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Abstract
In this short note, we present some trace inequalities for matrix means. Our results are
generalizations of the ones shown by Bhatia, Lim, and Yamazaki.
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1 Introduction
Let Mn be the space of n × n complex matrices. Let A, B ∈ Mn be positive definite, the
weighted geometric mean of A and B, denoted by A#B, is defined as

A#tB = A/(A–/BA–/)tA/.

When t = 
 , this is the geometric mean, denoted by A#B. For A ∈ Mn, we denote the vector

of eigenvalues by λ(A) = (λ(A),λ(A), . . . ,λn(A)), and we assume that the components of
λ(A) are in descending order. Let ‖ · ‖ denote any unitarily invariant norm on Mn.

Recently, Bhatia, Lim, and Yamazaki proved in [] that if A, B ∈ Mn are positive definite,
then

tr
(
A + B + (A#B)

) ≤ tr
((

A/ + B/)) (.)

and

tr
((

A + B + (A#B)
)) ≤ tr

((
A/ + B/)). (.)

These authors also have shown in [] that if A, B ∈ Mn are positive definite and  < t < ,
then

tr(A#tB + B#tA) ≤ tr
(
A–tBt + AtB–t) (.)

and

tr
(
(A#tB + B#tA)) ≤ tr

(∣∣(A–tBt + AtB–t)∣∣). (.)

In this short note, we first obtain a trace inequality, which is similar to inequality (.).
Meanwhile, we also obtain generalizations of inequalities (.), (.), (.), and (.).
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2 Main results
In this section, we first give a trace inequality, which is similar to inequality (.). To do
this, we need the following lemmas.

Lemma . ([]) Let A, B ∈ Mn be positive definite. Then

k∏

j=

λj(AB) ≤
k∏

j=

λ/
j

(
AB),  ≤ k ≤ n.

Lemma . ([]) Let A, B ∈ Mn. If λ(A),λ(B) >  such that

k∏

j=

λj(A) ≤
k∏

j=

λj(B),  ≤ k ≤ n,

then

det(I + A) ≤ det(I + B).

Theorem . Let A and B be positive definite. Then

tr
(
log

(
A/ + B/)) ≤ tr

(
log

(
A + B + (A#B)

))
.

Proof By Lemma ., we have

k∏

j=

λj
(
A–/B/) =

k∏

j=

λj
(
B/A–/)

≤
k∏

j=

λj
((

A–/BA–/)/),  ≤ k ≤ n.

Using Lemma ., we get

det
(
I + A–/B/) ≤ det

(
I +

(
A–/BA–/)/) (.)

and

det
(
I + B/A–/) ≤ det

(
I +

(
A–/BA–/)/). (.)

It follows from (.) and (.) that

det
(
I + A–/B/)det

(
I + B/A–/) ≤ det

(
I + 

(
A–/BA–/)/ + A–/BA–/),

which is equivalent to

det
(
I + A–/B/ + B/A–/ + A–/BA–/)

≤ det
(
I + 

(
A–/BA–/)/ + A–/BA–/). (.)
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Multiplying det A/ both sides in inequality (.), we have

det
(
A + B + A/B/ + B/A/) ≤ det

(
A + B + A/(A–/BA–/)/A/). (.)

Note that log det X = tr log X, inequality (.) implies

tr
(
log

(
A/ + B/)) ≤ tr

(
log

(
A + B + (A#B)

))
.

This completes the proof. �

Next, we show generalizations of inequalities (.), (.), (.), and (.). To do this, we
need the following lemma.

Lemma . ([]) Let A, B ∈ Mn and 
p + 

q = , p, q > . Then

‖AB‖ ≤ ∥
∥|A|p∥∥/p∥∥|B|q∥∥/q.

This is the Hölder inequality of unitary invariant norms for matrices. For more informa-
tion on this inequality and its applications the reader is referred to [] and the references
therein.

Theorem . Let A and B be positive definite and  ≤ r ≤ . Then

tr
((

A + B + (A#B)
)r) ≤ ( – r) tr

(
A/ + B/) + (r – ) tr

(
A/ + B/). (.)

Proof Let

p =


 – r
, q =


r – 

,

then


p

+

q

= , p, q > .

By Lemma ., we obtain

tr
((

A + B + (A#B)
)r)

= tr
((

A + B + (A#B)
)–r(A + B + (A#B)

)r–)

≤ (
tr
(
A + B + (A#B)

)p(–r))/p(
tr
(
A + B + (A#B)

)q(r–))/q

=
(
tr
(
A + B + (A#B)

))–r(
tr
(
A + B + (A#B)

))r–. (.)

It follows from (.), (.), and (.) that

tr
((

A + B + (A#B)
)r) ≤ (

tr
(
A/ + B/))–r(

tr
(
A/ + B/))r–.
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By Young’s inequality, we have

tr
((

A + B + (A#B)
)r) ≤ ( – r) tr

(
A/ + B/) + (r – ) tr

(
A/ + B/).

This completes the proof. �

Remark . Putting r =  in (.), we get (.). Putting r =  in (.), we get (.). Therefore,
inequality (.) is a generalization of inequalities (.) and (.).

Remark . Let A and B be positive definite. By the concavity of f (x) = xr , x ≥ ,  < r < ,
then we have

nr– tr f (X) ≤ f (tr X),

where X is positive definite. It follows from this last inequality and inequality (.) that

nr– tr
(
A + B + (A#B)

)r ≤ (
tr
(
A + B + (A#B)

))r

≤ (
tr
((

A/ + B/)))r .

Meanwhile, we also have

f (tr X) ≤ tr f (X),

which implies

nr– tr
(
A + B + (A#B)

)r ≤ tr
((

A/ + B/)r).

This is a complement of (.) for  < r < .

Theorem . Let A and B be positive definite and  ≤ r ≤ . Then

tr
(
(A#tB + B#tA)r) ≤ ( – r) tr

(
A–tBt + AtB–t) + (r – ) tr

(∣∣(A–tBt + AtB–t)∣∣). (.)

Proof Let

p =


 – r
, q =


r – 

,

then


p

+

q

= , p, q > .

By Lemma ., we obtain

tr
(
(A#tB + B#tA)r) = tr

(
(A#tB + B#tA)–r(A#tB + B#tA)r–)

≤ (
tr(A#tB + B#tA)p(–r))/p(

tr(A#tB + B#tA)q(r–))/q

=
(
tr(A#tB + B#tA)

)–r(
tr(A#tB + B#tA))r–. (.)
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It follows from (.), (.), and (.) that

tr
(
(A#tB + B#tA)r) ≤ (

tr
(
A–tBt + AtB–t))–r(

tr
(∣∣(A–tBt + AtB–t)∣∣))r–.

By Young’s inequality, we have

tr
(
(A#tB + B#tA)r) ≤ ( – r) tr

(
A–tBt + AtB–t) + (r – ) tr

(∣∣(A–tBt + AtB–t)∣∣).

This completes the proof. �

Remark . Putting r =  in (.), we get (.). Putting r =  in (.), we get (.). There-
fore, inequality (.) is a generalization of inequalities (.) and (.).
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