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Abstract
In mathematical chemistry, the median eigenvalues of the adjacency matrix of a
molecular graph are strictly related to orbital energies and molecular orbitals. In this
regard, the difference between the occupied orbital of highest energy (HOMO) and
the unoccupied orbital of lowest energy (LUMO) has been investigated (see Fowler
and Pisansky in Acta Chim. Slov. 57:513-517, 2010). Motivated by the HOMO-LUMO
separation problem, Jaklič et al. in (Ars Math. Contemp. 5:99-115, 2012) proposed the
notion of HL-index that measures how large in absolute value are the median
eigenvalues of the adjacency matrix. Several bounds for this index have been
provided in the literature. The aim of the paper is to derive alternative inequalities to
bound the HL-index. By applying majorization techniques and making use of some
known relations, we derive new and sharper upper bounds for this index. Analytical
and numerical results show the performance of these bounds on different classes of
graphs.
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1 Introduction
The Hückel molecular orbital method (HMO) (see []) is a methodology for the determi-
nation of energies of molecular orbitals of π-electrons. It has been shown that π-electron
energy levels are strictly related to graph eigenvalues. For this reason, graph spectral the-
ory became a standard mathematical tool of HMO theory (see [–] and []). Among the
various π-electron properties that can be directly expressed by means of graph eigenval-
ues, one of the most significant is the so-called HOMO-LUMO separation, based on the
gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). For more details as regards the HOMO-LUMO separation
issue we refer the reader to [–] and [].

In some recent works, Fowler and Pisanski ([] and []) introduced an index of a graph
that is related to the HOMO-LUMO separation. By analogy with the spectral radius, these
authors proposed the notion of the HOMO-LUMO radius which measures how large in
absolute value may be the median eigenvalues of the adjacency matrix of a graph. At the
same time, an analogous definition is given in [] that introduces the HL-index of a graph.
Several bounds for this index have been proposed for some classes of graphs in [] and
[]. Recently in [] the authors provided some inequalities on the HL-index through the
energy index.
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The contribution of this paper is along those lines: we derive, through a methodology
based on majorization techniques (see [–] and []), new bounds on the median eigen-
values of the normalized Laplacian matrix. Consequently, given the relation between the
normalized Laplacian matrix and the adjacency matrix eigenvalues, we provide some new
bounds for the HL-index. In particular, we employ a theoretical methodology proposed
by Bianchi and Torriero in [] based on nonlinear global optimization problems solved
through majorization techniques. These bounds can also be quantified by using the nu-
merical approaches developed in [] and [] and extended for the normalized Laplacian
matrix in [] and in [].

Furthermore, another approach to derive new bounds makes use of the relation between
HL-index and energy index. In particular, we take advantage of an existing bound on the
energy index (see []) depending on additional information on the first eigenvalue of
the adjacency matrix. This additional information is obtained here by using majorization
techniques in order to provide new inequalities for the HL-index of bipartite and non-
bipartite graphs.

The paper is organized as follows. In Section  some notations and preliminaries are
given. Section  concerns the identification of new bounds for the HL-index. In partic-
ular, in Section ., by the fact that the eigenvalues of normalized Laplacian matrix and
adjacency matrix are related, we localize the eigenvalues of the normalized Laplacian ma-
trix via majorization techniques. In Section . we find a tighter alternative upper bound
for the HL-index by using the relation with energy index provided in [] and an existing
bound on energy index proposed in []. Section  shows how the bound determined in
Section . improves those presented in the literature.

2 Notations and preliminaries
In this section we first recall some basic notions on graph theory (for more details re-
fer to []) and on the HL-index. Considering a simple, connected and undirected graph
G = (V , E) where V = {, , . . . , n} is the set of vertices and E ⊆ V × V the set of edges,
|E| = m. The degree sequence of G is denoted by π = (d, d, . . . , dn) and it is arranged in
non-increasing order d ≥ d ≥ · · · ≥ dn, where di is the degree of vertex i.

Let A(G) be the adjacency matrix of G and D(G) be the diagonal matrix of vertex de-
grees. The matrix L(G) = D(G) – A(G) is called Laplacian matrix of G, while L(G) =
D(G)–/L(G)D(G)–/ is known as the normalized Laplacian. Let λ ≥ λ ≥ · · · ≥ λn,
μ ≥ μ ≥ · · · ≥ μn and γ ≥ γ ≥ · · · ≥ γn be the set of real eigenvalues of A(G), L(G),
and L(G), respectively. The following properties of spectra of A(G) and L(G) hold:

n∑

i=

λi = tr
(
A(G)

)
= ;

n∑

i=

λ
i = tr

(
A(G)

)
= m; λ ≥ m

n
;

n∑

i=

γi = tr
(
L(G)

)
= n;

n∑

i=

γ 
i = tr

(
L(G)

)
= n + 

∑

(i,j)∈E


didj

; γn = ; γ ≤ .

The eigenvalues involved in the HOMO-LUMO separation are λH and λL, where
H = � n+

 � and L = � n+
 	.

The HL-index of a graph is defined in [] as

R(G) = max
(|λH |, |λL|

)
.
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In the following, we list some well-known results on this index. In [] the authors show
that, for every connected graph, R(G) is bounded as

 ≤ R(G) ≤ d. ()

Other bounds have been found for special classes of graphs in [, ] and []. Finally,
[] shows that for a simple connected graph

 ≤ R(G) ≤ E(G)
n

, ()

where E(G) =
∑n

i= |λi| is the energy index of graph introduced by Gutman in [].
By (), the following bounds depending on n and m have been derived in [] for non-

bipartite and bipartite graphs, respectively:

 ≤ R(G) ≤ m
n +


n

√

(n – )
(

m –
m

n

)
, ()

 ≤ R(G) ≤ m
n +


n

√

(n – )
(

m –
m

n

)
. ()

Other bounds have been proposed in [] for non-bipartite and bipartite graphs depend-
ing only on n:

 ≤ R(G) ≤
√

n + 


()

and

 ≤ R(G) ≤
√

n +
√

√


. ()

We now recall the following results regarding nonlinear global optimization problems
solved through majorization techniques. We refer the reader to [] for more details as
regards majorization techniques and for the proofs of Lemma  and Theorems  and 
recalled in the following.

Let g be a continuous function, homogeneous of degree p, real, and strictly Schur-convex
(see [] for the definition of Schur-convex functions and related properties). Let us as-
sume

S = � ∩
{

x ∈R
N
+ : g(x) =

N∑

i=

xp
i = b

}
,

where p is an integer greater than , b ∈R, and

� =

{
x ∈R

N
+ : x ≥ x ≥ · · · ≥ xN ,

N∑

i=

xi = a

}
.

The following fundamental lemma holds.
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Lemma  Fix b ∈ R and consider the set S. Then either b = ap

Np– or there exists a unique
integer  ≤ h∗ < N such that

ap

(h∗ + )p– < b ≤ ap

(h∗)p– ,

where h∗ = � p–
√

ap
b �.

We can now deduce upper and lower bounds for xh (with h = , . . . , N ) by solving the
following optimization problems P(h) and P∗(h):

max(xh) subject to x ∈ S, (P(h))

min(xh) subject to x ∈ S. (P∗(h))

Theorem  The solution of the optimization problem P(h) is ( a
N ) if b = ap

Np– . If b = ap

Np– ,
the solution of the optimization problem P(h) is α∗ where

. for h > h∗, α∗ is the unique root of the equation

f (α, p) = (h – )αp + (a – hα + α)p – b =  ()

in I = (, a
h ];

. for h ≤ h∗, α∗ is the unique root of the equation

f (α, p) = hαp +
(a – hα)p

(N – h)p– – b =  ()

in I = ( a
N , a

h ].

Theorem  The solution of the optimization problem P∗(h) is ( a
N ) if b = ap

Np– . If b = ap

Np– ,
the solution of the optimization problem P∗(h) is α∗ where

. for h = , α∗ is the unique root of the equation

f (α, p) = h∗αp +
(
a – h∗α

)p – b =  ()

in I = ( a
h∗+ , a

h∗ ];
. for  < h ≤ (h∗ + ), α∗ is the unique root of the equation

f (α, p) = (N – h + )αp +
(a – (N – h + )α)p

(h – )p– – b =  ()

in I = (, a
N ];

. for h > (h∗ + ), α∗ is zero.

3 Some new bounds for the HL-index via majorization techniques
3.1 Bounds on median eigenvalues of the normalized Laplacian matrix
In this section we localize median eigenvalues of the normalized Laplacian matrix by ap-
plying the methodology (see []) recalled in Section  (Theorems  and ). The additional
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information on median eigenvalues and the interlacing between eigenvalues of normalized
Laplacian and adjacency matrices turned out to be a handy tool for bounding the HL-index
for both non-bipartite and bipartite graphs. According to [] (see Theorem ..), the fol-
lowing relations hold:

|λn–k+|
d

≤ | – γk| ≤ |λn–k+|
dn

. ()

Proposition  For a simple, connected, and non-bipartite graphs

 ≤ R(G) ≤ d max
(| – α|, | – β|, | – α|, | – β|

)
()

when n is even with

α =


n – 

(
n +

√
n – 

n
(
b(n – ) – n

))
,

β =


n – 

(
n –

√
n – 

n
(
b(n – ) – n

))
,

α =


n – 

(
n +

√
(n – )
(n + )

(
b(n – ) – n

))
,

β =
n

n – 

(
 –

√
b(n – ) – n

n(n – )

)
,

and

 ≤ R(G) ≤ d max
(| – α|, | – β|

)
()

when n is odd with

α =


n – 

(
n +

√
(n – )
(n + )

(
b(n – ) – n

))
, β =


n – 

(
n –

√
b(n – ) – n

)
.

Proof From (), we can easily derive the following bounds:

 ≤ R(G) ≤
{

d max(| – γ n+


|, | – γ n

|) if n is even,

d(| – γ n+


|) if n is odd.
()

By applying majorization, we are able to bound the median eigenvalues γi (with i =
n
 , n+

 , n+
 ) considered in ().

To this aim, we face the set:

S
b =

{
γ ∈R

n– :
n–∑

i=

γi = n, g(γ ) =
n–∑

i=

γ 
i = b = n + 

∑

(i,j)∈E


didj

}
.

It is well known that, for every connected graph of order n (see []), we have


n – 

≤ 
n

∑

(i,j)∈E


didj

< 
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and, consequently,

n

n – 
≤ b < n, ()

where the left inequality is attained for the complete graph G = Kn.
It is noteworthy to see that S

b is derived from the general set S with a = n, N = n – ,
b = b, anda p = . By Lemma  we have for a non-complete graph

h∗ =
⌊

n

b

⌋

with

⌊
n


⌋
< h∗ < n – . ()

We distinguish the following cases:
. Considering γ n


for n even, by () we have h < h∗. Hence, by solving equation () of

Theorem , we can derive the unit root α such as γ n


≤ α. Therefore

α =


n – 

(
n +

√
n – 

n
(
b(n – ) – n

))
.

In virtue of (), we have n
n– ≤ α <  with the left inequality attained only for the

complete graph G = Kn.
In a similar way, we can evaluate the value β ≤ γ n


, through the solution of

equation () of Theorem  (where h < h∗ + ), where

β =


n – 

(
n –

√
n – 

n
(
b(n – ) – n

))
.

From (), we have 
n– < β ≤ n

n– with the right inequality attained only for the
complete graph G = Kn.

Having β ≤ γ n


≤ α, then | – γ n

| ≤ max(| – α|, | – β|).

. Picking now γ n+


, where h ≤ h∗ by equation () of Theorem  we deduce

α =


n – 

(
n +

√
(n – )
(n + )

(
b(n – ) – n

))
.

Taking into account the lower bound of β ≤ γ n+


, by () and for n even, we have
h < h∗ +  and then

β =
n

n – 

(
 –

√
b(n – ) – n

n(n – )

)
.

In this case, we derive | – γ n+


| ≤ max(| – α|, | – β|).
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. For a graph with n odd number of vertices, we need to study only γ n+


with
β ≤ γ n+


≤ α, and we have by Theorem  and Theorem , respectively:

α =


n – 

(
n +

√
(n – )
(n + )

(
b(n – ) – n

))

and

β =


n – 
(
n –

√
b(n – ) – n

)
,

where h < h∗ + .
Hence, | – γ n+


| ≤ max(| – α|, | – β|).

By using the bounds on the eigenvalues of the normalized Laplacian matrix computed
above, bounds () and () follow. �

Proposition  For a simple, connected and bipartite graphs with n even we have

 ≤ R(G) ≤ d
∣∣ – β

bip


∣∣, ()

where

β
bip
 =  –

√
b

n – 
– .

Proof When G is bipartite, the HL-index is defined as

R(G) =

{
|λ n


| = |λ n+


| if n is even,

 if n is odd.
()

In virtue of (), we can derive the following bound when n is even:

R(G) ≤ d| – γ n

|. ()

By applying majorization techniques, we are able to bound γ n


considered in ().
To this aim, we now face the set

S
b =

{
γ ∈R

n– :
n–∑

i=

γi = n – , g(γ ) =
n–∑

i=

γ 
i = b = n + 

∑

(i,j)∈E


didj

– 

}
.

By () and b = b – , we have

(n – )

n – 
≤ b < (n – ), ()

where the left inequality is attained for the complete graph G = Kn.
The set S

b is derived from the general set S with a = n – , N = n – , b = b, and p = .
By Lemma  we have for a non-complete graph

h∗ =
⌊

(n – )

b

⌋
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with

n


–  < h∗ ≤ n – , ()

for n even.
We now consider γ n


:

. By (), we have h ≤ h∗. In virtue of equation () of Theorem , we deduce the
following upper bound:

α
bip
 =  +

√(
n – 

n

)(
b

n – 
– 

)
.

. In a similar way, we can evaluate the value β
bip
 ≤ γ n


, where h < h∗ + . Applying

Theorem  entails

β
bip
 =  –

√
b

n – 
– .

It is easy to show that | – α
bip
 | ≤ | – β

bip
 |. Hence bound () follows. �

3.2 Bounds on R(G) through the energy index
In the following we obtain bounds on the HL-index starting from (). Our aim is to bound
the energy index making use of additional information on the first eigenvalue of A(G). In
[] the authors show that, if a tighter bound k on λ such as λ ≥ k ≥ m

n is available, then
the energy index for a non-bipartite graph is bounded as

E(G) ≤ k +
√

(n – )
(
m – k

)
,

while for a bipartite graph it is

E(G) ≤ k +
√

(n – )
(
m – k

)
.

In order to find the value of k, we can introduce new variables xi = λ
i , facing the set:

S
b =

{
x ∈R

n
+ :

n∑

i=

xi = m

}
.

In virtue of (), we are now able to derive the following bounds for non-bipartite and
bipartite graphs, respectively.

Proposition 
. For a simple, connected and non-bipartite graph G

R(G) ≤ k
n

+

n

√
(n – )

(
m – k

)
. ()
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. For a simple, connected and bipartite graph G

R(G) ≤ k
n

+

n

√
(n – )

(
m – k

)
, ()

where, by means of Theorem ,

k =


 + h∗

(
n +

√
m( + h∗) – n

h∗

)
, h∗ =

⌊
n

m

⌋
.

Remark  Bounds () and () are tighter than or equal to () and (), respectively.

Proof of Proposition 
. Non-bipartite graphs

We start by proving that the condition (m – k) ≥  required in bound () is
always satisfied for simple and connected graphs.

We have k ∈ ( m
n , 

 (n +
√

m – n)). Indeed, by the basic concepts of calculus it is
easy to see that k increases when m increases and then h∗ tends to . Hence, k is
limited from above by 

 (n +
√

m – n) and where 
 (n +

√
m – n) ≤ √

m the
required condition is satisfied.

We now show how bound () improves bound () presented in [].
We need to prove that the following inequality holds:

(
k –

m
n

)
≤

(√

(n – )
(

m –
m

n

)
–

√
(n – )

(
m – k

))
.

By simple algebraic rules we obtain

kn – k
m
n

– mn + m + 
m

n

≤ –

√
(
mn – m + k – kn

)(
mn – m – 

m

n
+ 

m

n

)
. ()

The left-hand side term of () can be represented by

f (k) = kn – k
m
n

– mn + m + 
m

n
.

The function f (k) is a convex parabola that assumes negative values in the range of
k we are interested in. Indeed we have f ( m

n ) ≤  and f (
√

m) ≤ .
Both sides of () being negative we can apply some basic concepts of algebra,

getting

kn + k(mn – m) + m – mn + m ≥ . ()

The function t(k) = kn + k(mn – m) + m – mn + m is again a convex
parabola with vertex ( m(–n)

n , m(m–n)(n–)
n ). Both coordinates are less than zero

(then m(–n)
n < m

n ). Having t( m
n ) = m(n – m)( – n) ≥ , inequality () is

satisfied.
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Therefore, bound () performs better than or equal to bound ().
Furthermore, we see that both bounds perform equally when h∗ = n

m (i.e. n

m is
an integer). It is noteworthy that:
(a) when n is odd, n

m is never an integer (� n

m� = n

m );
(b) when n is even, n

m is an integer when m = n

x with x| n

 ,  ≤ x ≤ n
 (where x| n


is shorthand for ‘x divides n

 ’). In this case k = m
n and we derive bound ().

. Bipartite graphs
As for non-bipartite graphs, we start by proving that the condition (m – k) ≥ 

required in bound () is always satisfied for simple and connected graphs. In this
case h∗ tends to  for complete graphs (where m ≤ n

 ).
By some basic algebraic concepts, we see that (m – k) ≥  entails:

m(h + h – h – h + 
)

+ m
(
nh – n – nh) + n ≥ .

The function f (m) = m(h + h – h – h + ) + m(nh – n – nh) + n is
concave, decreasing, and non-negative on the interval m ∈ ( n

 , n

 ). Therefore, the
required condition is satisfied.

We now show how bound () improves bound () presented in [].
We need to prove that the following inequality holds:


(

k –
m
n

)
≤

(√

(n – )
(

m –
m

n

)
–

√
(n – )

(
m – k

))
.

By simple algebra, we have

mn – km + m – mn + kn

≤ –n

√
(
mn – m + k – kn

)(
mn – m – 

m

n
+ 

m

n

)
. ()

The left-hand side term of () can be represented by

f (k) = kn – km + mn + m – mn.

The function f (k) is a convex parabola that assumes negative values in the range of
k we are interested in. Indeed we have f ( m

n ) ≤  and f (
√

m) ≤ .
Both sides of () being negative, by some manipulations we obtain

kn + km(n – ) + m + m – mn ≥ . ()

The function t(k) = kn + km(n – ) + m + m – mn is again a convex
parabola with vertex ( m(–n)

n , m(m–n)(n–)
n ). Both coordinates are less than zero

(then m(–n)
n < m

n ). Having t( m
n ) = m

n (n + m(n – )) ≥ , inequality () is
satisfied.

Hence bound () performs better than or equal to bound ().
�
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4 Numerical results
4.1 Non-bipartite graphs
In this subsection we compare our bounds ((), (), and ()) with those existing in
the literature. We initially compute them for graphs generated by using the Erdös-Rényi
(ER) model GER(n, q) (see [–] and []) where edges are included with probability
q independent from every other edge. Graphs have been derived randomly by using the
well-known package of R (see []) and by ensuring that the graph is connected. Table 
compares alternative upper bounds of R(G) evaluated for simulated GER(n, .) graphs
with different number of vertices. It is noteworthy that bound () has the best perfor-
mance for n = , while bound () is the sharpest one in all other cases. However, the
improvements are very slight with respect to bound () when large graphs are consid-
ered.

We now extend the analysis to the same class of graphs but with varying the probability q.
Two alternative values (q = . and q = ., respectively) have been tested in Tables  and .
In both cases bound () appears always as the tightest one. In particular, we observe
significant differences with respect to other bounds when the number of edges increases.
It is noticeable in Table  how the improvement is very remarkable even for very large
graphs.

We now focus on bounds (), (), and () that share the advantage of being dependent
only on n and/or m. In Section ., it has been already proved that bound () is better
than or equal to bound (). This result is obviously confirmed by Figure , where it is in-
teresting to highlight how bound () strongly improves the other bounds for large values
of m.

Table 1 Upper bounds of R(G) for graphs generated by GER(n, 0.5) model

n m R(G) Bound (12)/(13) Bound (22) Bound (1) Bound (3) Bound (5)

5 7 0.46 1.29 1.33 4 1.55 1.62
10 26 0.68 1.99 1.80 8 2.02 2.08
15 52 0.33 3.12 2.28 10 2.33 2.44
20 106 0.69 3.98 2.27 16 2.71 2.74
25 153 0.32 3.66 2.92 16 2.94 3.00
50 600 0.42 5.10 3.92 31 3.98 4.04
100 2,463 0.56 7.30 5.43 66 5.47 5.50
250 15,358 0.49 9.67 8.32 142 8.38 8.41
500 62,304 0.47 13.52 11.65 289 11.67 11.68

1,000 249,556 0.50 17.92 16.29 549 16.30 16.31

Table 2 Upper bounds of R(G) for graphs generated by GER(n, 0.9) model

n m R(G) Bound (12)/(13) Bound (22) Bound (1) Bound (3) Bound (5)

5 9 1.00 1.41 1.17 4 1.62 1.62
10 43 1.00 1.61 1.15 9 1.90 2.08
15 102 1.00 1.57 1.13 14 2.00 2.44
20 176 1.00 2.19 1.22 19 2.30 2.74
25 284 1.00 2.09 1.19 24 2.32 3.00
50 1,154 1.00 2.72 1.24 49 2.79 4.04
100 4,669 0.94 3.39 1.31 98 3.41 5.50
250 29,507 0.96 4.63 1.42 246 4.57 8.41
500 118,482 0.95 6.00 1.57 488 5.91 11.68

1,000 474,713 0.96 7.96 1.79 967 7.88 16.31



Clemente and Cornaro Journal of Inequalities and Applications  (2016) 2016:285 Page 12 of 14

Table 3 Upper bounds of R(G) for graphs generated by GER(n, 0.1) model

n m R(G) Bound (12)/(13) Bound (22) Bound (1) Bound (3) Bound (5)

5 4 0.00 1.26 1.25 2 1.25 1.62
10 11 0.33 3.09 1.46 5 1.46 2.08
15 17 0.00 3.51 1.49 6 1.49 2.44
20 25 0.12 3.07 1.57 5 1.57 2.74
25 40 0.00 3.18 1.76 6 1.76 3.00
50 112 0.04 5.07 2.09 11 2.09 4.04
100 501 0.09 5.23 3.08 17 3.09 5.50
250 3,082 0.14 7.01 4.80 36 4.80 8.41
500 12,541 0.10 9.50 6.80 70 6.81 11.68

1,000 49,890 0.14 12.09 9.57 126 9.57 16.31

Figure 1 Upper bounds of R(G) for non-bipartite graphs with different number of vertices and edges.

4.2 Bipartite graphs
We now report in Table  a comparison of alternative bounds derived for bipartite graphs,
varying the number of vertices and edges. In some selected cases (i.e. n = , m =  and
n = , m = ), our bound () performs better. In all the other cases, the tightest one is
bound () as obtained in Section ..

As for non-bipartite graphs, we can focus on bounds (), (), and () that can be com-
puted without generating any graph. We observe in Figure  how the bound () provides
a significant improvement for higher values of m. This result is also confirmed for very
large graphs.

5 Conclusions
In this paper alternative upper bounds on the HL-index are provided by means of ma-
jorization techniques. On one hand, we find new bounds for both non-bipartite and
bipartite graphs by exploiting additional information on the median eigenvalues and
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Table 4 Upper bounds of R(G) for bipartite graphs

n m R(G) Bound (17) Bound (23) Bound (4) Bound (6)

10 13 0.46 1.75 1.47 1.52 1.62
10 25 0.00 0.00 1.00 1.00 1.62
20 45 0.10 2.97 1.90 1.94 2.08
20 91 0.00 1.04 1.16 1.77 2.08
50 315 0.06 3.82 2.86 2.95 3.00
50 560 0.00 1.74 1.34 2.39 3.00
100 1,248 0.03 4.72 4.00 4.01 4.04
100 2,254 0.03 2.36 1.48 2.99 4.04
250 7,839 0.02 7.52 5.91 6.07 6.09
250 14,083 0.03 3.60 1.79 4.22 6.09
500 31,321 0.04 9.29 8.20 8.39 8.41
500 56,231 0.01 5.01 2.16 5.64 8.41

1,000 124,887 0.02 12.68 11.66 11.67 11.68
1,000 225,145 0.01 7.02 2.65 7.58 11.68

Figure 2 Upper bounds of R(G) for bipartite graphs with different number of vertices and edges.

the interlacing between the eigenvalues of normalized Laplacian and adjacency matri-
ces. On the other hand, new bounds are derived by making use of the relation between
the HL-index and the energy index. Analytical and numerical results show the perfor-
mance of these bounds on different classes of graphs. In particular, the bound related
to the energy index performs better with respect to the best-known results in the liter-
ature.
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Endnote
a For values of p > 2, b (and then b1 and b2 used in the sequel) depends on the graph’s structure and topology. So the

procedure can be only numerically applied: we need to compute the eigenvalues of either adjacency or normalized
Laplacian matrix, but this information allows one to directly obtain R(G). In this case, the evaluation of the bounds is
useless.
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34. Erdős, P, Rényi, A: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17-61 (1960)
35. Csardi, G: Package iGraph. R package (2014)


	Bounding the HL-index of a graph: a majorization approach
	Abstract
	Keywords

	Introduction
	Notations and preliminaries
	Some new bounds for the HL-index via majorization techniques
	Bounds on median eigenvalues of the normalized Laplacian matrix
	Bounds on R(G) through the energy index

	Numerical results
	Non-bipartite graphs
	Bipartite graphs

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Endnote 
	References


