the solution of model () is fluctuating
around E. Therefore, the intensity of the fluctuation is positively correlated with
σ,σ and σ .

() When R >  and aq > ap, the solution of model () is fluctuating around E.
Therefore, the intensity of the fluctuation is positively correlated with σ,σ and
σ . When the interference intensity is sufficient small, the solution of model ()
has a unique stationary distribution, it also has the ergodic property.

II. Persistence in mean and extinction
() When R > , aq > ap and

� = max{σ,σ,σ } < min{X∗
√

W
U

, S∗
√

W
U

, I∗
√

W
U

}, the solution of model ()
can have persistence in mean.

() When σ > max{ a√
c ,√ap} or R∗ <  and σ ≤ √ap, the predator of model

() can be extinct.
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