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Can Kızılateş1* and Naim Tuglu2

*Correspondence:
cankizilates@gmail.com
1Department of Mathematics,
Bülent Ecevit University, Zonguldak,
Turkey
Full list of author information is
available at the end of the article

Abstract
In this paper, we define a geometric circulant matrix whose entries are the
generalized Fibonacci numbers and hyperharmonic Fibonacci numbers. Then we
give upper and lower bounds for the spectral norms of these matrices.

MSC: Primary 15A60; 11B39; secondary 15B05

Keywords: generalized Fibonacci number; hyperharmonic Fibonacci number;
geometric circulant matrix; spectral norms

1 Introduction
The circulant and r-circulant matrices have important applications in numerical analysis,
probability, coding theory, and so on. An n × n matrix Cr is called an r-circulant matrix if
it is defined as follows:

Cr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c c c . . . cn– cn–

rcn– c c . . . cn– cn–

rcn– rcn– c . . . cn– cn–
...

...
...

...
...

rc rc rc . . . rcn– c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix Cr is determined by its first row elements and r, we denote Cr = Circr(c, c, c,
. . . , cn–). In particular for r = 

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c c c . . . cn– cn–

cn– c c . . . cn– cn–

cn– cn– c . . . cn– cn–
...

...
...

...
...

c c c . . . cn– c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is called a circulant matrix.
Circulant and r-circulant matrices with the special numbers have been studied by many

researchers in last decade. For example, in [], Solak has studied the spectral norms of
circulant matrices with the Fibonacci and Lucas numbers. In [], Kocer et al. obtained
norms of circulant and semicirculant matrices with Horadam numbers. In [], Shen and
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Cen have given upper and lower bounds for the spectral norms of r-circulant matrices
with the Fibonacci and Lucas numbers. In [], Bahsi computed the spectral norms of cir-
culant and r-circulant matrices with the hyperharmonic numbers. Moreover, in [], Bahsi
and Solak studied norms of circulant and r-circulant matrices with the hyper-Fibonacci
and hyper-Lucas numbers. In [], Jiang and Zhou studied spectral norms of even order r-
circulant matrices. In [, ], Tuglu and Kızılateş have calculated Euclidean norm by using
the finite difference operator and given spectral norms of circulant, r-circulant and some
special matrices with the harmonic Fibonacci and hyperharmonic Fibonacci numbers. In
[], Yazlık and Taskara have presented new upper and lower bounds for the spectral norms
of an r-circulant matrix with the generalized k-Horadam numbers. In [], He et al. gave
the upper bound estimation of the spectral norm for r-circulant matrices with Fibonacci
and Lucas numbers.

In view of the above papers, we define a new circulant matrix which is called geometric
circulant matrix and give upper and lower bounds for the spectral norms of this matrix
with the generalized Fibonacci and hyperharmonic Fibonacci numbers by using the same
method given in [].

2 Preliminaries
The well-known Fibonacci and Lucas sequences are defined by the following recurrence
relations: for n ≥ ,

Fn+ = Fn+ + Fn

and

Ln+ = Ln+ + Ln,

where F = , F = , L =  and L = , respectively. The generalized Fibonacci and Lucas
sequences, {Un} and {Vn}, are defined by the following recurrence relations: for n ≥ , and
any non-zero integer p,

Un+ = pUn+ + Un

and

Vn+ = pVn+ + Vn,

where U = , U = , V =  and V = p. If we take p = , then Un = Fn and Vn = Ln. Let α

and β be the roots of the characteristic equation x – px –  = . Then the Binet formulas
for the sequences {Un} and {Vn} are given by

Un =
αn – βn

α – β

and

Vn = αn + βn,

where α = p+
√

p+
 and β = p–

√
p+

 .
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On the other hand, Yazlık and Taskara examined the generalized k-Horadam numbers
via the following recurrence relations:

Hk,n+ = f (k)Hk,n+ + g(k)Hk,n ()

with the initial values Hk, = a, Hk, = b. Moreover they calculated sum of squares of k-
Horadam numbers (see []). If we take f (k) = p, g(k) = , a =  and b =  in (), we get

n–∑
i=

U
i =

U
n – U

n– + (–)n

p ()

and if we take f (k) = p, g(k) = , a =  and b = p in (), we have

n–∑
i=

V 
i =

V 
n – V 

n– + p –  + ( – (–)n)(p + )
p . ()

In [], Tuglu et al. defined hyperharmonic Fibonacci numbers for n, r ≥ ,

F
(r)
n =

n∑
k=

F
(r–)
k ,

where F
()
n = 

Fn
and F = . Then they gave for the sum of the squares of hyperharmonic

Fibonacci numbers as follows:

√
n
F

(r+)
n– ≤

√√√√
n–∑
k=

(
F

(r)
k

) ≤ F
(r+)
n– . ()

Now we give some definitions and Lemmas related to our study.

Definition  An n × n matrix Cr∗ is called a geometric circulant matrix if it is of the form

Cr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c c c . . . cn– cn–

rcn– c c . . . cn– cn–

rcn– rcn– c . . . cn– cn–
...

...
...

...
...

rn–c rn–c rn–c . . . rcn– c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We denote it for brevity by Cr∗ = Circr∗ (c, c, c, . . . , cn–). Note that, for r = , geometric
circulant matrix turns into circulant matrix given in [, ]. In fact, in [, ], the authors
calculated the spectral norms of the circulant matrices with the generalized Fibonacci and
hyperharmonic Fibonacci numbers.

Definition  Let A = (aij) be any m × n matrix. The Euclidean norm of matrix A is

‖A‖E =

√√√√
( m∑

i=

n∑
j=

|aij|
)

.
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Definition  Let A = (aij) be any m × n matrix. The spectral norm of matrix A is

‖A‖ =
√

max
≤i≤n

λi
(
AHA

)
,

where λi(AH A) is eigenvalue of AH A and AH is conjugate transpose of matrix A.

Then the following inequalities hold between the Euclidean norm and the spectral norm:

√
n

‖A‖E ≤ ‖A‖ ≤ ‖A‖E , ()

‖A‖ ≤ ‖A‖E ≤ √
n‖A‖. ()

Definition  Let A = (aij) and B = (bij) are each m × n matrices, then their Hadamard
product is the m × n matrix of elementwise products

A ◦ B = (aijbij).

Lemma  [] Let A and B be two m × n matrices. We have

‖A ◦ B‖ ≤ r(A)c(B),

where

r(A) = max
≤i≤m

√√√√
n∑

j=

|aij|,

c(B) = max
≤j≤n

√√√√
m∑

i=

|bij|.

3 Main results
Theorem  Let Ur∗ = Circr∗ (U, U, U, . . . , Un–) be an n × n geometric circulant matrix.

(i) If |r| > , then

√
U

n – U
n– + (–)n

p ≤ ‖Ur∗‖ ≤
√

(|r| – |r|n)(U
n – U

n– + (–)n)
( – |r|)p .

(ii) If |r| < , then

|r|√
p + 

√
|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
– 

|r|n – (–)n

|r| + 

≤ ‖Ur∗‖ ≤
√

(n – )(U
n – U

n– + (–)n)
p .
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Proof We have the matrix

Ur∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U U U . . . Un– Un–

rUn– U U . . . Un– Un–

rUn– rUn– U . . . Un– Un–
...

...
...

...
...

rn–U rn–U rn–U . . . rUn– U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(i) From |r| >  and definition of Euclidean norm, we have

‖Ur∗‖
E =

n–∑
k=

(n – k)U
k +

n–∑
k=

k
∣∣rn–k∣∣U

k

≥
n–∑
k=

(n – k)U
k +

n–∑
k=

kU
k

= n
n–∑
k=

U
k

= n
U

n – U
n– + (–)n

p ,

that is,

√
n

‖Ur∗‖E ≥
√

U
n – U

n– + (–)n

p ;

from (), we have

√
U

n – U
n– + (–)n

p ≤ ‖Ur∗‖.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U   . . .  
r U  . . .  
r r U . . .  
...

...
...

...
...

rn– rn– rn– . . . r U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U U U . . . Un– Un–

Un– U U . . . Un– Un–

Un– Un– U . . . Un– Un–
...

...
...

...
...

U U U . . . Un– U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.



Kızılateş and Tuglu Journal of Inequalities and Applications  (2016) 2016:312 Page 6 of 15

That is, Ur∗ = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij|

=
√∣∣r

∣∣ + · · · +
∣∣rn–

∣∣

=

√
|r| – |r|n

 – |r|

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij|

=

√√√√
n–∑
k=

U
k

=

√
U

n – U
n– + (–)n

p .

From Lemma , we have

‖Ur∗‖ ≤
√

(|r| – |r|n)(U
n – U

n– + (–)n)
( – |r|)p .

Thus, we have
√

U
n – U

n– + (–)n

p ≤ ‖Ur∗‖ ≤
√

(|r| – |r|n)(U
n – U

n– + (–)n)
( – |r|)p .

(ii) From |r| < , we have

‖Ur∗‖
E =

n–∑
k=

(n – k)U
k +

n–∑
k=

k
∣∣rn–k∣∣U

k

≥
n–∑
k=

(n – k)
∣∣rn–k∣∣U

k +
n–∑
k=

k
∣∣rn–k∣∣U

k

= n|r|n
n–∑
k=

(
Uk

|r|k
)

=
n|r|n

p + 

n–∑
k=

(
αk – βk

|r|k
)

=
n|r|n

p + 

( – ( α

|r| )n

 – ( α

|r| )
+

 – ( β

|r| )n

 – ( β

|r| )
– 

 – ( –
|r| )n

 + 
|r|

)

=
n|r|

p + 

√
|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
– 

|r|n – (–)n

|r| + 
,
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√
n

‖Ur∗‖E ≥ |r|√
p + 

√
|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
– 

|r|n – (–)n

|r| + 
.

From ()

|r|√
p + 

√
|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
– 

|r|n – (–)n

|r| + 
≤ ‖Ur∗‖.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U   . . .  
r U  . . .  
r r U . . .  
...

...
...

...
...

rn– rn– rn– . . . r U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U U U . . . Un– Un–

Un– U U . . . Un– Un–

Un– Un– U . . . Un– Un–
...

...
...

...
...

U U U . . . Un– U

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, Ur∗ = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij|

=
√

U
 + n – 

=
√

n – 

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij|

=

√√√√
n–∑
k=

U
k

=

√
U

n – U
n– + (–)n

p .

Hence, from Lemma , we have

‖Ur∗‖ ≤
√

(n – )(U
n – U

n– + (–)n)
p .
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Thus, we have

|r|√
p + 

√
|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
– 

|r|n – (–)n

|r| + 

≤ ‖Ur∗‖ ≤
√

(n – )(U
n – U

n– + (–)n)
p . �

Theorem  Let Vr∗ = Circr∗ (V, V, V, . . . , Vn–) be an n × n geometric circulant matrix.
(i) If |r| > , then

√
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p

≤ ‖Vr∗‖ ≤
√

 – |r|n

 – |r|
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p .

(ii) If |r| < , then

|r|
√

|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
+ 

|r|n – (–)n

|r| + 

≤ ‖Vr∗‖ ≤
√

n(V 
n – V 

n– + p –  + ( – (–)n)(p + ))
p .

Proof We have the matrix

Vr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V V V . . . Vn– Vn–

rVn– V V . . . Vn– Vn–

rVn– rVn– V . . . Vn– Vn–
...

...
...

...
...

rn–V rn–V rn–V . . . rVn– V

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(i) From |r| > , we have

‖Vr∗‖
E =

n–∑
k=

(n – k)V 
k +

n–∑
k=

k
∣∣rn–k∣∣V 

k

≥ n
n–∑
k=

V 
k

=
n(V 

n – V 
n– + p –  + ( – (–)n)(p + ))

p ,

that is,

√
n

‖Vr∗‖E ≥
√

V 
n – V 

n– + p –  + ( – (–)n)(p + )
p ,
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from (), we have

√
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p ≤ ‖Vr∗‖.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

   . . .  
r   . . .  
r r  . . .  
...

...
...

...
...

rn– rn– rn– . . . r 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V V V . . . Vn– Vn–

Vn– V V . . . Vn– Vn–

Vn– Vn– V . . . Vn– Vn–
...

...
...

...
...

V V V . . . Vn– V

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, Vr∗ = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij|

=
√

 +
∣∣r

∣∣ + · · · +
∣∣rn–

∣∣

=

√
 – |r|n

 – |r|

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij|

=

√√√√
n–∑
k=

V 
k

=

√
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p .

From Lemma , we have

‖Vr∗‖ ≤
√

 – |r|n

 – |r|
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p .
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Thus, we have

√
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p

≤ ‖Vr∗‖ ≤
√

 – |r|n

 – |r|
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p .

(ii) From |r| < , we have

‖Vr∗‖
E =

n–∑
k=

(n – k)V 
k +

n–∑
k=

k
∣∣rn–k∣∣V 

k

≥
n–∑
k=

(n – k)
∣∣rn–k∣∣V 

k +
n–∑
k=

k
∣∣rn–k∣∣V 

k

= n|r|n
n–∑
k=

(
Vk

|r|k
)

= n|r|n

( n–∑
k=

αk

|r|k +
n–∑
k=

βk

|r|k + 
n–∑
k=

(–)k

|r|k

)

= n|r|n
( – ( α

|r| )n

 – ( α

|r| )
+

 – ( β

|r| )n

 – ( β

|r| )
+ 

 – ( –
|r| )n

 + 
|r|

)

= n|r|
(

|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
+ 

|r|n – (–)n

|r| + 

)
,

√
n

‖Vr∗‖E ≥ |r|
√

|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
+ 

|r|n – (–)n

|r| + 
.

From (),

|r|
√

|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
+ 

|r|n – (–)n

|r| + 
≤ ‖Vr∗‖.

On the other hand, let the matrices A and B be defined by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

   . . .  
r   . . .  
r r  . . .  
...

...
...

...
...

rn– rn– rn– . . . r 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V V V . . . Vn– Vn–

Vn– V V . . . Vn– Vn–

Vn– Vn– V . . . Vn– Vn–
...

...
...

...
...

V V V . . . Vn– V

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, Vr∗ = A ◦ B. Then we obtain

r(A) = max
≤i≤n

√√√√
n∑

j=

|aij| =
√

n

and

c(B) = max
≤j≤n

√√√√
n∑

i=

|bij|

=

√√√√
n–∑
k=

V 
k

=

√
V 

n – V 
n– + p –  + ( – (–)n)(p + )

p .

From Lemma , we have

‖Vr∗‖ ≤
√

n(V 
n – V 

n– + p –  + ( – (–)n)(p + ))
p .

Thus we have

|r|
√

|r|n+ – |r|n(p + ) – |r|Vn + Vn–

|r| – |r|(p + ) + 
+ 

|r|n – (–)n

|r| + 

≤ ‖Vr∗‖ ≤
√

n(V 
n – V 

n– + p –  + ( – (–)n)(p + ))
p . �

Theorem  Let F(k)
r∗ = Circr∗ (F(k)

 ,F(k)
 ,F(k)

 , . . . ,F(k)
n–) be an n × n geometric circulant ma-

trix.
(i) If |r| > , then

√
n
F

(k+)
n– ≤ ∥∥F(k)

r∗
∥∥

 ≤
√

|r| – |r|n

 – |r| F
(k+)
n– .

(ii) If |r| < , then

|r|n√
n
F

(k+)
n– ≤ ∥∥F(k)

r∗
∥∥

 ≤ √
n – F(k+)

n– .
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Proof Since the F
(k)
r∗ is of the form

F
(k)
r∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

rF(k)
n– F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

r
F

(k)
n– rF(k)

n– F
(k)
 . . . F

(k)
n– F

(k)
n–

...
...

...
...

...
rn–

F
(k)
 rn–

F
(k)
 rn–

F
(k)
 . . . rF(k)

n– F
(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and from the definition of Euclidean norm, we have

∥∥F(k)
r∗

∥∥
E =

n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s
∣∣rn–s∣∣(

F
(k)
s

).

(i) From |r| > , we have

∥∥F(k)
r∗

∥∥
E ≥

n–∑
s=

(n – s)
(
F

(k)
s

) +
n–∑
s=

s
(
F

(k)
s

)

= n
n–∑
s=

(
F

(k)
s

).

Thus from () and (),

√
n
F

(k+)
n– ≤ ∥∥F(k)

r∗
∥∥

.

On the other hand let the matrices A(k) and B(k) be defined by

A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
   . . .  
r F

(k)
  . . .  

r r F
(k)
 . . .  

...
...

...
...

...
rn– rn– rn– . . . r F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
n– F

(k)
 . . . F

(k)
n– F

(k)
n–

...
...

...
...

...
F

(k)
 F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, F(k)
r∗ = A(k) ◦ B(k). Then we obtain

r
(
A(k)) = max

≤i≤n

√√√√
n∑

j=

∣∣a(k)
ij

∣∣ =

√
|r| – |r|n

 – |r|
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and

c
(
B(k)) = max

≤j≤n

√√√√
n∑

i=

∣∣b(k)
ij

∣∣ =

√√√√ n–∑
s=

(
F

(k)
s

).

From Lemma  and (), we have

∥∥F(k)
r∗

∥∥
 ≤

√
|r| – |r|n

 – |r| F
(k+)
n– ,

which is desired result.
(ii) From |r| < , we have

∥∥F(k)
r∗

∥∥
E ≥

n–∑
s=

(n – s)
∣∣rn–s∣∣(

F
(k)
s

) +
n–∑
s=

s
∣∣rn–s∣∣(

F
(k)
s

)

≥ n|r|n
n–∑
s=

(
F

(k)
s

).

From () and (),

|r|n√
n
F

(k+)
n– ≤ ∥∥F(k)

r∗
∥∥

.

On the other hand, let the matrices A(k) and B(k) be defined by

A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
   . . .  
r F

(k)
  . . .  

r r F
(k)
 . . .  

...
...

...
...

...
rn– rn– rn– . . . r F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F
(k)
 F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)
n–

F
(k)
n– F

(k)
n– F

(k)
 . . . F

(k)
n– F

(k)
n–

...
...

...
...

...
F

(k)
 F

(k)
 F

(k)
 . . . F

(k)
n– F

(k)


⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, F(k)
r∗ = A(k) ◦ B(k). Then we obtain

r
(
A(k)) = max

≤i≤n

√√√√
n∑

j=

∣∣a(k)
ij

∣∣ =
√

n – 
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and

c
(
B(k)) = max

≤j≤n

√√√√
n∑

i=

∣∣b(k)
ij

∣∣ =

√√√√ n–∑
s=

(
F

(k)
s

).

From Lemma  and (), we have

∥∥F(k)
r∗

∥∥
 ≤ √

n – F(k+)
n– .

Thus we have

|r|n√
n
F

(k+)
n– ≤ ∥∥F(k)

r∗
∥∥

 ≤ √
n – F(k+)

n– . �

4 Conclusion
In this paper we approximated lower and upper bounds of the spectral norms of geometric
circulant matrices with the generalized Fibonacci and hyperharmonic Fibonacci numbers.
If we take p =  and p =  in Theorem , we obtain lower and upper bounds of the spectral
norms of geometric circulant matrices with the Fibonacci and Pell numbers, respectively.
Similarly if we take p =  and p =  in Theorem , we obtain lower and upper bounds of the
spectral norms of geometric circulant matrices with the Lucas and Pell-Lucas numbers,
respectively.

In the future it may be possible that one can generalize our results to the Horadam,
tribonacci and tribonacci-like sequences.
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