
Akhter et al. Journal of Inequalities and Applications  (2016) 2016:300 
DOI 10.1186/s13660-016-1250-6

R E S E A R C H Open Access

On the general sum-connectivity index
and general Randić index of cacti
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Abstract
Let G be a connected graph. The degree of a vertex x of G, denoted by dG(x), is the
number of edges adjacent to x. The general sum-connectivity index is the sum of the
weights (dG(x) + dG(y))α for all edges xy of G, where α is a real number. The general
Randić index is the sum of weights of (dG(x)dG(y))α for all edges xy of G, where α is a
real number. The graph G is a cactus if each block of G is either a cycle or an edge. In
this paper, we find sharp lower bounds on the general sum-connectivity index and
general Randić index of cacti.
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1 Introduction
Let G be a finite molecular graph of order n and size m with vertex set V (G) and edge set
E(G). The degree of a vertex x ∈ V (G), denoted by dG(x), is the number of edges adjacent
to x. A vertex with degree  is called a pendent vertex. The minimum and maximum de-
grees of G are respectively defined by �G = max{dG(x) : x ∈ V (G)} and δG = min{dG(x) :
x ∈ V (G)}. The set of neighboring vertices of a vertex x is denoted by NG(x). The graph
obtained by deleting a vertex x ∈ V (G) is denoted by G – x. The graph obtained from G by
adding an edge xy between two nonadjacent vertices x, y ∈ V (G) is denoted by G + xy.

Historically, the first degree based topological indices are the Zagreb indices, introduced
by Gutman and Trinajestić []. The first Zagreb index M(G) and the second Zagreb index
M(G) are defined as

M(G) =
∑

x∈V (G)

(
dG(x)

) and M(G) =
∑

xy∈E(G)

dG(x)dG(y).

The general Randić index (or product-connectivity index) was proposed by Bollobás and
Erdős [] and is defined as follows:

Rα(G) =
∑

xy∈E(G)

(
dG(x)dG(y)

)α ,

where α is a real number. Then R–/(G) =
∑

xy∈E(G)(dG(x)dG(y))– 
 is called the Randić

index, which was defined by Randić [], and R is the second Zagreb index. The Randić
index is the most studied, most applied, and most important index among all topologi-
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cal indices. Recently, Zhou and Trinajstić [] modified the concept of Randić index and
obtained a new index, called the general sum-connectivity index and defined as follows:

χα(G) =
∑

xy∈E(G)

(
dG(x) + dG(y)

)α ,

where α is a real number. Then χ–/(G) =
∑

xy∈E(G)(dG(x) + dG(y))– 
 is the sum-connec-

tivity index defined by Zhou and Trinajstić [], and if α = , then the general sum-
connectivity index becomes the first Zagreb index.

A connected graph G is a cactus if each block of G is either a cycle or an edge. Let X(n, t)
be the set of cacti of order n with t cycles. Obviously, X(n, ) is the set of trees of order n,
and X(n, ) is the set of unicyclic graphs of order n. Denote by X(n, t) the n-vertex cactus
consisting of t triangles and n – t –  pendent edges such that triangles and pendent edges
have exactly one vertex in common.

Lin et al. [] discuss the sharp lower bounds of the Randić index of cacti with r pendent
vertices. Dong and Wu [] calculated the sharp bounds on the atom-bond connectivity
index in the set of cacti with t cycles and also in the set of cacti with r pendent vertices, for
all positive integral values of t and r. Li [] determined the unique cactus with maximum
atom-bond connectivity index among cacti with n vertices and t cycles, where  ≤ t ≤
� n–

 �, and also among n vertices and r pendent vertices, where  ≤ r ≤ n – . Ma and
Deng [] calculated the sharp lower bounds of the sum-connectivity index in the set of
cacti of order n with t cycles and also in the set of cacti of order n with perfect matching.
Lu et al. [] gave the sharp lower bound on the Randić index of cacti with t number of
cycles.

The present paper is motivated by the results of papers [, ]. The goal of this paper is to
compute the sharp lower bounds for the general sum-connectivity index and the general
Randić index of cacti with fixed number of cycles.

2 General sum-connectivity index
In this section, we find sharp lower bound for the general sum-connectivity index of cacti.
Let

F(n, t) = t(n + )α + (n – t – )nα + αt,

where n ≥  and t ≥ . First, we give some lemmas that will be used in the main result.

Lemma . ([]) Let n ≥  be a positive integer, α <  be a real number, and G ∈ X(n, ).
Then

χα(G) ≥ (n – )nα .

Equality holds if and only if G ∼= X(n, ).

Lemma . ([]) Let n ≥  be a positive integer, – ≤ α <  be a real number, and G ∈
X(n, ). Then

χα(G) ≥ (n + )α + (n – )nα + α .

Equality holds if and only if G ∼= X(n, ).
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Lemma . Let x, k be positive integers with x ≥ k ≥ , and α <  be a real number. Define

f (x) = xα – (x – k)α .

Then f (x) is an increasing function.

Proof It is easily seen that f ′(x) = α(xα– – (x – k)α–) >  for α < . Therefore, f (x) is an
increasing function. �

Lemma . Let x, k be positive integers with x ≥ k ≥ , and – ≤ α <  be a real number.
Define

f (x) = k(x + )α + (x – k)(x + )α – (x – k)(x +  – k)α .

Then f (x) is a decreasing function.

Proof Let g(x) = k(x+)α –k(x+)α for x ≥ k ≥ . We get g ′(x) = αk((x+)α– –(x+)α–) <
. So, g(x) is a decreasing function.

Let h(x) = x(x + )α for x ≥ k ≥ . Then h′′(x) = α((α + )x + )(x + )α– <  for – ≤ α < .
Hence, h(x)–h(x–k) is a decreasing function. Note that f (x) = g(x)+(h(x)–h(x–k)). Thus,
f (x) is a decreasing function. �

Lemma . Let x, k be positive integers with x ≥ k ≥ , and – ≤ α <  be a real number.
Define

f (x) = x(x + )α – (x – )xα .

Then f (x) is a decreasing function.

Proof Let h(x) = x(x + )α for x ≥ k ≥ . Then h′′(x) = α((α + )x + )(x + )α– <  for
– ≤ α < . But f (x) = h(x) – h(x – ). Thus, f (x) is a decreasing function. �

Theorem . Let – ≤ α <  be a real number, n ≥  be a positive integer, and G ∈ X(n, t).
Then

χα(G) ≥ F(n, t). (.)

Equality holds if and only if G ∼= X(n, t).

Proof We use mathematical induction on n and t. If t =  or t = , then Lemmas . and .
give inequality (.). If n =  and t = , then there is only one possibility that X(, ) is a
graph with two cycles that have only one common vertex (see Figure ) and inequality (.)
holds. If n ≥  and t ≥ , then we will discuss the following two cases.

Case : G ∈ X(n, t) has at least one pendent vertex.
Let x ∈ V (G) be a pendent vertex and adjacent with vertex y of degree d, where  ≤

d ≤ n – . The set of neighbors of y in G is NG(y) \ {x} = {u, u, u, . . . , ud–}. Without lost
of generality, we assume that u, u, u, . . . , uk– are pendent vertices and uk , uk+, . . . , ud–
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Figure 1 X0(5, 2).

are nonpendent vertices, where k ≥ . If k = , then u, u, u, . . . , ud– are nonpendent
vertices. Obviously, we have t ≤ � n–k–

 �. If H is a graph obtained by deleting vertices
x, u, u, . . . , uk– from G, that is, H = G – x – u – u – · · · – uk–, then H ∈ X(n – k, t).
By inductive assumption and using Lemmas . and ., we obtain

χα(G) = χα(H) + k(d + )α +
d–∑

i=k

((
d + dG(ui)

)α –
(
d – k + dG(ui)

)α)

≥ F(n – k, t) + k(d + )α +
d–∑

i=k

((
d + dG(ui)

)α –
(
d – k + dG(ui)

)α)

= F(n, t) + t(n – k + )α – t(n + )α + (n – k – t – )(n – k)α – (n – t – )nα

+ k(d + )α +
d–∑

i=k

((
d + dG(ui)

)α –
(
d – k + dG(ui)

)α)

≥ F(n, t) + t(n – k + )α – t(n + )α + (n – k – t – )(n – k)α – (n – t – )nα

+ k(d + )α + (d – k)
(
(d + )α – (d – k + )α

)

≥ F(n, t) + t(n – k + )α – t(n + )α + (n – k – t – )(n – k)α – (n – t – )nα

+ knα + (n –  – k)(n + )α – (n –  – k)(n +  – k)α

= F(n, t) + (n –  – k – t)
(
(n + )α – (n – k + )α – nα + (n – k)α

)

≥ F(n, t).

The equality holds if and only if d = n – , t = n – k – , and H ∼= X(n – k, t). Therefore,
we have that χα(G) = F(n, t) if and only if G ∼= X(n, t).

Case : G ∈ X(n, t) has no pendent vertex. Then we consider edges xx, xx ∈ E(G)
such that x and x have degree  and x has degree d, where d ≥ . Now there arise two
subcases.

Subcase .: x and x are nonadjacent vertices in G. Then we construct a new graph H
by deleting a vertex x and adding an edge between x and x, that is, H = G – x + xx ∈
X(n – , t). Then by inductive assumption we have

χα(G) = χα(H) + (d + )α + α – (d + )α

≥ F(n – , t) + α

= F(n, t) + tnα – t(n + )α + (n – t – )(n – )α – (n – t – )nα + α

= F(n, t) + t
(
nα – (n – )α

)
+ (n – t – )

(
(n – )α – nα

)
+ α – nα

> F(n, t).

The last inequality holds if n ≥ . If n = , then t ≤ , and we easily show the inequality.
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Subcase .: x and x are adjacent in G. Then we construct a new graph H by deleting
two vertices x and x, that is, H = G – x – x ∈ X(n – , t – ). Let the set of neighbors of x

be NG(x) \ {x, x} = {u, u, . . . , ud–}, where all u, u, . . . , ud– are nonpendent vertices.
By inductive assumption and using Lemmas . and ., we obtain

χα(G) = χα(H) + α + (d + )α +
d–∑

i=

((
d + dG(ui)

)α –
(
d –  + dG(ui)

)α)

≥ F(n – , t – ) + α + (d + )α +
d–∑

i=

((
d + dG(ui)

)α –
(
d –  + dG(ui)

)α)

= F(n, t) + (t – )(n – )α – t(n + )α + (n – t – )(n – )α – (n – t – )nα

+ (t – )α – tα + α + (d + )α +
d–∑

i=

((
d + dG(ui)

)α –
(
d –  + dG(ui)

)α)

= F(n, t) + (t – )(n – )α – t(n + )α + (n – t – )(n – )α – (n – t – )nα

+ (t – )α – tα + α + (d + )α + (d – )
(
(d + )α – dα

)

= F(n, t) + (t – )(n – )α – t(n + )α + (n – t – )(n – )α – (n – t – )nα

+ d(d + )α – (d – )dα

= F(n, t) + (t – )(n – )α – t(n + )α + (n – t – )(n – )α – (n – t – )nα

+ (n – )(n + )α – (n – )(n – )α

= F(n, t) + (n –  – t)
(
(n + )α – (n – )α + (n – )α – nα

)

≥ F(n, t).

The equality holds if and only if d = n – , t = n – , and H ∼= X(n – , t – ). Therefore,
we have χα(G) = F(n, t) with equality if and only if G ∼= X(n, t). �

3 General Randić index
In this section, we find sharp lower bound for the general Randić index of cacti. Let

F(n, t) = α+t(n – ) + tα + (n –  – t)(n – )α ,

where n ≥  and t ≥ . First, we give some lemmas that will be helpful in the proof of the
main result.

Lemma . ([]) Let n ≥  be a positive integer, α <  be a real number, and G ∈ X(n, ).
Then

Rα(G) ≥ (n – )α+.

Equality holds if and only if G ∼= X(n, ).

Lemma . ([]) Let n ≥  be a positive integer, – ≤ α <  be a real number, and G ∈
X(n, ). Then
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Rα(G) ≥ (n – )(n – )α + α(n – )α + α .

Equality holds if and only if G ∼= X(n, ).

Lemma . Let x, d, k be positive integers with d ≥ k ≥ , x ≥ , and α <  be a real number.
Define

f (x) = xα
(
dα – (d – k)α

)
.

Then f (x) is an increasing function.

Proof It is easily seen that f ′(x) = αxα–(dα – (d – k)α) >  for α < . Therefore, f (x) is an
increasing function. �

Lemma . Let x, k be positive integers with x ≥ k ≥ , and – ≤ α <  be a real number.
Define

f (x) = kxα + α(x – k)xα – α(x – k)α+.

Then f (x) is a decreasing function.

Proof Let g(x) = kxα( – α) for x ≥ k ≥ . We get g ′(x) = αkxα–( – α) < . So, g(x) is a
decreasing function.

Let h(x) = αxα+ for x ≥ k ≥ . Then h′′(x) = α(α + )xα– <  for – ≤ α < . Hence,
h(x) – h(x – k) is a decreasing function. Note that f (x) = g(x) + (h(x) – h(x – k)). Thus, f (x)
is a decreasing function. �

Lemma . Let x, k be positive integers with x ≥ k ≥ , and – ≤ α <  be areal number.
Let

f (x) = xα+ – (x – )α+.

Then f (x) is a decreasing function.

Proof Let h(x) = xα+ for x ≥ k ≥ . Then h′′(x) = α(α + )xα– <  for – ≤ α < . But
f (x) = h(x) – h(x – ). Thus f (x) is a decreasing function. �

Theorem . Let – ≤ α <  be a real number, n ≥  be a positive integer, and G ∈ X(n, t).
Then

Rα(G) ≥ F(n, t). (.)

Equality holds if and only if G ∼= X(n, t).

Proof We use mathematical induction on n and t. If t =  or t = , then inequality (.)
holds by Lemma . and Lemma ., respectively. If n =  and t = , then there is only one
graph X(, ), and the result for X(, ) is trivial. Now if n ≥  and t ≥ , then we will
consider the following two cases.
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Case : G ∈ X(n, t) has at least one pendent vertex.
Let x be a vertex that is adjacent only with vertex y. Then y has degree d with  ≤ d ≤

n–. The set of neighbors of y in G is NG(y)\{x} = {u, u, u, . . . , ud–}. Without lost of gen-
erality, we assume that dG(uj) ≥  for k ≤ j ≤ d – , where k ≥ , and the remaining neigh-
boring vertices of y are pendent vertices. If k = , then G has no pendent vertex. Obviously,
we have t ≤ � n–k–

 �. If H is a new graph obtained by deleting vertices x, u, u, . . . , uk–, that
is, H = G – x – u – u – · · · – uk–, then H ∈ X(n – k, t). By inductive assumption and using
Lemmas . and ., we obtain

Rα(G) = Rα(H) + kdα +
d–∑

j=k

((
ddG(uj)

)α – (d – k)αdG(uj)α
)

≥ F(n – k, t) + kdα +
d–∑

j=k

((
ddG(uj)

)α – (d – k)αdG(uj)α
)

= F(n, t) + α+t(n – k + )α – α+t(n – )α + (n – k – t – )(n – k – )α

– (n – t – )(n – )α + kdα +
d–∑

j=k

((
ddG(uj)

)α – (d – k)αdG(uj)α
)

≥ F(n, t) + α+t(n – k + )α – α+t(n – )α + (n – k – t – )(n – k – )α

– (n – t – )(n – )α + kdα + (d – k)
(
(d)α – α(d – k)α

)

≥ F(n, t) + α+t(n – k + )α – α+t(n – )α + (n – k – t – )(n – k – )α

– (n – t – )(n – )α + k(n – )α + α(n –  – k)(n – )α – α(n +  – k)α+

= F(n, t) + (n –  – k – t)
(
 – α

)(
(n – k – )α – (n – )α

)

≥ F(n, t).

The equality holds if and only if H ∼= X(n – k, t), d = n – , and t = n – k – . Therefore,
we have that Rα(G) = F(n, t) if and only if G ∼= X(n, t).

Case : If G has no pendent vertex, then we consider xx, xx edges of a cycle such that
x and x are vertices of degree two and dG(x) = d, where d ≥ . Next, we discuss this in
the following two subcases.

Subcase .: If x and x are nonadjacent vertices in G, then H is a new graph obtained
by deleting x and adding an edge xx, that is, H = G – x + xx ∈ X(n – , t). Therefore,
we get

Rα(G) = Rα(H) + (d)α + α – (d)α

≥ F(n – , t) + α

= F(n, t) + α+t(n – )α – α+t(n – )α + (n – t – )(n – )α

– (n – t – )(n – )α + α

= F(n, t) + α+t
(
(n – )α – (n – )α

)
+ (n – t – )

(
(n – )α – nα

)

+ α – (n – )α

> F(n, t).
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The last inequality holds if n ≥ . If n = , then t ≤ , and we easily show the inequal-
ity.

Subcase .: If x and x are connected by an edge, then H = G – x – x ∈ X(n – , t – ).
Let the set of neighbors of x be NG(x) \ {x, x} = {u, u, . . . , ud–}, where uj for  ≤ j ≤
d –  are nonpendent vertices. By inductive assumption and using Lemmas . and .,
we obtain

Rα(G) = Rα(H) + α + α+dα +
d–∑

j=

((
ddG(uj)

)α – (d – )αdG(uj)α
)

≥ F(n – , t – ) + α + α+dα +
d–∑

j=

((
ddG(uj)

)α – (d – )αdG(uj)α
)

= F(n, t) + α+(t – )(n – )α – α+t(n – )α + (n – t – )(n – )α

– (n – t – )(n – )α + (t – )α – tα + α + α+dα

+
d–∑

j=

((
ddG(uj)

)α – (d – )α + dG(uj)α
)

= F(n, t)α+(t – )(n – )α – α+t(n – )α + (n – t – )(n – )α

– (n – t – )(n – )α + (t – )α – tα + α + α+dα

+ α(d – )
(
dα – (d – )α

)

= F(n, t) + α+(t – )(n – )α – α+t(n – )α + (n – t – )(n – )α

– (n – t – )(n – )α + αdα+ – α(d – )α+

= F(n, t) + α+(t – )(n – )α – α+t(n – )α + (n – t – )(n – )α

– (n – t – )(n – )α + α(n – )α – α(n – )α

= F(n, t) + (n –  – t)
(
 – α

)(
(n – )α – (n – )α

)

≥ F(n, t).

The equality holds if and only if H ∼= X(n – , t – ), d = n – , and t = n – . Therefore,
we have that Rα(G) = F(n, t) if and only if G ∼= X(n, t). �

4 Conclusion
In this paper, we determined the sharp lower bounds for the general sum-connectivity
index and the general Randić index of cacti with fixed number of cycles for – ≤ α < .
The general sum-connectivity index and general Randić index of cacti for other values of
α remains an open problem. Moreover, some topological indices and polynomials are still
unknown for cacti with fixed number of cycles and fixed number of pendent vertices.
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