RESEARCH

On the general *K*-interpolation method for the sum and the intersection

Irshaad Ahmed^{*} and Muhammad Awais

*Correspondence: quantized84@yahoo.com Department of Mathematics, Government College University, Faisalabad, Pakistan

Abstract

Let (A_0, A_1) be a compatible couple of normed spaces. We study the interrelation of the general *K*-interpolation spaces of the couple $(A_0 + A_1, A_0 \cap A_1)$ with those of the couples $(A_0, A_1), (A_0 + A_1, A_0), (A_0 + A_1, A_1), (A_0, A_0 \cap A_1)$, and $(A_1, A_0 \cap A_1)$.

MSC: 46B70

Keywords: sum space; intersection space; *K*-functional; the general *K*-interpolation method; limiting *K*-interpolation methods

1 Introduction

Let (A_0, A_1) be a compatible couple of normed spaces, *i.e.* we assume that both A_0 and A_1 are continuously embedded in a topological vector space A. The sum of A_0 and A_1 , denoted by $A_0 + A_1$, is the set of elements $f \in A$ that can be represented as $f = f_0 + f_1$ where $f_0 \in A_0$ and $f_1 \in A_1$. The norm on the sum space $A_0 + A_1$ is given by

$$\|f\|_{A_0+A_1} = \inf\{\|f_0\|_{A_0} + \|f_1\|_{A_1} : f_0 \in A_0, f_1 \in A_1, f = f_0 + f_1\}.$$

The norm on the intersection space $A_0 \cap A_1$ is given by

 $||f||_{A_0\cap A_1} = \max\{||f||_{A_0}, ||f||_{A_1}\}.$

The Peetre's *K*-functional is defined, for each $f \in A_0 + A_1$ and t > 0, by

$$K(t,f;A_0,A_1) = \inf \{ \|f_0\|_{A_0} + t \|f_1\|_{A_1} : f_0 \in A_0, f_1 \in A_1, f = f_0 + f_1 \}.$$

Let Φ be a normed space of Lebesgue measurable functions, defined on $(0, \infty)$, with monotone norm: $|g| \le |h|$ implies $||g||_{\Phi} \le ||h||_{\Phi}$. Further assume that

$$t \longmapsto \min\{1, t\} \in \Phi. \tag{1.1}$$

By definition, the general *K*-interpolation space $(A_0, A_1)_{\Phi}$ is a subspace of $A_0 + A_1$ having the following norm:

$$\|f\|_{(A_0,A_1)_{\Phi}} = \|K(t,f;A_0,A_1)\|_{\Phi}.$$

Here Φ is often termed the parameter of the *K*-interpolation method. We refer to [1] for a complete treatment of the general *K*-interpolation method.

Set

$$\Gamma = ([0,1] \times [1,\infty]) \setminus (\{0,1\} \times [1,\infty)).$$

Let $(\theta, p) \in \Gamma$, then the classical scale of *K*-interpolation spaces $(A_0, A_1)_{\theta,q}$ (see [2] or [3]) is obtained when Φ is taken to be the weighted Lebesgue space $L_q(t^{-\theta})$ defined by the norm

$$\|g\|_{\Phi} = \begin{cases} (\int_0^{\infty} t^{-\theta} |g(t)|^p \frac{dt}{t})^{1/p}, & (\theta, p) \in (0, 1) \times [1, \infty), \\ \sup_{0 \le t \le \infty} t^{-\theta} |g(t)|, & (\theta, p) \in [0, 1] \times \{\infty\}. \end{cases}$$

The following identity was proved by Maligranda [4]:

$$(A_0 + A_1, A_0 \cap A_1)_{\theta, p} = \begin{cases} (A_0, A_1)_{\theta, p} + (A_0, A_1)_{1-\theta, p}, & (\theta, p) \in \Gamma_1, \\ (A_0, A_1)_{\theta, p} \cap (A_0, A_1)_{1-\theta, p}, & (\theta, p) \in \Gamma_2, \end{cases}$$
(1.2)

where

$$\Gamma_1 = ([0, 1/2) \times [1, \infty]) \setminus (\{0\} \times [1, \infty))$$

and

$$\Gamma_2 = ([1/2,1] \times [1,\infty]) \setminus (\{1\} \times [1,\infty)).$$

Subsequently, Maligranda [5] considered the *K*-interpolation spaces $(A_0, A_1)_{\varrho, p}$, which are obtained when Φ is given by

$$\|g\|_{\Phi} = \begin{cases} \left(\int_0^\infty \left(\frac{|g(t)|}{\varrho(t)}\right)^p \frac{dt}{t}\right)^{1/p}, & 1 \le p < \infty, \\ \sup_{0 < t < \infty} \frac{|g(t)|}{\varrho(t)}, & p = \infty, \end{cases}$$

and extended the identity (1.2) by imposing certain monotonicity conditions on the parameter function ρ . Another related identity, proved by Persson [6], states that

$$(A_0 + A_1, A_0 \cap A_1)_{\varrho, p} = (A_0 + A_1, A_0)_{\varrho, p} \cap (A_0 + A_1, A_1)_{\varrho, p}.$$

Recently, Haase [7] has completely described how the classical *K*-interpolation spaces for the couples (A_0, A_1) , $(A_0 + A_1, A_0)$, $(A_0 + A_1, A_1)$, $(A_0, A_0 \cap A_1)$, $(A_1, A_0 \cap A_1)$, and $(A_0 + A_1, A_0 \cap A_1)$ interrelate. The assertions (1.5)-(1.12) in [7], Theorem 1.1, concern the spaces $(A_0 + A_1, A_0 \cap A_1)_{\theta,p}$, and the goal of this paper is to extend these assertions by means of replacing the classical scale $(A_0, A_1)_{\theta,p}$ by the general scale $(A_0, A_1)_{\Phi}$.

The main ingredient of our proofs will be the estimate in Proposition 2.4 (see below) which relates the *K*-functional of the couple $(A_0 + A_1, A_0 \cap A_1)$ with that of the original couple (A_0, A_1) , whereas this estimate has not been used in [7]. Consequently, our arguments of the proofs are different from those in [7].

We will also apply our general results to the limiting *K*-interpolation spaces $(A_0, A_1)_{0,p;K}$ and $(A_0, A_1)_{1,p;K}$ recently introduced by Cobos, Fernández-Cabrera, and Silvestre [8]. Namely, if the parameter spaces Φ_0 and Φ_1 are given by the norms

$$\|g\|_{\Phi_0} = \left(\int_0^1 |g(s)|^p \frac{ds}{s}\right)^{\frac{1}{p}} + \sup_{s>1} |g(s)|$$
(1.3)

and

$$\|g\|_{\Phi_1} = \sup_{0 < s < 1} \frac{|g(s)|}{s} + \left(\int_1^\infty \left(\frac{|g(s)|}{s}\right)^p \frac{ds}{s}\right)^{\frac{1}{p}},\tag{1.4}$$

where $1 \le p < \infty$, then $(A_0, A_1)_{\Phi_0} = (A_0, A_1)_{0,p;K}$ and $(A_0, A_1)_{\Phi_1} = (A_0, A_1)_{1,p;K}$. Note that, for limiting values $\theta = 0, 1$, the space $(A_0, A_1)_{\theta,p}$ is trivial (containing only zero element) when p is finite. The space $(A_0, A_1)_{0,p;K}$ corresponds to the limiting value $\theta = 0$, and the space $(A_0, A_1)_{1,p;K}$ corresponds to the limiting value $\theta = 1$. We will, for convenience, write $(A_0, A_1)_{\{0\},p}$ for $(A_0, A_1)_{0,p;K}$, and $(A_0, A_1)_{\{1\},p}$ for $(A_0, A_1)_{1,p;K}$.

The paper is organised as follows. In Section 2, we establish all necessary background material, whereas Section 3 contains the main results.

2 Background material

In the following we will use the notation $A \leq B$ for non-negative quantities to mean that $A \leq cB$ for some positive constant *c* which is independent of appropriate parameters involved in *A* and *B*. If $A \leq B$ and $B \leq A$, we will write $A \approx B$. Moreover, we will use the symbol $X \hookrightarrow Y$ to show that *X* is continuously embedded in *Y*.

The elementary but useful properties of the *K*-functional are collected in the following proposition.

Proposition 2.1 ([3]) Let (A_0, A_1) be a compatible couple of normed spaces. Then $K(t, f; A_0, A_1)$ is non-decreasing in t, and $K(t, f; A_0, A_1)/t$ is non-increasing in t. Moreover, we have

$$K(t,f;A_0,A_1) \le \|f\|_{A_0}, \quad f \in A_0, t > 0;$$
(2.1)

 $K(t,f;A_0,A_1) \le t \|f\|_{A_1}, \quad f \in A_1, t > 0;$ (2.2)

$$K(t,f;A_0,A_1) = tK(t^{-1},f;A_1,A_0), \quad f \in A_0 + A_1, t > 0;$$
(2.3)

$$K(t, f + g; A_0, A_1) \le K(t, f; A_0, A_1) + K(t, g; A_0, A_1), \quad f, g \in A_0 + A_1, t > 0.$$

$$(2.4)$$

In the next three propositions, we describe some formulas which relate the *K*-functional of the couples $(A_0 + A_1, A_1)$, $(A_0, A_0 \cap A_1)$, and $(A_0 + A_1, A_0 \cap A_1)$ with that of the original couple (A_0, A_1) .

Proposition 2.2 Let (A_0, A_1) be a compatible couple of normed spaces, and let $f \in A_0 + A_1$. Then

$$K(t, f; A_0 + A_1, A_1) = K(t, f; A_0, A_1), \quad 0 < t < 1.$$

Proof In view of (2.3), the proof follows immediately from the following relation:

$$K(t,f;A_0,A_0+A_1) = K(t,f;A_0,A_1), \quad t > 1,$$
(2.5)

which has been derived in [7], Lemma 2.1.

For the proof of the next result, we refer to [7], Lemma 2.3.

Proposition 2.3 Let (A_0, A_1) be a compatible couple of normed spaces, and let $f \in A_0$. Then

$$K(t,f;A_0,A_0 \cap A_1) \lesssim K(t,f;A_0,A_1) + t ||f||_{A_0}, \quad 0 < t < 1.$$

The next result is derived in [4], Theorem 3.

Proposition 2.4 Let (A_0, A_1) be a compatible couple of normed space, and let $f \in A_0 + A_1$. Then

$$K(t,f;A_0 + A_1, A_0 \cap A_1) \approx K(t,f;A_0, A_1) + tK(t^{-1},f;A_0, A_1), \quad 0 < t < 1.$$

In our proofs, we will make use of the fact that, for a parameter space Φ , both $\|s\chi_{(0,1)}(s)\|_{\Phi}$ and $\|\chi_{(1,\infty)}\|_{\Phi}$ are finite. This fact is a simple consequence of (1.1). Moreover, in view of the monotonicity of the norm $\|\cdot\|_{\Phi}$ and the fact that $K(t,f;A_0,A_1) = \|f\|_{A_0+A_1}$, we have

$$\|f\|_{(A_0,A_1)_{\Phi}} \approx \|\chi_{(0,1)}(t)K(t,f;A_0,A_1)\|_{\Phi} + \|\chi_{(1,\infty)}(t)K(t,f;A_0,A_1)\|_{\Phi}.$$
(2.6)

We will make use of the next result, without explicitly mentioning it, in our proofs.

Proposition 2.5 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that $A_1 \hookrightarrow A_0$. Then

$$||f||_{(A_0,A_1)_{\Phi}} \approx ||\chi_{(0,1)}(s)K(s,f;A_0,A_1)||_{\Phi}.$$

Proof It will suffice to derive

$$\|f\|_{(A_0,A_1)_{\Phi}} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi},$$
(2.7)

as the converse estimate is trivial. Using (2.6) and (2.1), we get

$$\begin{split} \|f\|_{(A_0,A_1)\Phi} &\lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|f\|_{A_1}\|\chi_{(1,\infty)}\|_{\Phi} \\ &\approx \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|f\|_{A_1}, \end{split}$$

as our assumption $A_1 \hookrightarrow A_0$ implies that $||f||_{A_0} \approx ||f||_{A_0+A_1}$, so

$$\|f\|_{(A_0,A_1)_{\Phi}} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|f\|_{A_0+A_1}.$$
(2.8)

Since $K(t, f; A_0, A_1)/t$ is non-increasing in *t*, we obtain

$$\|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} \ge K(1,f;A_0,A_1)\|s\chi_{(0,1)(s)}\|_{\Phi},$$

which gives

$$\|f\|_{A_0+A_1} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi}.$$
(2.9)

Now (2.7) follows from (2.8) and (2.9). The proof is complete.

3 Main results

Theorem 3.1 Let (A_0, A_1) be a compatible couple of normed spaces. Then, for an arbitrary parameter space Φ , we have with equivalent norms

$$(A_0 + A_1, A_0)_{\Phi} \cap (A_0 + A_1, A_1)_{\Phi} = (A_0 + A_1, A_0 \cap A_1)_{\Phi}.$$

Proof Put $B_0 = (A_0 + A_1, A_0)_{\Phi}$, $B_1 = (A_0 + A_1, A_1)_{\Phi}$, and $B = (A_0 + A_1, A_0 \cap A_1)_{\Phi}$. Let $f \in A_0 + A_1$. Then by Proposition 2.4

$$\|f\|_{B} \approx \|\chi_{(0,1)}(s)K(s,f;A_{0},A_{1})\|_{\Phi} + \|\chi_{(0,1)}(s)sK(s^{-1},f;A_{0},A_{1})\|_{\Phi},$$

next making use of (2.3), we arrive at

$$\|f\|_{B} \approx \|\chi_{(0,1)}(s)K(s,f;A_{0},A_{1})\|_{\Phi} + \|\chi_{(0,1)}(s)K(s,f;A_{1},A_{0})\|_{\Phi}.$$

Finally, appealing to Proposition 2.2, we get

$$||f||_B \approx ||f||_{B_0} + ||f||_{B_1},$$

which concludes the proof.

Remark 3.2 The result of Theorem 3.1 generalizes the assertion (1.5) in [7], Theorem 1.1.

Theorem 3.3 Let (A_0, A_1) be a compatible couple of normed spaces. Then, for an arbitrary parameter space Φ , we have with equivalent norms

 $(A_0, A_0 \cap A_1)_{\Phi} + (A_1, A_0 \cap A_1)_{\Phi} = (A_0 + A_1, A_0 \cap A_1)_{\Phi}.$

Proof Put $B_0 = (A_0, A_0 \cap A_1)_{\Phi}$, $B_1 = (A_1, A_0 \cap A_1)_{\Phi}$ and $B = (A_0 + A_1, A_0 \cap A_1)_{\Phi}$. Let $f \in B_0 + B_1$, and take an arbitrary decomposition $f = f_0 + f_1$ with $f_0 \in B_0$ and $f_1 \in B_1$. Then by (2.4), we have

$$\|f\|_{B} \lesssim \|\chi_{(0,1)}(s)K(s,f_{0};A_{0}+A_{1},A_{0}\cap A_{1})\|_{\Phi} + \|\chi_{(0,1)}(s)K(s,f_{1};A_{0}+A_{1},A_{0}\cap A_{1})\|_{\Phi},$$

now applying the simple fact that

$$K(t,f_j;A_0+A_1,A_0\cap A_1) \le K(t,f_j;A_j,A_0\cap A_1) \quad (j=0,1), t>0,$$

we obtain

$$\|f\|_B \lesssim \|f_0\|_{B_0} + \|f_1\|_{B_1},$$

from which the estimate $||f||_B \leq ||f||_{B_0+B_1}$ follows as the decomposition $f = f_0 + f_1$ is arbitrary. In order to establish the converse estimate, we take $f \in B$ and note that there exists (by definition of the norm on $A_0 + A_1$) a particular decomposition $f = f_0 + f_1$ with $f_0 \in A_0$ and $f_1 \in A_1$ such that

$$\|f_0\|_{A_0} + \|f_1\|_{A_1} \lesssim \|f\|_{A_0 + A_1}.$$
(3.1)

By Proposition 2.3,

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi} + \|s\chi_{(0,1)}(s)\|_{\Phi} \|f_0\|_{A_0}$$

$$\approx \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi} + \|f_0\|_{A_0},$$

since $f_0 = f - f_1$, we get by (2.4)

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|\chi_{(0,1)}(s)K(s,f_1;A_0,A_1)\|_{\Phi} + \|f_0\|_{A_0},$$

next we use (2.2) to obtain

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|s\chi_{(0,1)}(s)\|_{\Phi}\|f_1\|_{A_1} + \|f_0\|_{A_0}$$

$$\approx \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|f_1\|_{A_1} + \|f_0\|_{A_0}$$

and, using (3.1), we get

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|f\|_{A_0+A_1},$$

in accordance with (2.9), we deduce that

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi}.$$

Analogously, we can obtain

 $\|f_1\|_{B_1} \lesssim \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi}.$

Therefore, combining the previous two estimates, we find that

 $\|f_0\|_{B_0} + \|f_1\|_{B_1} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi} + \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi},$

from which, in view of Proposition 2.4, it follows that

 $||f||_{B_0+B_1} \lesssim ||f||_B$,

which completes the proof.

Remark 3.4 The result of Theorem 3.3 generalizes the assertion (1.6) in [7], Theorem 1.1.

In order to formulate the further results, we need the following conditions on the parameter spaces Φ_0 and Φ_1 :

- (C₁) $\|\chi_{(0,1)}(s)g(s)\|_{\Phi_0} \lesssim \|\chi_{(0,1)}(s)g(s)\|_{\Phi_1}$.
- (C₂) $\|\chi_{(0,1)}(s)g(s)\|_{\Phi_1} \lesssim \|\chi_{(0,1)}(s)g(s)\|_{\Phi_0}$.
- (C₃) $\|\chi_{(1,\infty)}(s)g(s)\|_{\Phi_1} \lesssim \|\chi_{(1,\infty)}(s)g(s)\|_{\Phi_0}.$
- (C₄) $\|\chi_{(1,\infty)}(s)g(s)\|_{\Phi_0} \approx \|\chi_{(0,1)}(s)sg(1/s)\|_{\Phi_1}.$
- (C₅) $\|\chi_{(1,\infty)}(s)g(s)\|_{\Phi_1} \approx \|\chi_{(0,1)}(s)sg(1/s)\|_{\Phi_0}.$

Remark 3.5 Let $(\theta, p) \in \Gamma$, and assume that Φ_0 and Φ_1 are given by the norms

$$\|g\|_{\Phi_0} = \begin{cases} (\int_0^\infty t^{-\theta} |g(t)|^p \frac{dt}{t})^{1/p}, & (\theta, p) \in (0, 1) \times [1, \infty), \\ \sup_{0 < t < \infty} t^{-\theta} |g(t)|, & (\theta, p) \in [0, 1] \times \{\infty\}, \end{cases}$$
(3.2)

and

$$\|g\|_{\Phi_1} = \begin{cases} (\int_0^\infty t^{1-\theta} |g(t)|^p \frac{dt}{t})^{1/p}, & (\theta, p) \in (0, 1) \times [1, \infty), \\ \sup_{0 < t < \infty} t^{1-\theta} |g(t)|, & (\theta, p) \in [0, 1] \times \{\infty\}. \end{cases}$$
(3.3)

Then it is easy to see that (C₁) and (C₃) hold for $(\theta, p) \in \Gamma_1$, and (C₂) holds for $(\theta, p) \in \Gamma_2$. The conditions (C₄) and (C₅) hold trivially for all $(\theta, p) \in \Gamma$.

Remark 3.6 Let $1 \le p < \infty$, and assume that Φ_0 and Φ_1 are given by (1.3) and (1.4). Then we note that (C₁), (C₃), (C₄), and (C₅) hold.

Theorem 3.7 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_1) , (C_3) and (C_4) . Then we have with equivalent norms

$$(A_0, A_1)_{\Phi_0} \cap (A_0, A_1)_{\Phi_1} = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}.$$

Proof Put $B_0 = (A_0, A_1)_{\Phi_0}$, $B_1 = (A_0, A_1)_{\Phi_1}$ and $B = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$. Let $f \in A_0 + A_1$. Then

$$\begin{split} \|f\|_{B_0} + \|f\|_{B_1} &\approx \left\|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\right\|_{\Phi_0} + \left\|\chi_{(1,\infty)}(s)K(s,f;A_0,A_1)\right\|_{\Phi_0} \\ &+ \left\|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\right\|_{\Phi_1} + \left\|\chi_{(1,\infty)}(s)K(s,f;A_0,A_1)\right\|_{\Phi_1}, \end{split}$$

which, in view of (C_1) and (C_3) , reduces to

$$\|f\|_{B_0} + \|f\|_{B_1} \approx \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|\chi_{(1,\infty)}(s)K(s,f;A_0,A_1)\|_{\Phi_0},$$

at this point we use (C_4) to obtain

$$\|f\|_{B_0} + \|f\|_{B_1} \approx \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|\chi_{(0,1)}(s)K(s^{-1},f;A_0,A_1)\|_{\Phi_1},$$

finally, applying Proposition 2.4, we conclude that

$$||f||_{B_0} + ||f||_{B_1} \approx ||f||_B.$$

The proof is complete.

Remark 3.8 Applying Theorem 3.7 to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3), we get back the result (1.7) in [7], Theorem 1.1, for $(\theta, p) \in \Gamma_1$. Note that the case when $(\theta, p) \in \Gamma_2$ follows from the case when $(\theta, p) \in \Gamma_1$ by replacing θ by $1 - \theta$.

Corollary 3.9 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0, A_1)_{\{0\}, p} \cap (A_0, A_1)_{\{1\}, p} = (A_0 + A_1, A_0 \cap A_1)_{\{1\}, p}$$

Proof The proof follows by applying Theorem 3.7 to the parameter spaces Φ_0 and Φ_1 given by (1.3) and (1.4).

Theorem 3.10 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_1) , (C_3) , and (C_5) . Then we have with equivalent norms

$$(A_0, A_1)_{\Phi_0} + (A_0, A_1)_{\Phi_1} = (A_0 + A_1, A_0 \cap A_1)_{\Phi_0}.$$

Proof Put $B_0 = (A_0, A_1)_{\Phi_0}$, $B_1 = (A_0, A_1)_{\Phi_1}$ and $B = (A_0 + A_1, A_0 \cap A_1)_{\Phi_0}$. Let $f \in B_0 + B_1$, and write $f = f_0 + f_1$, where $f_0 \in B_0$ and $f_1 \in B_1$. Now by Proposition 2.4, we have

$$\|f\|_{B} \approx \|\chi_{(0,1)}(s)K(s,f;A_{0},A_{1})\|_{\Phi_{0}} + \|\chi_{(0,1)}(s)sK(s^{-1},f;A_{0},A_{1})\|_{\Phi_{0}}$$

using (C_5) gives

$$\|f\|_{B} \approx \|\chi_{(0,1)}(s)K(s,f;A_{0},A_{1})\|_{\Phi_{0}} + \|\chi_{(1,\infty)}(s)K(s,f;A_{0},A_{1})\|_{\Phi_{1}}$$

since $f = f_0 + f_1$, so by (2.4), we have

$$\begin{split} \|f\|_{B} &\lesssim \left\|\chi_{(0,1)}(s)K(s,f_{0};A_{0},A_{1})\right\|_{\Phi_{0}} + \left\|\chi_{(0,1)}(s)K(s,f_{1};A_{0},A_{1})\right\|_{\Phi_{0}} \\ &+ \left\|\chi_{(1,\infty)}(s)K(s,f_{0};A_{0},A_{1})\right\|_{\Phi_{1}} + \left\|\chi_{(1,\infty)}(s)K(s,f_{1};A_{0},A_{1})\right\|_{\Phi_{1}}, \end{split}$$

by (C_1) and (C_3) , we arrive at

$$\begin{split} \|f\|_{B} &\lesssim \left\| \chi_{(0,1)}(s)K(s,f_{0};A_{0},A_{1}) \right\|_{\Phi_{1}} + \left\| \chi_{(0,1)}(s)K(s,f_{1};A_{0},A_{1}) \right\|_{\Phi_{0}} \\ &+ \left\| \chi_{(1,\infty)}(s)K(s,f_{0};A_{0},A_{1}) \right\|_{\Phi_{1}} + \left\| \chi_{(1,\infty)}(s)K(s,f_{1};A_{0},A_{1}) \right\|_{\Phi_{0}}, \end{split}$$

which gives

 $||f||_B \lesssim ||f_0||_{B_0} + ||f_1||_{B_1},$

from which the estimate $||f||_B \leq ||f||_{B_0+B_1}$ follows. To derive the other estimate, take $f \in B$, and choose a particular decomposition $f = f_0 + f_1$, with $f_0 \in A_0$ and $f_1 \in A_1$, satisfying (3.1). Then

$$\begin{split} \|f_0\|_{B_0} &\approx \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_0} + \|\chi_{(1,\infty)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_0} \\ &\lesssim \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_0} + \|\chi_{(1,\infty)}\|_{\Phi_0} \|f_0\|_{A_0} \\ &\approx \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_0} + \|f_0\|_{A_0}, \end{split}$$

where we have used (2.1). Next proceeding in the same way as in the proof of Theorem 3.3, we obtain

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_0}.$$
(3.4)

Also, we can show that

$$\|f_1\|_{B_1} \lesssim \|\chi_{(1,\infty)}(s)K(s,f;A_0,A_1)\|_{\Phi_1}$$

which, in view of (C_5) , becomes

$$\|f_1\|_{B_1} \lesssim \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi_0},$$

which, combined with (3.4), yields

$$\|f_0\|_{B_0} + \|f_1\|_{B_1} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_0} + \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi_0}$$

which, in view of Proposition 2.4, gives

$$||f_0||_{B_0} + ||f_1||_{B_1} \lesssim ||f||_{B_1}$$

from which the desired estimate $||f||_{B_0+B_1} \leq ||f||_B$ follows. The proof of the theorem is finished.

Remark 3.11 Theorem 3.10, applied to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3), gives back (1.8) in [7], Theorem 1.1.

Corollary 3.12 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

 $(A_0, A_1)_{\{0\}, p} + (A_0, A_1)_{\{1\}, p} = (A_0 + A_1, A_0 \cap A_1)_{\{0\}, p}.$

Proof Apply Theorem 3.10 to the parameter spaces Φ_0 and Φ_1 given by (1.3) and (1.4). \Box

Theorem 3.13 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_1) . Then we have with equivalent norms

 $(A_0, A_0 \cap A_1)_{\Phi_0} \cap (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0, A_0 \cap A_1)_{\Phi_1}.$

Proof Denote $B_0 = (A_0, A_0 \cap A_1)_{\Phi_0}$, $B_1 = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$, and $B = (A_0, A_0 \cap A_1)_{\Phi_1}$. Let $f \in A_0$. The estimate $||f||_{B_0} + ||f||_{B_1} \leq ||f||_B$ follows thanks to the condition (C₁) and the following simple inequality:

$$K(t,f;A_0 + A_1, A_0 \cap A_1) \le K(t,f;A_0, A_0 \cap A_1), \quad t > 0.$$
(3.5)

To derive the converse estimate, we apply Proposition 2.3 to obtain

$$\|f\|_B \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|f\|_{A_0}.$$
(3.6)

Next, since $K(t,f;A_0,A_1)/t$ is non-increasing in *t*, observe that

$$\|\chi_{(0,1)}(s)K(s,f;A_0,A_0\cap A_1)\|_{\Phi_0} \ge K(1,f;A_0,A_0\cap A_1)\|s\chi_{(0,1)}(s)\|_{\Phi_0},$$

noting $K(1, f; A_0, A_0 \cap A_1) = ||f||_{A_0}$, we have

$$\|f\|_{A_0} \lesssim \|f\|_{B_0}. \tag{3.7}$$

By Proposition 2.4, we also have

$$\|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} \lesssim \|f\|_{B_1}.$$
(3.8)

Finally, combining (3.6), (3.7), and (3.8), we obtain $||f||_B \leq ||f||_{B_0} + ||f||_{B_1}$. The proof is finished.

Remark 3.14 By applying Theorem 3.13 to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3), we get back (1.9) in [7], Theorem 1.1, for $(\theta, p) \in \Gamma_1$.

Corollary 3.15 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0, A_0 \cap A_1)_{\{0\}, p} \cap (A_0 + A_1, A_0 \cap A_1)_{\{1\}, p} = (A_0, A_0 \cap A_1)_{\{1\}, p}.$$

Proof Apply Theorem 3.13 to the parameter spaces Φ_0 and Φ_1 given by (1.3) and (1.4). \Box

Theorem 3.16 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_2) . Then we have with equivalent norms

 $(A_0, A_0 \cap A_1)_{\Phi_0} \cap (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0, A_0 \cap A_1)_{\Phi_0}.$

Proof It will suffice to establish that $(A_0, A_0 \cap A_1)_{\Phi_0} \hookrightarrow (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$. Let $f \in (A_0, A_0 \cap A_1)_{\Phi_0}$, then by (3.5) we have

$$\|\chi_{(0,1)}(s)K(s,f;A_0+A_1,A_0\cap A_1)\|_{\Phi_1} \leq \|\chi_{(0,1)}(s)K(s,f;A_0,A_0\cap A_1)\|_{\Phi_1},$$

consequently, in view of condition (C_2) , we obtain

 $\left\|\chi_{(0,1)}(s)K(s,f;A_0+A_1,A_0\cap A_1)\right\|_{\Phi_1} \lesssim \left\|\chi_{(0,1)}(s)K(s,f;A_0,A_0\cap A_1)\right\|_{\Phi_0},$

which concludes the proof.

Remark 3.17 For $(\theta, p) \in \Gamma_2$, the result (1.9) in [7], Theorem 1.1, follows from Theorem 3.16, applied to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3).

Corollary 3.18 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0, A_0 \cap A_1)_{\{1\}, p} \cap (A_0 + A_1, A_0 \cap A_1)_{\{0\}, p} = (A_0, A_0 \cap A_1)_{\{1\}, p}.$$

Proof Apply Theorem 3.16 to the parameter spaces Φ_0 and Φ_1 given by the norms

$$\|g\|_{\Phi_0} = \sup_{0 < s < 1} \frac{|g(s)|}{s} + \left(\int_1^\infty \left(\frac{|g(s)|}{s}\right)^p \frac{ds}{s}\right)^{\frac{1}{p}}$$
(3.9)

and

$$\|g\|_{\Phi_1} = \left(\int_0^1 |g(s)|^p \frac{ds}{s}\right)^{\frac{1}{p}} + \sup_{s>1} |g(s)|.$$
(3.10)

Theorem 3.19 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_2) . Then we have with equivalent norms

$$(A_0 + A_1, A_1)_{\Phi_0} + (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0 + A_1, A_1)_{\Phi_1}.$$

Proof Put $B_0 = (A_0 + A_1, A_1)_{\Phi_0}$, $B_1 = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$, and $B = (A_0 + A_1, A_1)_{\Phi_1}$. Let $f \in B_0 + B_1$, and take an arbitrary decomposition $f = f_0 + f_1$ with $f_0 \in B_0$ and $f_1 \in B_1$. Then by (2.4)

$$\|f\|_B \lesssim \|\chi_{(0,1)}(s)K(s,f_0;A_0+A_1,A_1)\|_{\Phi_1} + \|\chi_{(0,1)}(s)K(s,f_1;A_0+A_1,A_1)\|_{\Phi_1},$$

using condition (C_2) and the fact that

$$K(t, f_1; A_0 + A_1, A_1) \le K(t, f_1; A_0 + A_1, A_0 \cap A_1), \quad t > 0,$$

we obtain

$$\|f\|_B \lesssim \|f_0\|_{B_0} + \|f_1\|_{B_1}$$

whence, since $f = f_0 + f_1$ is an arbitrary decomposition, we get $||f||_B \leq ||f||_{B_0+B_1}$. For the converse estimate, let $f \in B$, and choose a particular decomposition $f = f_0 + f_1$, with $f_0 \in A_0$ and $f_1 \in A_1$, satisfying (3.1). By Proposition 2.4,

$$\|f_0\|_{B_1} \approx \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_1} + \|\chi_{(0,1)}(s)sK(s^{-1},f_0;A_0,A_1)\|_{\Phi_1},$$

using (2.1), we obtain

$$\|f_0\|_{B_1} \lesssim \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_1)\|_{\Phi_1} + \|f_0\|_{A_0},$$

which, since $f_0 = f - f_1$, gives

$$\|f_0\|_{B_1} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|\chi_{(0,1)}(s)K(s,f_1;A_0,A_1)\|_{\Phi_1} + \|f_0\|_{A_0},$$

now using (2.2), it follows that

$$\|f_0\|_{B_1} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|f_1\|_{A_1} + \|f_0\|_{A_0}.$$
(3.11)

Using (2.2) also gives

$$\begin{split} \|f_1\|_{B_0} &\approx \|\chi_{(0,1)}(s)K(s,f_1;A_0+A_1,A_1)\|_{\Phi_0} \\ &\lesssim \|f_1\|_{A_1} \|\chi_{(0,1)}(s)\|_{\Phi_0} \\ &\approx \|f_1\|_{A_1}, \end{split}$$

which, together with (3.11), leads to

$$\|f_0\|_{B_1} + \|f_1\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|f_0\|_{A_0} + \|f_1\|_{A_1},$$

whence, in view of (3.1), it follows that

$$\|f_0\|_{B_1} + \|f_1\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|f\|_{A_0+A_1},$$

according to 2.9, we arrive at

$$\|f_0\|_{B_1} + \|f_1\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1}$$

appealing to Proposition 2.2 yields

$$||f_0||_{B_1} + ||f_1||_{B_0} \lesssim ||f||_B$$

from which the desired estimate $||f||_{B_0+B_1} \leq ||f||_B$ follows. The proof is complete.

Remark 3.20 We recover (1.10) in [7], Theorem 1.1, for $(\theta, p) \in \Gamma_2$, by an application of Theorem 3.19 to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3).

Corollary 3.21 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0 + A_1, A_1)_{\{1\}, p} + (A_0 + A_1, A_0 \cap A_1)_{\{0\}, p} = (A_0 + A_1, A_1)_{\{0\}, p}.$$

Proof Apply Theorem 3.19 to the parameter spaces Φ_0 and Φ_1 given by (3.9) and (3.10). \Box

Theorem 3.22 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_1) . Then we have with equivalent norms

 $(A_0 + A_1, A_1)_{\Phi_0} + (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0 + A_1, A_1)_{\Phi_0}.$

Proof It suffices to show that

$$(A_0 + A_1, A_0 \cap A_1)_{\Phi_1} \hookrightarrow (A_0 + A_1, A_1)_{\Phi_0}.$$

Let $f \in (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$. Then, using condition (C₁) and the elementary fact that

$$K(t, f; A_0 + A_1, A_1) \le K(t, f; A_0 + A_1, A_0 \cap A_1), \quad t > 0,$$

we have

$$\begin{aligned} \left\| \chi_{(0,1)}(s)K(s,f;A_0+A_1,A_1) \right\|_{\Phi_0} &\lesssim \left\| \chi_{(0,1)}(s)K(s,f;A_0+A_1,A_1) \right\|_{\Phi_1} \\ &\leq \left\| \chi_{(0,1)}(s)K(s,f;A_0+A_1,A_0\cap A_1) \right\|_{\Phi_1}, \end{aligned}$$

which finishes the proof.

Remark 3.23 Theorem 3.22, applied to the parameter spaces Φ_0 and Φ_1 given by (3.2) and (3.3), gives back (1.10) in [7], Theorem 1.1, for $(\theta, p) \in \Gamma_1$.

Corollary 3.24 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

 $(A_0 + A_1, A_1)_{\{0\}, p} + (A_0 + A_1, A_0 \cap A_1)_{\{1\}, p} = (A_0 + A_1, A_1)_{\{0\}, p}.$

Proof Apply Theorem 3.22 to the parameter spaces Φ_0 and Φ_1 given by (1.3) and (1.4). \Box

Theorem 3.25 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_1) . Then we have with equivalent norms

$$(A_0, A_0 \cap A_1)_{\Phi_0} + (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0, A_1)_{\Psi},$$

where

$$\|g\|_{\Psi} = \|\chi_{(0,1)}(s)g(s)\|_{\Phi_0} + \|\chi_{(0,1)}(s)sg(1/s)\|_{\Phi_1}.$$

Proof Set $B_0 = (A_0, A_0 \cap A_1)_{\Phi_0}$ and $B_1 = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$. Let $f \in B_0 + B_1$, and write $f = f_0 + f_1$ with $f_0 \in B_0$ and $f_1 \in B_1$. Making use of (2.4), we have

$$\|f\|_{(A_0,A_1)_{\Psi}} \lesssim I_1 + I_2, \tag{3.12}$$

where

$$I_{1} = \left\| \chi_{(0,1)}(s)K(s,f_{0};A_{0},A_{1}) \right\|_{\Phi_{0}} + \left\| \chi_{(0,1)}(s)K(s,f_{1};A_{0},A_{1}) \right\|_{\Phi_{0}}$$

and

$$I_{2} = \left\| \chi_{(0,1)}(s) s K(s^{-1}, f_{0}; A_{0}, A_{1}) \right\|_{\Phi_{1}} + \left\| \chi_{(0,1)}(s) s K(s^{-1}, f_{1}; A_{0}, A_{1}) \right\|_{\Phi_{1}}.$$

The condition (C₁), along with the following simple inequality:

$$K(t, f_0; A_0, A_1) \le K(t, f_0; A_0, A_0 \cap A_1), \quad t > 0,$$

implies that

$$I_{1} \lesssim \left\| \chi_{(0,1)}(s)K(s,f_{0};A_{0},A_{0}\cap A_{1}) \right\|_{\Phi_{0}} + \left\| \chi_{(0,1)}(s)K(s,f_{1};A_{0},A_{1}) \right\|_{\Phi_{1}}.$$
(3.13)

Next we observe that $f_0 \in A_0$ as $B_0 \subset A_0$. Therefore, we can apply (2.1) to arrive at

$$I_2 \lesssim \|f_0\|_{A_0} + \|\chi_{(0,1)}(s)sK(s^{-1},f_1;A_0,A_1)\|_{\Phi_1}.$$
(3.14)

The proof of the estimate

$$\|f_0\|_{A_0} \lesssim \|\chi_{(0,1)}(s)K(s,f_0;A_0,A_0\cap A_1)\|_{\Phi_0}$$
(3.15)

is the same as that of (3.7). Finally, inserting estimates (3.13) and (3.14) in (3.12) and then using (3.15) and Proposition 2.4, we get

$$||f||_{(A_0,A_1)\Psi} \lesssim ||f_0||_{B_0} + ||f_1||_{B_1},$$

which gives the estimate $||f||_{(A_0,A_1)\Psi} \leq ||f||_{B_0+B_1}$. In order to prove the other estimate, we take $f \in (A_0,A_1)\Psi$, and select a particular decomposition $f = f_0 + f_1$, with $f_0 \in A_0$ and $f_1 \in A_1$, satisfying condition (3.1). Then proceeding in the same way as in the proof of Theorem 3.3, we obtain

$$\|f_0\|_{B_0} \lesssim \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_0}.$$

Also, we have

$$\|f_1\|_{B_1} \lesssim \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi_1}$$

Therefore, these estimates, along with the definition of Ψ , imply that

$$||f_0||_{B_0} + ||f_1||_{B_1} \lesssim ||f||_{(A_0,A_1)_{\Psi}},$$

whence we get $||f||_{B_0+B_1} \lesssim ||f||_{(A_0,A_1)_{\Psi}}$. The proof is finished.

Remark 3.26 Take Φ_0 and Φ_1 to be given by (3.2) and (3.3), then we see that $\Psi = \Phi_0$. Thus, we recover the result (1.11) in [7], Theorem 1.1, for $(\theta, p) \in \Gamma_1$. Since the case when $(\theta, p) \in \Gamma_2$ follows from the case when $(\theta, p) \in \Gamma_1$, Theorem 3.25 provides a generalization of the assertion (1.11) in [7], Theorem 1.1.

Corollary 3.27 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0, A_0 \cap A_1)_{\{0\}, p} + (A_0 + A_1, A_0 \cap A_1)_{\{1\}, p} = (A_0, A_1)_{\{0\}, p}.$$

Proof Apply Theorem 3.25 to the parameter spaces Φ_0 and Φ_1 given by (1.3) and (1.4). \Box

Theorem 3.28 Let (A_0, A_1) be a compatible couple of normed spaces, and assume that the parameter spaces Φ_0 and Φ_1 satisfy (C_2) . Then we have with equivalent norms

$$(A_0 + A_1, A_0)_{\Phi_0} \cap (A_0 + A_1, A_0 \cap A_1)_{\Phi_1} = (A_0, A_1)_{\Psi},$$

where

$$\|g\|_{\Psi} = \left\|\chi_{(0,1)}(s)g(s)\right\|_{\Phi_1} + \left\|\chi_{(0,1)}(s)sg(1/s)\right\|_{\Phi_0}$$

Proof Set $B_0 = (A_0 + A_1, A_0)_{\Phi_0}$ and $B_1 = (A_0 + A_1, A_0 \cap A_1)_{\Phi_1}$. Let $f \in A_0 + A_1$. Applying Proposition 2.2 to the compatible couple (A_1, A_0) , we get

$$||f||_{B_0} \approx ||\chi_{(0,1)}(s)K(s,f;A_1,A_0)||_{\Phi_0},$$

using (2.3), we have

$$\|f\|_{B_0} \approx \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi_0}.$$
(3.16)

By Proposition 2.4,

$$\|f\|_{B_1} \approx \|\chi_{(0,1)}(s)K(s,f;A_0,A_1)\|_{\Phi_1} + \|\chi_{(0,1)}(s)sK(s^{-1},f;A_0,A_1)\|_{\Phi_1},$$

combining this with (3.16) and making use of (C_2) , we arrive at

$$||f||_{B_0} + ||f||_{B_1} \approx ||f||_{(A_0,A_1)\Psi},$$

which completes the proof.

Remark 3.29 Theorem 3.28 generalizes the result (1.12) in [7], Theorem 1.1.

Corollary 3.30 Let (A_0, A_1) be a compatible couple of normed spaces, and let $1 \le p < \infty$. Then we have with equivalent norms

$$(A_0 + A_1, A_0)_{\{1\}, p} + (A_0 + A_1, A_0 \cap A_1)_{\{0\}, p} = (A_0, A_1)_{\{0\}, p}.$$

Proof Apply Theorem 3.28 to the parameter spaces Φ_0 and Φ_1 given by (3.9) and (3.10). \Box

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have equally contributed toward the article. All authors read and approved the final manuscript.

Received: 3 September 2016 Accepted: 15 November 2016 Published online: 25 November 2016

References

- 1. Brudnyi, YA, Krugljak, NY: Interpolation Functors and Interpolation Spaces, vol. 1. North-Holland, Amsterdam (1991)
- 2. Bergh, J, Löfström, J: Interpolation Spaces. An Introduction. Springer, New York (1976)
- 3. Bennett, C, Sharpley, R: Interpolation of Operators. Academic Press, New York (1988)
- Maligranda, L: The K-functional for symmetric spaces. In: Interpolation Spaces and Allied Topics in Analysis. Lecture Notes in Math., vol. 1070, pp. 170-182. Springer, Berlin (1984)
- 5. Maligranda, L: Interpolation between sum and intersection of Banach spaces. J. Approx. Theory 47, 42-53 (1986)
- 6. Persson, LE: Interpolation with a parameter function. Math. Scand. 59, 199-222 (1986)
- 7. Haase, M: Identification of some real interpolation spaces. Proc. Am. Math. Soc. 134, 2349-2358 (2006)
- 8. Cobos, F, Fernández-Cabrera, LM, Silvestre, P: New limiting real interpolation methods and their connection with the methods associated to the unit square. Math. Nachr. **286**, 569-578 (2013)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com