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Abstract
In this paper, we propose a parallel descent LQP alternating direction method for
solving structured variational inequality with three separable operators. The O(1/t)
convergence rate for this method is studied. We also present some numerical
examples to illustrate the efficiency of the proposed method. The results presented in
this paper extend and improve some well-known results in the literature.
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1 Introduction
Let Rn

+ = {x = (x, x, . . . , xn) ∈ R
n : xi ≥  ∀i = , , . . . , n} and R

n
++ = {x = (x, x, . . . , xn) ∈

R
n : xi >  ∀i = , , . . . , n}. The variational inequality problem is to find

x ∈ � :=
{

(u, v) : u ∈R
n
+, v ∈R

m
+ , Au + Av = b

}

such that

(
x′ – x

)T F(x) ≥ , ∀x′ ∈ �, (.)

with

x =

(
u
v

)

and F(x) =

(
f(u)
f(v)

)

, (.)

where A ∈ R
l×n, A ∈ R

l×m are given matrices, b ∈R
l is a given vector, and f : Rn

+ → R
n,

f : Rm
+ → R

m are given monotone operators. For further study and applications of such
problems, we refer to [–] and the references therein. By attaching a Lagrange multi-
plier vector λ ∈ R

l to the linear constraints Au + Av = b, the problem (.)-(.) can be
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explained in terms of finding z ∈Z ′ := R
n
+ ×R

m
+ ×R

l such that

(
z′ – z

)�Q(z) ≥ , ∀z′ ∈Z ′, (.)

where

z =

⎛

⎜
⎝

u
v
λ

⎞

⎟
⎠ , Q(z) =

⎛

⎜
⎝

f(u) – A�
 λ

f(v) – A�
 λ

Au + Av – b

⎞

⎟
⎠ , (.)

and A�
 denotes the transpose of the matrix A. The problem (.)-(.) is referred as a

structured variational inequality problem (in short, SVI).
Yuan and Li [] developed the following logarithmic-quadratic proximal (LQP)-based

decomposition method by applying the LQP terms to regularize the ADM subprob-
lems: For a given zk = (uk , vk ,λk) ∈ R

n
++ × R

m
++ × R

l , and μ ∈ (, ), the new iterative
(uk+, vk+,λk+) is obtained via solving the following system:

f(u) – A�

[
λk – H

(
Au + Avk – b

)]
+ R

[(
u – uk) + μ

(
uk – U

k u–)] = , (.)

f(v) – A�

[
λk – H(Au + Av – b)

]
+ S

[(
v – vk) + μ

(
vk – V 

k v–)] = , (.)

λk+ = λk – H
(
Auk + Avk – b

)
, (.)

where H ∈R
l×l , R ∈R

n×n, and S ∈R
m×m are symmetric positive definite.

Later, some LQP alternating direction methods have been proposed to make the LQP
alternating direction method more practical, see, for example, [–] and the references
therein. Each iteration of these methods contains a prediction and a correction, the pre-
dictor is obtained via solving (.)-(.) and the new iterate is obtained by a convex com-
bination of the previous point and the one generated by a projection-type method along
a descent direction. The main disadvantage of the methods proposed in [–] is that
solving equation (.) requires the solution of equation (.). To overcome with this diffi-
culty, Bnouhachem and Hamdi [] proposed a parallel descent LQP alternating direction
method for solving SVI.

In this paper, we propose a parallel descent LQP alternating direction method for solving
the following structured variational inequality with three separable operators: Find y ∈
� := {(u, v, w) : u ∈R

n
+ , v ∈R

n
+ , w ∈R

n
+ , Au + Av + Aw = b} such that

(
y′ – y

)�F(y) ≥ , ∀y′ ∈ �, (.)

with

y =

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ , F(y) =

⎛

⎜
⎝

f(u)
f(v)
f(w)

⎞

⎟
⎠ , (.)

where A ∈ R
m×n , A ∈ R

m×n , A ∈ R
m×n are given matrices, b ∈ R

m is a given vector,
and f : Rn

+ → R
n , f : Rn

+ → R
n , f : Rn

+ → R
n are given monotone operators. By at-

taching a Lagrange multiplier vector λ ∈R
m to the linear constraints Au + Av + Aw = b,
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the problem (.)-(.) can be explained in terms of finding z ∈Z := R
n
+ ×R

n
+ ×R

n
+ ×R

m

such that

(
z′ – z

)�Q(z) ≥ , ∀z′ ∈Z , (.)

where

z =

⎛

⎜⎜⎜
⎝

u
v
w
λ

⎞

⎟⎟⎟
⎠

and Q(z) =

⎛

⎜⎜⎜
⎝

f(u) – A�
 λ

f(v) – A�
 λ

f(w) – A�
 λ

Au + Av + Aw – b

⎞

⎟⎟⎟
⎠

. (.)

The problem (.)-(.) is referred as SVI.
The main aim of this paper is to present the parallel descent LQP alternating direction

method for solving SVI and to investigate the convergence rate of this method. We show
that the proposed method has the O(/t) convergence rate. The iterative algorithm and
results presented in this paper generalize, unify, and improve the previously known results
in this area.

2 The proposed method
For any vector u ∈ R

n, ‖u‖∞ = max{|u|, . . . , |un|}. Let D ∈ R
n×n be a symmetry positive

definite matrix, we denote the D-norm of u by ‖u‖
D = uT Du.

The following lemma provides a basic property of projection operator onto a closed
convex subset � of Rl . We denote by P�,D(·) the projection operator under the D-norm,
that is,

P�,D(v) = argmin
{‖v – u‖D : u ∈ �

}
.

Lemma . Let D be a symmetry positive definite matrix and � be a nonempty closed
convex subset of Rl . Then

(
z – P�,D[z]

)�D
(
P�,D[z] – v

) ≥ , ∀z ∈R
l, v ∈ �. (.)

We make the following standard assumptions.

Assumption . f is monotone with respect to R
n
+ , that is, (f(x) – f(y))T (x – y) ≥ ,

∀x, y ∈R
n
+ , f is monotone with respect to R

n
+ , and f is monotone with respect to R

n
+ .

Assumption . The solution set of SVI, denoted by Z∗, is nonempty.

We propose the following parallel LQP alternating direction method for solving SVI:

Algorithm .
Step . Given ε > , μ ∈ (, ), β ∈ (

√


 , ), γ ∈ (, ) and
z = (u, v, w,λ) ∈R

n
++ ×R

n
++ ×R

n
++ ×R

m. Set k = .
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Step . Compute z̃k = (ũk , ṽk , w̃k , λ̃k) ∈R
n
++ ×R

n
++ ×R

n
++ ×R

m by solving the following
system:

f(u) – A�

[
λk – H

(
Au + Avk + Awk – b

)]

+ R
[(

u – uk) + μ
(
uk – U

k u–)] = , (.)

f(v) – A�

[
λk – H

(
Auk + Av + Awk – b

)]

+ R
[(

v – vk) + μ
(
vk – V 

k v–)] = , (.)

f(w) – A�

[
λk – H

(
Auk + Avk + Aw – b

)]

+ R
[(

w – wk) + μ
(
wk – W 

k w–)] = , (.)

λ̃k = λk – βH
(
Aũk + Aṽk + Aw̃k – b

)
, (.)

where H ∈R
m×m, R ∈R

n×n , R ∈R
n×n and R ∈R

n×n are symmetric
positive definite matrices. Uk , Vk , and Wk are positive definite diagonal matrices
defined by Uk = diag(uk

 , . . . , uk
n), Vk = diag(vk

 , . . . , vk
n), Wk = diag(wk

 , . . . , wk
n).

Step . If max{‖uk – ũk‖∞,‖vk – ṽk‖∞,‖wk – w̃k‖∞,‖λk – λ̃k‖∞} < ε, then stop.
Step . The new iterate zk+(τk) = (uk+, vk+, wk+,λk+) is given by

zk+(τk) = ( – σ )zk + σPZ ,G
[
zk – γ τkG–g

(
zk , z̃k)], σ ∈ (, ), (.)

where

τk =
ϕ(zk , z̃k)

‖zk – z̃k‖
G

, (.)

ϕ
(
zk , z̃k) =

∥∥zk – z̃k∥∥
M

+

β

(
λk – λ̃k)T(

A
(
uk – ũk) + A

(
vk – ṽk) + A

(
wk – w̃k)), (.)

g(zk , z̃k)

=

⎛

⎜⎜⎜
⎝

f(ũk) – A�
 λ̃k + A�

 H[A(uk – ũk) + A(vk – ṽk) + A(wk – w̃k) + –β

β
H–(λk – λ̃k)]

f(ṽk) – A�
 λ̃k + A�

 H[A(uk – ũk) + A(vk – ṽk) + A(wk – w̃k) + –β

β
H–(λk – λ̃k)]

f(w̃k) – A�
 λ̃k + A�

 H[A(uk – ũk) + A(vk – ṽk) + A(wk – w̃k) + –β

β
H–(λk – λ̃k)]

Aũk + Aṽk + Aw̃k – b

⎞

⎟⎟⎟
⎠

,

(.)

G =

⎛

⎜⎜
⎝

( + μ)R + A�
 HA   

 ( + μ)R + A�
 HA  

  ( + μ)R + A�
 HA 

   
β

H–

⎞

⎟⎟
⎠ ,

and

M =

⎛

⎜⎜
⎜
⎝

R + A�
 HA   

 R + A�
 HA  

  R + A�
 HA 

   
β

H–

⎞

⎟⎟⎟
⎠

.

Set k := k +  and go to Step .
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Remark . As special cases, we can obtain some new LQP alternating methods as fol-
lows:

(a) If uk+ = ũk , vk+ = ṽk , wk+ = w̃k and λk+ = λ̃k in (.), (.), (.) and (.),
respectively, we obtain a new method which can be viewed as an extension of that
proposed in [] for solving structured variational inequality with three separable
operators in a parallel way.

(b) If uk+ = ũk , vk+ = ṽk , wk+ = w̃k , λk+ = λ̃k , and β =  in (.), (.), (.) and (.),
respectively, we obtain a new method which can be viewed as an extension of that
proposed in [] for solving structured variational inequality with three separable
operators in a parallel wise.

(c) If β = , the proposed method can be viewed as an extension of that proposed in
[] for solving structured variational inequality with three separable operators.

We need the following result in the convergence analysis of the proposed method.

Lemma . ([]) Let q(u) ∈ R
n be a monotone mapping of u with respect to R

n
+ and R ∈

R
n×n be a positive definite diagonal matrix. For a given uk > , if Uk := diag(uk

 , uk
, . . . , uk

n)
(the diagonal matrix with elements uk

 , uk
, . . . , uk

n) and u– be an n-vector whose jth element
is /uj, then the equation

q(u) + R
[(

u – uk) + μ
(
uk – U

k u–)] =  (.)

has a unique positive solution u. Moreover, for any v ≥ , we have

(v – u)�q(u) ≥  + μ


(‖u – v‖

R –
∥∥uk – v

∥∥
R

)
+

 – μ


∥∥uk – u

∥∥
R. (.)

The next theorem is useful for the convergence analysis.

Theorem . For given zk ∈R
n
++ ×R

n
++ ×R

n
++ ×R

m, let z̃k be generated by (.)-(.). Then

ϕ
(
zk , z̃k) ≥ β –

√


β

∥∥zk – z̃k∥∥
G (.)

and

τk ≥ β –
√


β

. (.)

Proof It follows from (.) that

ϕ
(
zk , z̃k) =

∥∥zk – z̃k∥∥
M +


β

(
λk – λ̃k)�(

A
(
uk – ũk) + A

(
vk – ṽk) + A

(
wk – w̃k))

=
∥∥uk – ũk∥∥

R
+

∥∥Auk – Aũk∥∥
H +

∥∥vk – ṽk∥∥
R

+
∥∥Avk – Aṽk∥∥

H

+
∥∥wk – w̃k∥∥

R
+

∥∥Awk – Aw̃k∥∥
H +


β

∥∥λk – λ̃k∥∥
H–

+

β

(
λk – λ̃k)�(

A
(
uk – ũk) + A

(
vk – ṽk) + A

(
wk – w̃k)). (.)
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By using the Cauchy-Schwarz inequality, we have

(
λk – λ̃k)�(

A
(
uk – ũk)) ≥ –




(√

∥∥A

(
uk – ũk)∥∥

H +
√


∥∥λk – λ̃k∥∥
H–

)
, (.)

(
λk – λ̃k)�(

A
(
vk – ṽk)) ≥ –




(√

∥∥A

(
vk – ṽk)∥∥

H +
√


∥∥λk – λ̃k∥∥
H–

)
, (.)

and

(
λk – λ̃k)�(

A
(
wk – w̃k)) ≥ –




(√

∥∥A

(
wk – w̃k)∥∥

H +
√


∥∥λk – λ̃k∥∥
H–

)
. (.)

Substituting (.), (.), and (.) into (.), we get

ϕ
(
zk , z̃k) ≥ β –

√


β

(∥∥Auk – Aũk∥∥
H +

∥∥Avk – Aṽk∥∥
H +

∥∥Awk – Aw̃k∥∥
H

)

+
 –

√


β

∥∥λk – λ̃k∥∥
H– +

∥∥uk – ũk∥∥
R

+
∥∥vk – ṽk∥∥

R
+

∥∥wk – w̃k∥∥
R

≥ β –
√


β

(∥∥Auk – Aũk∥∥
H +

∥∥Avk – Aṽk∥∥
H

+
∥∥Awk – Aw̃k∥∥

H +

β

∥∥λk – λ̃k∥∥
H–

)

+
β –

√


β

(∥∥uk – ũk∥∥
R

+
∥∥vk – ṽk∥∥

R
+

∥∥wk – w̃k∥∥
R

)

=
β –

√


β

(∥∥zk – z̃k∥∥
G + ( – μ)

∥∥uk – ũk∥∥
R

+ ( – μ)
∥∥vk – ṽk∥∥

R
+ ( – μ)

∥∥wk – w̃k∥∥
R

)

≥ β –
√


β

∥∥zk – z̃k∥∥
G.

Therefore, it follows from (.) and (.) that

τk ≥ β –
√


β

, (.)

and this completes the proof. �

3 Convergence rate
Recall that Z∗ can be characterized as (see (..) in p. of [])

Z∗ =
⋂

z∈Z

{
ẑ ∈Z : (z – ẑ)�Q(z) ≥ 

}
.

This implies that ẑ is an approximate solution of SVI with the accuracy ε >  if it satisfies

ẑ ∈Z and sup
z∈Z

{
(z – ẑ)�Q(z)

} ≤ ε. (.)
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Now we show that after t iterations of the proposed method, we can find a ẑ ∈Z such that
(.) is satisfied with ε = O(/t).

We introduce the following matrices,

N =

⎛

⎜⎜⎜
⎝

I   
 I  
  I 

–βHA –βHA –βHA βI

⎞

⎟⎟⎟
⎠

(.)

and

J =

⎛

⎜⎜⎜
⎝

( + μ)R + A�
 HA   

 ( + μ)R + A�
 HA  

  ( + μ)R + A�
 HA 

–A –A –A H–

⎞

⎟⎟⎟
⎠

. (.)

By simple manipulations, we can find that J = GN .
Our analysis needs a new sequence defined by

ẑk =

⎛

⎜⎜⎜
⎝

ûk

v̂k

ŵk

λ̂k

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

ũk

ṽk

w̃k

λk – H(Auk + Avk + Awk – b)

⎞

⎟⎟⎟
⎠

. (.)

Based on (.) and (.), we can easily have

zk – z̃k = N
(
zk – ẑk). (.)

Using (.), (.), and (.), we obtain

g
(
zk , z̃k) = Q

(
ẑk). (.)

Lemma . Let ẑk be defined by (.), z ∈Z , and the matrix J be given by (.). Then

(
z – ẑk)�(

Q
(
ẑk) – J

(
zk – ẑk)) ≥ –μ

∥∥uk – ûk∥∥
R

– μ
∥∥vk – v̂k∥∥

R
– μ

∥∥wk – ŵk∥∥
R

. (.)

Proof Applying Lemma . to (.), we get

(
u – ũk)�{

f
(
ũk) – A�


[
λk – H

(
Aũk + Avk + Awk – b

)]}

≥  + μ


(∥∥ũk – u

∥∥
R

–
∥∥uk – u

∥∥
R

)
+

 – μ


∥∥uk – ũk∥∥

R
. (.)

Since

∥∥uk – u
∥∥

R
=

∥∥uk – ũk∥∥
R

+
∥∥ũk – u

∥∥
R

+ 
(
ũk – u

)T R
(
uk – ũk),

we have

(
u – ũk)�R

(
uk – ũk) =



(∥∥ũk – u

∥∥
R

–
∥∥uk – u

∥∥
R

)
+



∥∥uk – ũk∥∥

R
. (.)
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Adding (.) and (.), we obtain

(
u – ũk)�{

( + μ)R
(
uk – ũk) – f

(
ũk) + A�


[
λk – H

(
Auk + Avk + Awk – b

)]

+ A�
 HA

(
uk – ũk)} ≤ μ

∥∥uk – ũk∥∥
R

. (.)

Similarly, applying Lemma . to (.), we get

(
v – ṽk)�{

f
(
ṽk) – A�


[
λk – H

(
Auk + Aṽk + Awk – b

)]}

≥  + μ


(∥∥ṽk – v

∥∥
R

–
∥∥vk – v

∥∥
R

)
+

 – μ


∥∥vk – ṽk∥∥

R
. (.)

Similar to (.), we have

(
v – ṽk)�R

(
vk – ṽk) =



(∥∥ṽk – v

∥∥
R

–
∥∥vk – v

∥∥
R

)
+



∥∥vk – ṽk∥∥

R
. (.)

Adding (.) and (.), we have

(
v – ṽk)�{

( + μ)R
(
vk – ṽk) – f

(
ṽk) + A�


[
λk – H

(
Auk + Avk + Awk – b

)]

+ A�
 HA

(
vk – ṽk)} ≤ μ

∥∥vk – ṽk∥∥
R

. (.)

Similarly, we have

(
w – w̃k)�{

( + μ)R
(
wk – w̃k) – f

(
w̃k) + A�


[
λk – H

(
Auk + Avk + Awk – b

)]

+ A�
 HA

(
wk – w̃k)} ≤ μ

∥∥wk – w̃k∥∥
R

. (.)

Then, by using the notation of ẑk in (.), (.), (.), and (.) can be written as

(
u – ûk)�{

( + μ)R
(
uk – ûk) – f(ûk) + A�

 λ̂k + A�
 HA

(
uk – ûk)}

≤ μ
∥∥uk – ûk∥∥

R
, (.)

(
v – v̂k)�{

( + μ)R
(
vk – v̂k) – f

(
v̂k) + A�

 λ̂k + A�
 HA

(
vk – v̂k)}

≤ μ
∥∥vk – v̂k∥∥

R
, (.)

and

(
w – ŵk)�{

( + μ)R
(
wk – ŵk) – f

(
ŵk) + A�

 λ̂k + A�
 HA

(
wk – ŵk)}

≤ μ
∥∥wk – ŵk∥∥

R
. (.)

In addition, it follows from (.) that

Aûk + Av̂k + Aŵk – b + H–(λ̂k – λk)

– A
(
ûk – uk) – A

(
v̂k – vk) – A

(
ŵk – wk) = . (.)
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Combining (.)-(.), we get

⎛

⎜
⎜
⎝

u – ûk

v – v̂k

w – ŵk

λ – λ̂k

⎞

⎟
⎟
⎠

� ⎛

⎜
⎜
⎝

f(ûk) – A�
 λ̂k – (( + μ)R + AT HA)(uk – ûk)

f(v̂k) – A�
 λ̂k – (( + μ)R + A�

 HA)(vk – v̂k)
f(ŵk) – A�

 λ̂k – (( + μ)R + A�
 HA)(wk – ŵk)

Aûk + Av̂k + Aŵk – b + A(uk – ûk) + A(vk – v̂k) + A(wk – ŵk) – H–(λk – λ̂k)

⎞

⎟
⎟
⎠

≥ –μ
∥
∥uk – ûk∥∥

R
– μ

∥
∥vk – v̂k∥∥

R
– μ

∥
∥wk – ŵk∥∥

R
. (.)

Recall the definition of J in (.), we obtain the assertion (.). The proof is completed. �

Lemma . For given zk ∈ R
n
++ ×R

n
++ ×R

n
++ ×R

m and zk∗ := PZ ,G[zk – τkG–g(zk , z̃k)], we
have

γ τk
(
z – ẑk)�Q(z) +



(∥∥z – zk∥∥

G –
∥∥z – zk

∗
∥∥

G

) ≥ 

γ ( – γ )τ 

k
∥∥zk – z̃k∥∥

G. (.)

Proof Since zk∗ ∈Z , substituting z = zk∗ in (.), we get

γ τk
(
zk
∗ – ẑk)�Q

(
ẑk) (.)

≥ γ τk
(
zk
∗ – ẑk)�J

(
zk – ẑk) – μγ τk

∥∥uk – ûk∥∥
R

– μγ τk
∥∥vk – v̂k∥∥

R

– μγ τk
∥∥wk – ŵk∥∥

R

= γ τk
(
zk – ẑk)�J

(
zk – ẑk) + γ τk

(
zk
∗ – zk)�J

(
zk – ẑk)

– μγ τk
∥∥uk – ûk∥∥

R
– μγ τk

∥∥vk – v̂k∥∥
R

– μγ τk
∥∥wk – ŵk∥∥

R

= γ τk
(
zk – z̃k)�(

N–)�JN–(zk – z̃k) + γ τk
(
zk
∗ – zk)�JN–(zk – z̃k)

– γ τkμ
∥∥uk – ûk∥∥

R
– γ τkμ

∥∥vk – v̂k∥∥
R

– μγ τk
∥∥wk – ŵk∥∥

R

= γ τk
(
zk – z̃k)�(

N–)�G
(
zk – z̃k) – γ τkμ

∥∥uk – ûk∥∥
R

– γ τkμ
∥∥vk – v̂k∥∥

R

– μγ τk
∥∥wk – ŵk∥∥

R
+ γ τk

(
zk
∗ – zk)�G

(
zk – z̃k)

= γ τk
(
zk – z̃k)�(

N–)�M
(
zk – z̃k) + γ τk

(
zk
∗ – zk)�G

(
zk – z̃k)

≥ γ τkϕ
(
zk , z̃k) + γ τk

(
zk
∗ – zk)�G

(
zk – z̃k)

≥ γ τkϕ
(
zk , z̃k) –



∥∥zk – zk

∗
∥∥

G –


γ τ 

k
∥∥zk – z̃k∥∥

G

=


γ ( – γ )τ 

k
∥∥zk – z̃k∥∥

G –


∥∥zk – zk

∗
∥∥

G. (.)

Using (.), zk∗ is the projection of zk – γ τkG–Q(ẑk) on Z , it follows from (.) that

(
zk – γ τkG–Q

(
ẑk) – zk

∗
)�G

(
z – zk

∗
) ≤ , ∀z ∈Z ,

and consequently, we have

γ τk
(
z – zk

∗
)�Q

(
ẑk) ≥ (

zk – zk
∗
)�G

(
z – zk

∗
)
.
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Using the identity x�Gy = 
 (‖x‖

G – ‖x – y‖
G + ‖y‖

G) to the right hand side of the last
inequality, we obtain

γ τk
(
z – zk

∗
)�Q

(
ẑk) ≥ 


(∥∥z – zk

∗
∥∥

G –
∥∥z – zk∥∥

G

)
+



∥∥zk – zk

∗
∥∥

G. (.)

Adding (.) and (.), we get

γ τk
(
z – ẑk)�Q

(
ẑk) +



(∥∥z – zk∥∥

G –
∥∥z – zk

∗
∥∥

G

) ≥ 

γ ( – γ )τ 

k
∥∥zk – z̃k∥∥

G,

and by using the monotonicity of Q, we obtain (.) and the proof is completed. �

Lemma . Let zk ∈R
n
++ ×R

n
++ ×R

n
++ ×R

m and zk+(τk) be generated by (.). Then

γ στk
(
z – ẑk)�Q(z) +



(∥∥z – zk∥∥

G –
∥∥z – zk+(τk)

∥∥
G

) ≥ 

σγ ( – γ )τ 

k
∥∥z – z̃k∥∥

G. (.)

Proof We have

∥∥z – zk∥∥
G –

∥∥z – zk+(τk)
∥∥

G (.)

=
∥∥zk – z

∥∥
G –

∥∥zk – σ
(
zk – zk

∗
)

– z
∥∥

G

= σ
(
zk – z

)�G
(
zk – zk

∗
)

– σ ∥∥zk – zk
∗
∥∥

G

= σ
(∥∥zk – zk

∗
∥∥

G –
(
z – zk

∗
)�G

(
zk – zk

∗
))

– σ ∥∥zk – zk
∗
∥∥

G. (.)

Using the identity

(
z – zk

∗
)�G

(
zk – zk

∗
)

=


(∥∥zk

∗ – z
∥∥

G –
∥∥zk – z

∥∥
G

)
+



∥∥zk – zk

∗
∥∥

G,

we get

∥∥zk – zk
∗
∥∥

G – 
(
z – zk

∗
)�G

(
zk – zk

∗
)

=
∥∥zk – z

∥∥
G –

∥∥zk
∗ – z

∥∥
G. (.)

Substituting (.) into (.), we obtain

∥∥z – zk∥∥
G –

∥∥z – zk+(τk)
∥∥

G = σ
(∥∥z – zk∥∥

G –
∥∥z – zk

∗
∥∥

G

)
+ σ ( – σ )

∥∥zk – zk
∗
∥∥

G

≥ σ
(∥∥z – zk∥∥

G –
∥∥z – zk

∗
∥∥

G

)
. (.)

Substituting (.) into (.), we obtain (.), the required result. �

Theorem . Let z∗ be a solution of SVI and zk+(τk) be generated by (.). Then zk and
z̃k are bounded, and

∥∥zk+(τk) – z∗∥∥
G ≤ ∥∥zk – z∗∥∥

G – c
∥∥zk – z̃k∥∥

G, (.)

where

c :=
σγ ( – γ )(β –

√
)

β > .
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Proof Setting z = z∗ in (.), we obtain

∥∥zk+(τk) – z∗∥∥
G ≤ ∥∥zk – z∗∥∥

G – σγ ( – γ )τ 
k
∥∥zk – z̃k∥∥

G + γ στk
(
z∗ – ẑk)�Q

(
z∗)

≤ ∥∥zk – z∗∥∥
G – σγ ( – γ )τ 

k
∥∥zk – z̃k∥∥

G

≤ ∥∥zk – z∗∥∥
G –

σγ ( – γ )(β –
√

)

β

∥∥zk – z̃k∥∥
G.

Then we have

∥∥zk+(τk) – z∗∥∥
G ≤ ∥∥zk – z∗∥∥

G ≤ · · · ≤ ∥∥z – z∗∥∥
G,

and thus, {zk} is a bounded sequence.
It follows from (.) that

∞∑

k=

c
∥∥zk – z̃k∥∥

G < +∞,

which means that

lim
k→∞

∥∥zk – z̃k∥∥
G = . (.)

Since {zk} is a bounded sequence, we conclude that {z̃k} is also bounded. �

The global convergence of the proposed method can be proved by similar arguments as
in []. Hence the proof is omitted.

Theorem . The sequence {zk} generated by the proposed method converges to some z∞

which is a solution of SVI.

Now, we are ready to present the O(/t) convergence rate of the proposed method.

Theorem . For any integer t > , we have a ẑt ∈Z which satisfies

(ẑt – z)�Q(z) ≤ 
γ σϒt

∥∥z – z∥∥
G, ∀z ∈Z ,

where

ẑt =

ϒt

t∑

k=

τkẑk and ϒt =
t∑

k=

τk .

Proof Summing the inequality (.) over k = , . . . , t, we obtain

(( t∑

k=

γ στk

)

z –
t∑

k=

γ στkẑk

)�
Q(z) +



∥∥z – z∥∥

G ≥ .
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Using the notations of ϒt and ẑt in the above inequality, we derive

(ẑt – z)�Q(z) ≤ 
γ σϒt

∥∥z – z∥∥
G, ∀z ∈Z .

Indeed, ẑt ∈ Z because it is a convex combination of ẑ, ẑ, . . . , ẑt . The proof is com-
pleted. �

Remark . It follows from (.) that

ϒt ≥ β –
√


β

(t + ).

Suppose that, for any compact set D ⊂Z , let d = sup{‖z – z‖G|z ∈D}. For any given ε > ,
after at most

t =
[

βd

(β –
√

)γ σε

]

iterations, we have

(ẑt – z)T Q(z) ≤ ε, ∀z ∈D.

That is, the O(/t) convergence rate is established in an ergodic sense.

4 Preliminary computational results
In this section, we present some numerical examples to illustrate the proposed method.
We consider the following optimization problem with matrix variables, which is studied
in []:

min

{


‖U – C‖

F

∣∣∣U ∈ Sn
+

}
, (.)

where ‖ · ‖F is the matrix Fröbenius norm, i.e., ‖C‖F = (
∑n

i=
∑n

j= |Cij|)/ and

Sn
+ =

{
M ∈R

n×n : M� = M, M � 
}

.

It has been shown in [] that solving problem (.) is equivalent to the following varia-
tional inequality problem: Find X∗ = (U∗, V ∗, Z∗) ∈ � = Sn

+ × Sn
+ ×R

n×n such that

⎧
⎪⎪⎨

⎪⎪⎩

〈U – U∗, (U∗ – C) – Z∗〉 ≥ ,

〈V – V ∗, (V ∗ – C) + Z∗〉 ≥ , ∀X = (U , V , Z) ∈ �,

U∗ – V ∗ = .

(.)

The problem (.) is a special case of (.)-(.) with matrix variables where A = In×n,
A = –In×n, b = , f(U) = U –C, f(V ) = V –C, andW = Sn

+ ×Sn
+ ×R

n×n. For simplification,
we take R = rIn×n, R = rIn×n, and H = In×n where r >  and r >  are scalars. In all tests
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Table 1 Numerical results for problem (4.1) with r1 = 0.5, r2 = 5

Dimension of
the problem

The proposed method The method in [18] The method in [17]

k CPU (Sec.) k CPU (Sec.) k CPU (Sec.)

100 43 0.83 49 0.96 71 2.47
300 48 3.98 53 4.85 79 6.33
500 50 11.54 56 13.27 82 20.2
700 52 29.91 57 34.33 85 44.06

Table 2 Numerical results for problem (4.1) with r1 = 1, r2 = 10

Dimension of
the problem

The proposed method The method in [18] The method in [17]

k CPU (Sec.) k CPU (Sec.) k CPU (Sec.)

100 106 0.87 109 1.18 124 2.61
300 119 6.85 123 7.54 140 9.06
500 125 25.85 128 29.71 147 37.25
700 129 53.19 132 58.06 152 64.35

we take μ = ., β = ., C = rand(n), and (U, V , Z) = (In×n, In×n, n×n) as the initial
point in the test. The iteration is stopped as soon as

max
{∥∥Uk – Ũk∥∥,

∥∥V k – Ṽ k∥∥,
∥∥Zk – Z̃k∥∥} ≤ –.

All codes were written in Matlab, we compare the proposed method with those in [] and
[]. The iteration numbers, denoted by k, and the computational time for the problem
(.) with different dimensions are given in Tables -.

Tables - show that the proposed method is more flexible and efficient for the problem
tested.

5 Conclusions
In this paper, we proposed a new modified logarithmic-quadratic proximal alternating
direction method for solving structured variational inequalities with three separable op-
erators. The prediction point is obtained by solving series of related systems of nonlinear
equations in a parallel way. Global convergence of the proposed method is proved under
mild assumptions. We have proved the O(/t) convergence rate of the parallel LQP alter-
nating direction method. Some preliminary numerical examples are reported to verify the
effectiveness of the proposed method in practice.
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