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Abstract
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1 Introduction
For a number of problems arising in scientific and engineering areas one often needs to
find the solution of nonlinear equations in Banach spaces

F(x) = , ()

where F is a third-order Fréchet-differentiable operator defined on a convex subset � of
a Banach space X with values in a Banach space Y .

There are kinds of methods to find a solution of equation (). Generally, iterative meth-
ods are often used to solve this problem []. The best-known iterative method is Newton’s
method

xn+ = xn – F ′(xn)–F(xn), ()

which has quadratic convergence. Recently a lot of research has been carried out to pro-
vide improvements. Third-order iterative methods such as Halley’s method, Chebyshev’s
method, super-Halley’s method, Chebyshev-like’s method etc. [–] are used to solve
equation (). To improve the convergence order, fourth-order iterative methods are also
discussed in [–].

Kou et al. [] presented a variant of the super-Halley method which improves the order
of the super-Halley method from three to four by using the values of the second derivative
at (xn – 

 f (xn)/f ′(xn)) instead of xn. Wang et al. [] established the semilocal convergence
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of the fourth-order super-Halley method in Banach spaces by using recurrence relations.
This method in Banach spaces can be given by

xn+ = xn –
[

I +



KF (xn)
[
I – KF (xn)

]–
]
�nF(xn), ()

where �n = [F ′(xn)]–, KF (xn) = �nF ′′(un)�nF(xn), and un = xn – 
�nF(xn).

Let x ∈ � and the nonlinear operator F : � ⊂ X → Y be continuously third-order
Fréchet differentiable where � is an open set and X and Y are Banach spaces. Assume
that

(C) ‖�F(x)‖ ≤ η,
(C) ‖�‖ ≤ β ,
(C) ‖F ′′(x)‖ ≤ M, x ∈ �,
(C) ‖F ′′′(x)‖ ≤ N , x ∈ �,
(C) there exists a positive real number L such that

∥∥F ′′′(x) – F ′′′(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ �.

Under the above assumptions, we apply majorizing functions to prove the semilocal
convergence of the method () to solve nonlinear equations in Banach spaces and establish
its convergence theorems in []. The main results is as follows.

Theorem  ([]) Let X and Y be two Banach spaces and F : � ⊆ X → Y be a third-order
Fréchet differentiable on a non-empty open convex subset �. Assume that all conditions
(C)-(C) hold and x ∈ �, h = Kβη ≤ /, B(x, t∗) ⊂ �, then the sequence {xn} generated
by the method () is well defined, xn ∈ B(x, t∗) and converges to the unique solution x∗ ∈
B(x, t∗∗) of F(x), and ‖xn – x∗‖ ≤ t∗ – tn, where

t∗ =
 –

√
 – h
h

η, t∗∗ =
 +

√
 – h
h

η,

K ≥ M
[

 +
N

Mβ
+

L
Mβ

]
. ()

We know the conditions of Theorem  cannot be satisfied by some general nonlinear
operator equations. For example,

F(x) =



x +



x –



x +



= . ()

Let the initial point x = , � = [–, ]. Then we know

β =
∥∥F ′(x)–∥∥ =




, η =
∥∥F ′(x)–F(x)

∥∥ =



,

M =



, N = , L = .

From (), we can get K ≥ M, so

h = Kβη ≥ Mβη =



>



.
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The conditions of Theorem  cannot be satisfied. Hence, we cannot know whether the
sequence {xn} generated by the method () converges to the solution x∗.

In this paper, we consider weaker conditions and establish a new Newton-Kantorovich
convergence theorem. The paper is organized as follows: in Section  the convergence
analysis based on weaker conditions is given and in Section , a new Newton-Kantorovich
convergence theorem is established. In Section , some numerical examples are worked
out. We finish the work with some conclusions and references.

2 Analysis of convergence
Let x ∈ � and nonlinear operator F : � ⊂ X → Y be continuously third-order Fréchet
differentiable where � is an open set and X and Y are Banach spaces. We assume that:

(C) ‖�F(x)‖ ≤ η,
(C) ‖F ′(x)–F ′′(x)‖ ≤ γ ,
(C) ‖F ′(x)–F ′′′(x)‖ ≤ N , x ∈ �,
(C) there exists a positive real number L such that

∥∥F ′(x)–[F ′′′(x) – F ′′′(y)
]∥∥ ≤ L‖x – y‖, ∀x, y ∈ �. ()

Denote

g(t) =



Kt +


γ t – t + η, ()

where K ,γ ,η are positive real numbers and

L
Nη + γ

+ N ≤ K . ()

Lemma  ([]) Let α = 
γ +

√
γ +K

,β = α – 
 Kα – 

γα = (γ +
√

γ +K )

(γ +
√

γ +K )
. If η ≤ β , then the

polynomial equation g(t) has two positive real roots r, r (r ≤ r) and a negative root –r

(r > ).

Lemma  Let r, r, –r be three roots of g(t) and r ≤ r, r > . Write u = r + t, a = r – t,
b = r – t, and

q(t) =
b – u
a – u

· (a – u)b + u(u – a)b + u(a – u)b – au

(b – u)a + u(u – b)a + u(b – u)a – bu . ()

Then as  ≤ t ≤ r, we have

q() ≤ q(t) ≤ q(r) ≤ . ()

Proof Since g(t) = K
 abu and g ′′(t) ≥  (t ≥ ), we have

u – a – b ≥ . ()

Differentiating q and noticing q′(t) ≥  ( ≤ t ≤ r), we obtain

q() ≤ q(t) ≤ q(r). ()
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On the other hand, since

q(t) –  ≤ ,

the lemma is proved.
Now we consider the majorizing sequences {tn}, {sn} (n ≥ ), t = ,

⎧⎪⎪⎨
⎪⎪⎩

sn = tn – g(tn)
g′(tn) ,

hn = –g ′(tn)–g ′′(rn)(sn – tn),

tn+ = tn – [ + 


hn
–hn

] g(tn)
g′(tn) ,

()

where rn = tn + /(sn – tn). �

Lemma  Let g(t) be defined by () and satisfy the condition η ≤ β , then we have

( √λθ )n

√λ – ( √λθ )n (r – r) ≤ r – tn ≤ ( √λθ )n

√λ – ( √λθ )n (r – r), n = , , . . . , ()

where θ = r
r

,λ = q(r),λ = q().

Proof Let an = r – tn, bn = r – tn, un = r + tn, then

g(tn) =
K


anbnun, ()

g ′(tn) = –
K


[anun + bnun – anbn], ()

g ′′(tn) =
K


[un – bn – an]. ()

Write ϕ(tn) = anun + bnun – anbn, then we have

an+ = an +
[

 +



hn

 – hn

]
g(tn)
g ′(tn)

=
a

n(bn – un)[(an – un)b
n + un(un – an)b

n + u
n(an – un)bn – anu

n]
ϕ(tn)(a

nu
n + b

nu
n + a

nb
n) – a

nb
nϕ(tn)

, ()

bn+ = bn +
[

 +



hn

 – hn

]
g(tn)
g ′(tn)

=
b

n(an – un)[(bn – un)a
n + un(un – bn)b

n + u
n(bn – un)an – bnu

n]
ϕ(tn)(a

nu
n + b

nu
n + a

nb
n) – a

nb
nϕ(tn)

. ()

We can obtain

an+

bn+
=

bn – un

an – un
· (an – un)b

n + un(un – an)b
n + u

n(an – un)bn – anu
n

(bn – un)a
n + un(un – bn)a

n + u
n(bn – un)an – bnu

n
·
(

an

bn

)

. ()

From Lemma , we have λ ≤ q(t) ≤ λ. Thus

an

bn
≤ λ

(
an–

bn–

)

≤ · · · ≤ (λ)++···+n–
(

a

b

)n

=


√λ

( 
√

λθ
)n

. ()
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In a similar way,

an

bn
≥ 

√λ

( 
√

λθ
)n

. ()

That completes the proof of the lemma. �

Lemma  Suppose tn, sn are generated by (). If η < β , then the sequences {tn}, {sn} increase
and converge to r, and

 ≤ tn ≤ sn ≤ tn+ < r. ()

Proof Let

U(t) = t – g ′(t)–g(t),

H(t) =
(
g ′(t)–)g ′′(T)g(t), ()

V (t) = t +
[

 +



H(t)
 – H(t)

](
U(t) – t

)
,

where T = (t + U(t))/.
When  ≤ t ≤ r, we can obtain g(t) ≥ , g ′(t) < , g ′′(t) > . Hence

U(t) = t –
g(t)
g ′(t)

≥ t ≥ . ()

So ∀t ∈ [, r], we always have U(t) ≥ t.
Since T = t+U(t)

 ≥ t ≥ , we have

H(t) =
g ′′(T)g(t)

g ′(t) ≥ . ()

On the other hand g ′′(T)g(t) – g ′(t) > , then

 ≤ H(t) =
g ′′(T)g(t)

g ′(t) < . ()

Thus

V (t) = U(t) +



H(t)
 – H(t)

(
U(t) – t

) ≥ ,

and ∀t ∈ [, r], we always have V (t) ≥ U(t).
Since

V ′(t) =
g(t)[g ′(t)(g ′′(T) – g ′′(t))(g ′′(T)g(t) – g ′(t)) – Kg(t)g ′(t)g ′′(t)

g ′(t)[g ′′(T)g(t) – g ′(t)]

+
–Kg(t)g ′′(t)g ′(t) + g(t)g ′′(t)g ′′(T)]

g ′(t)[g ′′(T)g(t) – g ′(t)]

=
g(t)[–Kg(t)g ′(t)g ′′(t) – Kg(t)g ′′(t)g ′(t) + g(t)g ′′(t)g ′′(T)]

g ′(t)[g ′′(T)g(t) – g ′(t)] , ()
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we know V ′(t) >  for  ≤ t ≤ r. That is to say that V (t) is monotonically increasing. By
this we will inductively prove that

 ≤ tn ≤ sn ≤ tn+ < V (r) = r. ()

In fact, () is obviously true for n = . Assume () holds until some n. Since tn+ < r,
sn+, tn+ are well defined and tn+ ≤ sn+ ≤ tn+. On the other hand, by the monotonicity of
V (t), we also have

tn+ = V (tn+) < V (r) = r.

Thus, () also holds for n + .
From Lemma , we can see that {tn} converges to r. That completes the proof of the

lemma. �

Lemma  Assume F satisfies the conditions (C)-(C), then ∀x ∈ B(x, r), F ′(x)– exists
and satisfies the inequality

(I) ‖F ′(x)–F ′′(x)‖ ≤ g ′′(‖x – x‖),
(II) ‖F ′(x)–F ′(x)‖ ≤ –g ′(‖x – x‖)–.

Proof (I) From the above assumptions, we have

∥∥F ′(x)–F ′′(x)
∥∥ =

∥∥F ′(x)–F ′′(x) + F ′(x)–[F ′′(x) – F ′′(x)
]∥∥

≤ γ + N‖x – x‖ ≤ γ + K‖x – x‖
= g ′′(‖x – x‖

)
.

(II) When t ∈ [, r), we know g ′(t) < . Hence when x ∈ B(x, r),

∥∥F ′(x)–F ′(x) – I
∥∥

=
∥∥F ′(x)–[F ′(x) – F ′(x) – F ′′(x)(x – x) + F ′′(x)(x – x)

]∥∥
≤

∥∥∥∥
∫ 


F ′(x)–[F ′′(x + t(x – x)

)
– F ′′(x)

]
dt(x – x)

∥∥∥∥ + γ ‖x – x‖

≤
∥∥∥∥
∫ 


Nt dt(x – x)

∥∥∥∥ + γ ‖x – x‖ ≤ 


K‖x – x‖ + γ ‖x – x‖

=  + g ′(‖x – x‖
)

< .

By the Banach lemma, we know (F ′(x)–F ′(x))– = F ′(x)–F ′(x) exists and

∥∥F ′(x)–F ′(x)
∥∥ ≤ 

 – ‖I – F ′(x)–F ′(x)‖ ≤ –g ′(‖x – x‖
)–.

That completes the proof of the lemma. �

Lemma  ([]) Assume that the nonlinear operator F : � ⊂ X → Y is continuously third-
order Fréchet differentiable where � is an open set and X and Y are Banach spaces. The
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sequences {xn}, {yn} are generated by (). Then we have

F(xn+) =



F ′′(un)(xn+ – yn) +



F ′′′(xn)(xn+ – yn)(xn+ – xn)

–



∫ 



[
F ′′′

(
xn +




t(yn – xn)
)

– F ′′′(xn)
]

dt(yn – xn)(xn+ – xn)

+



∫ 



[
F ′′′(xn + t(xn+ – xn)

)
– F ′′′(xn)

]
( – t) dt(xn+ – xn),

where yn = xn – �nF(xn) and un = xn + 
 (yn – xn).

3 Newton-Kantorovich convergence theorem
Now we give a theorem to establish the semilocal convergence of the method () in weaker
conditions, the existence and uniqueness of the solution and the domain in which it is
located, along with a priori error bounds, which lead to the R-order of convergence of at
least four of the iterations ().

Theorem  Let X and Y be two Banach spaces, and F : � ⊆ X → Y be a third-order
Fréchet differentiable on a non-empty open convex subset �. Assume that all conditions
(C)-(C) hold true and x ∈ �. If η < β , B(x, r) ⊂ �, then the sequence {xn} generated by
() is well defined, {xn} ∈ B(x, r) and converges to the unique solution x∗ ∈ B(x,α), and
‖xn – x∗‖ ≤ r – tn. Further, we have

∥∥xn – x∗∥∥ ≤ ( √λθ )n

√λ – ( √λθ )n (r – r), n = , , . . . , ()

where θ = r
r

,λ = q(r), α = 
γ +

√
γ +K

.

Proof We will prove the following formula by induction:
(In) xn ∈ B(x, tn),
(IIn) ‖F ′(xn)–F ′(x)‖ ≤ –g ′(tn)–,
(IIIn) ‖F ′(x)–F ′′(xn)‖ ≤ g ′′(‖xn – x‖) ≤ g ′′(tn),
(IVn) ‖yn – xn‖ ≤ sn – tn,
(Vn) yn ∈ B(x, sn),
(VIn) ‖xn+ – yn‖ ≤ tn+ – sn.
Estimate that (In)-(VIn) are true for n =  by the initial conditions. Now, assume that

(In)-(VIn) are true for all integers k ≤ n.
(In+) From the above assumptions, we have

‖xn+ – x‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖ + ‖xn – x‖
≤ (tn+ – sn) + (sn – tn) + (tn – t) = tn+. ()

(IIn+) From (II) of Lemma , we can obtain

∥∥F ′(xn+)–F ′(x)
∥∥ ≤ –g ′(‖xn+ – x‖

)– ≤ –g ′(tn+)–. ()
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(IIIn+) From (I) of Lemma , we can obtain

∥∥F ′(x)–F ′′(xn+)
∥∥ ≤ g ′′(‖xn+ – x‖

) ≤ g ′′(tn+). ()

(IVn+) From Lemma , we have

∥∥F ′(x)–F(xn+)
∥∥ ≤ 


g ′′(rn)(tn+ – sn) +




N(tn+ – sn)(tn+ – tn)

+
L


(sn – tn)(tn+ – tn) +

L


(tn+ – tn)

≤ 


g ′′(rn)(tn+ – sn)

+



(
N +

L


· (sn – tn)

tn+ – sn
+

L


· (tn+ – tn)

tn+ – sn

)
(tn+ – sn)(tn+ – tn)

≤ 


g ′′(rn)(tn+ – sn) +



K(tn+ – sn)(tn+ – tn)

≤ g(tn+). ()

Thus, we have

‖yn+ – xn+‖ ≤ ∥∥–F ′(xn+)F ′(x)
∥∥∥∥F ′(x)–F(xn+)

∥∥
≤ –

g(tn+)
g ′(tn+)

= sn+ – tn+. ()

(Vn+) From the above assumptions and (), we obtain

‖yn+ – x‖ ≤ ‖yn+ – xn+‖ + ‖xn+ – yn‖ + ‖yn – xn‖ + ‖xn – x‖
≤ (sn+ – tn+) + (tn+ – sn) + (sn – tn) + (tn – t) = sn+, ()

so yn+ ∈ B(x, sn+).
(VIn+) Since

∥∥I – KF (xn+)
∥∥ ≥  –

∥∥KF (xn+)
∥∥ ≥  –

(
–g ′(tn+)

)–g ′′(rn+)(sn+ – tn+)

=  + g ′(tn+)–g ′′(rn+)(sn+ – tn+) =  – hn+,

we have

‖xn+ – yn+‖ =


∥∥KF (xn+)

[
I – KF (xn+)

]–∥∥∥∥F ′(xn+)–F(xn+)
∥∥

≤ 


hn+

 – hn+
· g(tn+)

–g ′(tn+)
= tn+ – sn+. ()

Further, we have

‖xn+ – xn+‖ ≤ ‖xn+ – yn+‖ + ‖yn+ – xn+‖ ≤ tn+ – tn+, ()
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and when m > n

‖xm – xn‖ ≤ ‖xm – xm–‖ + · · · + ‖xn+ – xn‖ ≤ tm – tn. ()

It then follows that the sequence {xn} is convergent to a limit x∗. Take n → ∞ in (),
we deduce F(x∗) = . From (), we also get

∥∥x∗ – xn
∥∥ ≤ r – tn. ()

Now, we prove the uniqueness. Suppose x∗∗ is also the solution of F(x) on B(x,α). By
Taylor expansion, we have

 = F
(
x∗∗) – F

(
x∗) =

∫ 


F ′(( – t)x∗ + tx∗∗)dt

(
x∗∗ – x∗). ()

Since

∥∥∥∥F ′(x)–
∫ 



[
F ′(( – t)x∗ + tx∗∗) – F ′(x)

]
dt

∥∥∥∥
≤

∥∥∥∥F ′(x)–
∫ 



∫ 


F ′′[x + t

(
x∗ – x

)
+ t

(
x∗∗ – t∗)]ds dt

[
x∗ – x + t

(
x∗∗ – x∗)]∥∥∥∥

≤
∫ 



∫ 


g ′′[s

∥∥x∗ – x + t
(
x∗∗ – x∗)∥∥]

ds dt
∥∥x∗ – x + t

(
x∗∗ – x∗)∥∥

=
∫ 


g ′(∥∥(

x∗ – x
)

+ t
(
x∗∗ – x∗)∥∥)

dt – g ′()

=
∫ 


g ′(∥∥( – t)

(
x∗ – x

)
+ t

(
x∗∗ – x

)∥∥)
+ 

<
g ′(r) + g ′(α)


+  ≤ , ()

we can find that the inverse of
∫ 

 F ′(( – t)x∗ + tx∗∗) dt exists, so x∗∗ = x∗.
From Lemma , we get

∥∥xn – x∗∥∥ ≤ ( √λθ )n

√λ – ( √λθ )n (r – r), n = , , . . . . ()

This completes the proof of the theorem. �

4 Numerical examples
In this section, we illustrate the previous study with an application to the following non-
linear equations.

Example  Let X = Y = R, and

F(x) =



x +



x –



x +



= . ()
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We consider the initial point x = , � = [–, ], we can get

η = γ =



, N =



, L = .

Hence, from (), we have K = N = 
 and

β =
(γ + 

√
γ  + K)

(γ +
√

γ  + K)
=




, η < β .

This means that the hypotheses of Theorem  are satisfied, we can get the sequence
{xn}(n≥) generated by the method () is well defined and converges.

Example  Consider an interesting case as follows:

x(s) =  +



x(s)
∫ 



s
s + t

x(t) dt, ()

where we have the space X = C[, ] with norm

‖x‖ = max
≤s≤

∣∣x(s)
∣∣.

This equation arises in the theory of the radiative transfer, neutron transport and the ki-
netic theory of gases.

Let us define the operator F on X by

F(x) =



x(s)
∫ 



s
s + t

x(t) dt – x(s) + . ()

Then for x =  we can obtain

N = , L = , K = ,
∥∥F ′(x)–∥∥ = ., η = .,

γ =
∥∥F ′(x)–F ′′(x)

∥∥ = . ×  · 


max
≤s≤

∣∣∣∣
∫ 



s
s + t

dt
∣∣∣∣ = . × ln 


= .,

(γ + 
√

γ  + K)
(γ +

√
γ  + K)

= . > η.

That means that the hypotheses of Theorem  are satisfied.

Example  Consider the problem of finding the minimizer of the chained Rosenbrock
function []:

g(x) =
m∑

i=

[

(
xi – x

i+
) +

(
 – x

i+
)]

, x ∈ Rm. ()

For finding the minimum of g one needs to solve the nonlinear system F(x) = , where
F(x) = ∇g(x). Here, we apply the method (), and compare it with Chebyshev method
(CM), the Halley method (HM), and the super-Halley method (SHM).
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Table 1 The iterative errors (‖xn – x∗‖2) of various methods

n CM HM SHM Method (3)

1 3.086657e–001 2.169261e–001 5.962251e–002 3.119924e–002
2 1.198959e–003 4.506048e–003 1.913033e–005 1.989913e–006
3 1.099899e–007 2.048709e–008 1.435454e–014 7.771561e–016
4 3.140185e–016 5.438960e–016 8.599751e–016

In a numerical tests, the stopping criterion of each method is ‖xk – x∗‖ ≤ e – , where
x∗ = (, , . . . , )T is the exact solution. We choose m =  and x = .x∗. Listed in Table 
are the iterative errors (‖xk – x∗‖) of various methods. From Table , we know that, as
tested here, the performance of the method () is better.

5 Conclusions
In this paper, a new Newton-Kantorovich convergence theorem of a fourth-order super-
Halley method is established. As compared with the method in [], the differentiability
conditions of the method in the paper are mild. Finally, some examples are provided to
show the application of the convergence theorem.
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