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Abstract

In this paper, we provide Lagrange-type duality theorems for mathematical
programming problems with DC objective and constraint functions. The class of
problems to which Lagrange-type duality theorems can be applied is broader than
the class in the previous research. The main idea is to consider equivalent inequality
systems given by the maximization of the original functions. In order to compare the
present results with the previously reported results, we describe the difference
between their constraint qualifications, which are technical assumptions for the
duality.
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1 Introduction
Lagrange duality is very effective in solving convex programming problems with inequality
constraints. Constraint qualifications, which are technical assumptions for Lagrange dual-
ity, play an essential role in proving its duality theorems. For convex functions f; : R” — R,
i=1,...,m,the inequality system {f; < 0,i =1,...,m} is said to have the Farkas-Minkowski
property (FM, for short) if coneco | J!”; epif;* + {0} x [0, +00) is closed. FM is well known
as a necessary and sufficient constraint qualification for Lagrange duality; see [1]. Also
it is easy to check that the system {f; < 0,i =1,...,m} has FM if and only if the system
{max,.1, . f; <0} has FM.

A function is said to be DC if it can be expressed as the difference of two convex func-
tions. In this paper, we consider the following mathematical programming problem with

DC objective and constraint functions:

minimize f;(x) — go(x)
(P)
subject to fi(x) —gi(x) <0, i=1,...,m,

where f;,g; : R” — R are convex functions for each i = 0,1,...,m. For the inequality sys-

tem {f; —g; <0,i=1,...,mj}, its constraint qualifications for Lagrange-type duality have
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been observed in [2, 3]. To our surprise, we can observe that such constraint qualifi-
cations of two DC inequality systems {f; — g, < 0,i = 1,...,m} and {F — G < 0}, where
F = max;.1, ,{f + Zj » g} and G = Z;:l gj» have a difference in spite of the two systems
being equivalent.

The purpose of this paper is to provide other Lagrange-type duality theorems for DC
programming problems with equivalent DC inequalities. The class of problems to which
Lagrange-type duality theorems can be applied is broader than the class in previous re-
search. The main idea, motivated by the above observation, is to consider equivalent in-
equality systems given by the maximization of the original functions. In order to compare
the present results with the previously reported results, we describe the difference be-
tween their constraint qualifications. The outline of the paper is as follows: In Section 2, we
introduce definitions and preliminary results which will be used in this paper. In Section 3,
we provide a Lagrange-type duality theorem for equivalent inequality system {F — G < 0}.
We provide an application of this theorem and we describe the difference between the
present and previous constraint qualifications. Also, we provide a unified Lagrange-type
duality theorem which contains the present theorem and the previous results in [3]. In
Section 4, we summarize our results. Finally, we give proofs of lemmas which will be used
in the proof of the main result in the Appendix.

2 Notations and preliminaries

In this section, we describe our notations and present preliminary results. The inner
product of two vectors x and y in the n-dimensional real Euclidean space R” will be de-
noted by (x,y). For a set A € R”, we shall denote the closure, convex hull, conical hull
of A by clA, coA, and cone A, respectively. For a convex set C € R” and «, 8 € [0, +00),
(@¢+B)C=aC+BC,wherecdA ={ax|xcAlandA+B={x+y|x€A,yeB}foranya € R
and A, B € R”. For an extended real-valued function f : R” — R U {+00}, the domain, the

epigraph, and the conjugate function of f are defined by

domf = {xe R" | f(x) < +oo},
epif = {(x,r) eR" x R|x e domf,f(x) < r}, and

[y = ag;{(x,y) —f(x)}, Vy e R".

The indicator function of A € R” is denoted by 4. For each x € domf, the subdifferential
of the function f at x is the set

I (x) = {x* eR" | (x*,y—x) + f(x) <f(), ¥y e R"}.

If x € domf, then f(x) + f*(y) > (y,x) (the Young-Fenchel inequality) holds for each y € R”
and

f@)+f* ) =x) & yeif).

For two extended real-valued functions f,g : R” — R U {+00}, the infimal convolution of
f and g is defined by

oW =_inf {f(n)+gx)} VreR"

X1+X2 =
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For extended real-valued convex functions f; : R” — R U {+oo}, i = 1,...,m, if
(M~ intdomf; # ¥, then

3(ﬂ++fm)(x):8ﬁ(x)++3fm(x) W

forallx € (), domf; and for each y € 3(f; + - - - + f,,,) (%), there exists y; € 9fi(x) (i=1,...,m)

such that

(it S O0) =7 On) + -+ 1, Om)- ()
Hence

(it tfu)0) = (@ &) 0) (3)

the infimal convolution is attained for all y; see [4]. It is easy to show that (3) implies that

epi(fi + - +fin)" = epifi +--- +epif. (4)

When all f; are real-valued convex functions,

epi(;?a’inﬁ)* =co (LWJ epiﬁ*) (5)

,,,,, )
i=1

holds; see Theorem 2.4.7 in [5]. The following theorem will be used in the proof of the

main theorem.

Theorem 1 (Sion, [6]) Let X be a convex set, Y be a compact convex set, f : X x ¥ — R,
where f(x,-) is usc concave on Y for each x € X and f(-,y) is Isc convex on X foreachy € Y.
Then

inf ,y) = inf f(x, y).
inf e/ ) = e g )

3 Main results
We observe the following DC programming problem with inequality constraints:

minimize ( P
SubjeCt tOfi(v'C) gl(x) <— ’ i T ’

where f;,g; : R” — R are convex functions for each i = 0,1,..., m. First, we give a real-
valued version of a previous Lagrange-type duality result for (P) in [3] as follows, where
Val(P) is the infimum value of (P):

Theorem 2 (Harada, Kuroiwa, [3]) Let f,,g; : R — R be convex functions for each
i=01...,mS={xeR"|filx) —gx) <0,Vi=1,...,m}, | U,s9%(*) € Dy € R" and
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Unes(TT7 8gix) € D S R™.IFS((r)7%) = {x € RY | fi#) — (%3 +.g () < 0,Vi=1,

is not empty and

conecoU(epifi* - (yi;gi*(yi))) +{0} x [0,+00) is closed

i=1

for each (y,)!"; € DN T[], domg;, then

Val(P) = inf max inf l Jolx) — (x,50) + g5 o)

00,(1)2)€Do xD 4;z0 xeR”

" in(ﬁ(x) — (%, 9;) +gi*(3’i))} .
i1
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.o,m)

7)

We remark that, in the real-valued case, this theorem contains the previous theorems

in [3]. Clearly, problem (P) is equivalent to the following problem (P’):
minimize f;(x) — go(x)

.....

and problem (P’) is also a DC programming problem because

e i-ah = m{f ng—th} - o i+ s “LesF-G ©

i=1,..,

[ #

and F and G are convex functions. To our surprise, we can observe that constraint qual-

ifications of two DC inequality systems {f; —g; < 0,i =1,...,m} and {F — G < 0} have a

difference in spite of the two systems being equivalent. This can be seen at the end of

Section 3. Motivated by the observation, we give the first duality result.

Theorem 3 Let f;,g; : R" — R be convex functions for each i = 0,1,...,m, S = {x € R" |

filx) —gi(x) <0,Vi=1,...,m}, U, 5080 &) € Do and D=, .¢ > 12, 0gi(x). If

m

coneco <U <epif[" + Zepig}") - Z(yi,gi*(yi))) +{0} x [0,+00) is closed 9)

i=1 ji#i i=1

Soreach (y,)!; € U5 [ 112 0g:(x), then the following Lagrange-type duality holds:

Val(P) = inf max inf x) — {x,90) + g5 + Ai(fi(x) — g;(x
®) (0.9)€DoxD ;>0 X€R” IfO( )= (%50} + & 00) z=Zl (f( )-8 ))
im:1 }”i:):

+ i(Zg;m — (x%,5) + (Zgj) @)) }
j=1 j=1

Also we give a unified result of Theorem 2 and Theorem 3, as follows.
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Theorem 4 Let f;,g; : R" — R be convex functions for each i =0,1,...,m, S ={x € R" |
ﬁ(x) _gi(x) = O)Vl = 1; .. ')m}) 1 - {11 .. '7m}1 UxeS ag()(x) - DO and D = UxeS(l_[iél agl(x) X
> ier 08ix)). If

coneco(U((epifi* + Zepigf) - Z(yi;g;k(%')))

iel i iel
jel
U U(epifi* - (yi;g;k(yi)))) +{0} x [0, +00) (10)

i¢l

is closed for each (y;)? € U,es [ 11 0gi(x), then

VAl = oDy . {fo ()= 5. 30) + &00)
Ziel Ai:j‘
D M) = (xya) + g 00) + D halfilx) - gil))
i¢l iel
(Lo -wi+(Te) 0) }
jel jel

Remark 1 If I = ¢, then Theorem 4 becomes Theorem 2, and if I = {1,...,m}, then The-
orem 4 becomes Theorem 3. Also, the assumptions of Theorem 2 and Theorem 3 have a
difference. This can be seen at the end of Section 3. Therefore Theorem 4 is a generaliza-
tion of Theorem 2 and Theorem 3.

In order to prove Theorem 4, we provide Lemma 1 and Lemma 2.

Lemma 1 For any m € N and for any convex sets C; CR" (i=1,...,m),

COCJCi = U ikici. (11)

i=1 Ai>0 =1
Z;Zl )“izl

Lemma 2 For any m € N and for any convex sets A;,B; CR" (i=1,...,m),

Cco U Xm:()\,lAl + (1 - )»,)B,) =CO LmJ(A, + ZBI> (12)
i=1

i\n,-zo i=1 J#i
Zi:l )Li=1

The proofs of Lemma 1 and Lemma 2 will be given in the Appendix.

Proof of Theorem 4 Let F = max;e/{f; + ) _j» g} and G = ) _,_; g We can see the problem
jel

j
(P) is converted to the following equivalent problem (P”) from (8):

minimize f(x) — go(x)
subject to fi(x) —gi(x) <0, Vié¢l, (P”)

F(x)-G(x) <o0.
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From (1),

D= U(]‘[ dgi(x) x Y Bg,'(x)> = U(]‘[ 0gi(x) x 9 Zgi(x))

xeS i¢l iel xeS “i¢l iel

For each ((¥:)i¢r,7) € D N ([];; domg; x dom G*), there exists X € S such that y; € 9g;(%)
foreachi¢Iandy€d ), g (%), thatis,

gi®) +g () = ®y) ((¢1), (Z&')(?AC) + <Zgz’> 0) = (®9).

iel iel

From (3), there exists y; (i € I) such that (3_",;2)* (%) =) _,; & (1) and ", ;y; = 9. Then

Y (@®+g ) =D Gy

iel iel
and since g;(%) + g7 (¥;) > (X, ;) for each i € I, we have
&%) + g (i) = (X, y:), thatis,y; € 9gi(%)

for each i € I. Therefore

07 € [T0e@ < J] [ogi). (13)
i=1

xe§ i=1

Fromy€d) , g’ andx €S,

F0) - (9)+6°6) = max 6+ Do) - 651+ (L) 0

o iel

jel
=%yVW+ZkM4—XEW)

i iel

jel

=QyM@%&@H§&

From y; € dg;(x) for each i ¢ I and X € S, f;(%) — (X, y:) + &' () = fi(%) — gi(x) < 0. Therefore
% is an element of {x € R" | fi(x) — (x,5;) + &' (y:) <0,Vi ¢ I, F(x) — (x,5) + G*() < 0} and
this set is non-empty. For each i € I, let F; = f; + D "z g Now we have

jel

epi F* = coUepiF;‘ (. from (5))

iel

= U ZkiepiFi* ("." by using Lemma 1)

=0 el
Yierri=1
= U Zki(epifi* + Zepig}“) (. from (4))
=0 el j#i

Y ier Mi=1 jel
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= U Z(Ai epif + (1 - 1;)epig))
>0 el
i1 hi=1

=co U E (Aepifi + (1 - 1) epig))
220 el
i1 hi=l

=co U <epifi* + Z epigf‘) (. from Lemma 2).
iel j#i
jel

Therefore

epiF* — (5/, G*()A,)) = co(U (epifi* + Zepig}*) - Z(yi,g;‘(yi))),
iel jel iel

J#

and hence

coneco(U(epiﬁ* - (yogf o)) U (epi F* - (3, G*@)))) +{0} x [0, +00)

e
= cone co(lLéJI(epiﬁ»* I ACNIS <L3 (epifi* + ;epig") - ;(yi»g? (w))))
i

+ {0} x [0, +00),

because co(A U coB) = co(A U B) for any A, B € R”. From (10), this set is closed. By using
Theorem 2,

Val(P) = inf max inf { fo(x) — (x, o) + g0 (y0)
(0:01)ie1 3)€D0 XD 3,20 %R fo Yol &0

+ ) M@ = (i) + g 09) + A(F@) - (.5) + G*())

i¢l

holds. For any (yo, ((¥;)i¢1, 7)) € Do X D,

max inf ifo ) — (%30) + g5 00) + D hilfilw) — (. 31) + g ()

5»20 i¢l

+ (@) - (x,5) + G*@))]

= Mrz%?fénxielﬁaﬁf :fo(x) — (%,50) + g5 00) + Y ilfil@) — (,31) + & ()

):20 i¢l

+i(%x{ﬁ(x)+ Zg,(x)} ~(%,9) + (Zg,.)*@))}

jijel jet
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= max inf :fo(x) (%, 90) + &5 (o) + Z)»i(ﬁ(x) — (xy:) + g )

Aj >0(z$1 ) xeR” -
3>0 i¢l

(A Bt 2 (12 3 009) -+ (ng)*@’”

jijel jel

= max inf max {fo(x) —(x%,50) + g5 o) + Z)\L’(fi(x) — (%) +g£“(yi))

2;>0(i¢]) xeR" A;>0(iel)

=0 Lierhi=1 iel
" A(Zk < S+ Y g,(oc)) (Zg;) (y))}
iel jijel jel
- mis i, [0 5w+ S0 50 100)
A>0 Zzel)‘ i¢l
+ A(Zk < @)+ Y g;(x)> (ng) (ﬂ)}
iel j#ijel jel
= max x]énﬁ{ {fo(x) (%, 90) + g5 (o) + Z)‘«i(fi(x) - (&) +& )
f,il ;0 i¢l
+A(ZA <f(x) g,(x)+2g,(x)) <Zg,) )}
iel jel jel
= max inf {fo(x) (%, 90) + g5 (o) + Z)» (fix) = (. 30) + & )
iiz0 xeR il
Zzel}‘ =1
+AZA (filx) - g(%)) +A<Zg,(x) (x5 (Zg,) (y))}
iel jel jel
= An;axo xlenf {fo(x) (%,50) + g5 (o) + Zki(fi(x) — (%,31) + & )
S il
+Zk(f +A<ng) +<Zgj> (5/))}
iel jel jel

The fourth equality of the previous equalities follows from Theorem 1. Hence we have

Val(P) = 0.0 ,Qf]yf P v nf 2 fo(@) = (x.50) +5(y0)
Zzel)‘ =i
Y il — (@) + g 00) + Y Milfilx) - @)
i¢l iel
+5\<Zgj(x)— +<Zg,») (5/))}
jel jel

This completes the proof.

Page 8 of 15
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Now we can apply Theorem 3 to DC programming problems.
Example 1 Consider the following DC programming problem:

minimize fo ( P
SubjeCt tO X = (JCl,xQ) € ER ’ ﬁ( ) gl( ) = ’ i i

where fy(x1,%2) = 7 — %2, go(x1,%2) = 0, fi (1, %2) = %2, g1 (%1,%2) = |w1], fo(w1,%2) = —x2, and
@(x1,%2) = |#1]. This mathematical programming problem is neither convex nor differ-
entiable, therefore the previous theorems concerned with convex or differentiable pro-
ees 0g0(x) = {(0,0)} and D =
Ues(0gi(x) + 8g2(x)) = [-2,2] x {0}. We can check that the assumption of Theorem 3
holds. Therefore,

gramming problems cannot be applied directly. Let Dy = |

Val(P) = inf max inf (%2 —x9 + A1 (Jo1] + %2) + Ao (|| = %2) = (A1 + Ao)Pix
(P) yle[—z,zlh,)\zzoxl,xzeR( T =%+ A (] +x2) + Ao (] —x2) — (A1 + A2)an)

= inf max inf (%% + O+ ) (%] = J1x1) + (=1 + A1 — Ao)x
&16[72’2]M')\220x1‘x2€ﬂ§( 1 (M 2)(| 1l = 1) ( 1 2) 2)

= inf max inf (x2 + Ay + 1)(|x1] = 1
&le[—Z,Z]AzzoxleR( 1+ @b+ (Il - jix))

= inf maxmin{ inf (7 + (242 + 1)(1 = J1)x1), info(xf —(2x2 + 1A + 1)) },
X<

y1€[-2,2] 12>0 x1>0

and we can see that

—1@M D250 5 e1,2],
inf (2 + (2 4 (1 — o)) = { F 2T A=I i elL2]
x1=0 0 ifjll _ [_2’ 1)’

“L@2a +12A+50)?  if§y e [-2,-1],
inf (a2 — (2hg + 1)(1+51)x1) = L2 + 1M +3)? ifpel ]
- 0 if y; € (-1,2],

then we have

1 2
Val(P) = inf o s 21— 15
A Wnlg[l,z]rxrzl%{ 4( 2+ 1)*(1-131) }

- inf {—i(l—m)z}

[511€(1,2]

This example shows that Theorem 3 contributes to solving DC programming problems.
Next, we provide an observation that Theorem 3 has no relevance to Theorem 2. At first,
we give a DC inequality system for which holds the assumption of Theorem 3 but not the

assumption of Theorem 2 in the following example.



Harada and Kuroiwa Journal of Inequalities and Applications (2016) 2016:276 Page 10 of 15

Example 2 Define fi,/2,21,% : R — R as

P -x+l ifx>2,
1, 1
X) = if — X)=——X" ——,
Si) 0 if —2<x<2, folx) 25 4
ixz +x+1 otherwise,

1 x+1 x+17%
4l =1 and o) - [T}“ [T] ,

where [-] is the greatest integer function. We have g (x) = kx—k? if x € [2k -1, 2k +1) where

k € Z, g is also a convex function. Also we can see that

2 .
. vy +2y ify>0, . 1
£0)- £ =57+ 4,

y* -2y otherwise,
5
&) =30 and go)= 201+ 1)y-b1-D).

Put F = max{fi + g&.f» + &1} and G =g + g». For each j € D = | J, (8¢ (%) + 3g2(x)), there
exists X € S, y1 € 9g1(X), y2 € dga(k) such that ¥ = y1 + y» and G*(9) = g (1) + g5 (y2) from
(3). Since epi F* = co((epifi* + epigy) U (epify + epigy)),

coneco(epi F* — (3, G*())) + {0} x [0, +00)

=coneco({(m,n*) | n e Z} - (y1 +y2,.8 (1) + g5 (02))) + {0} x [0, +00).
The latter set is always closed. In general,

coneco({(n, nz) |ne Z} —(a, h))

epih ifa¢Z,a <BoracZ,a>—b>0,

R?  otherwise,

o2 2_
where a,b € R, o = mm{% | neZ,n>al, B= max{%ﬂb | n € Z,n > a}, and h(x) =
[ ax ifx>0,

Bx  otherwise.

{F — G < 0} holds condition (6). Also S(y) # @ because F(x) — (x,%) + G*(J) < 0. Therefore

for {F — G < 0} holds the assumption of Theorem 3. However,

From this, cone co({(1, #%) | n € Z} - (a, b)) is always closed. Therefore for

coneco((epifi* - (0,£7(0))) U (epif; - (0,g5(0)))) + {0} x [0, +00)
={(xa) | 2lxl <a} U{(0,0)}

is not closed, that is, {f; —g1 < 0,f; — g» < 0} does not hold (6).

Next, we give a DC inequality system for which holds the assumption of Theorem 2 but

not the assumption of Theorem 3 in the following example.
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Example 3 Define fi,/2,21,% : R — R as

x+1 x+17? 2%+ 1 1[2x+17
so=[F =[5 s[5 55
2 1.?62

1
aix) = il and g(x) = -

We can see that
0= D1+ Dy -DF =D 500 (b1+ 3 y- J0P - 5
GO)=7 and g =)

and then

cone co((epif;” — (y1,4; (1)) U (epify — (y2,8(2)))) + {0} x [0, +00)
= coneco(({(n, n?) | neZ} - (y.g5 )

U ({ <n, %nZ) ’ ne Z} - (yz,gé‘(yz)))> +{0} x [0, +00),

for each (y1,y2) € (U, c5(3g1(x) x 3g2(x)). The latter set is always closed in a similar way
to Example 2. Also, for each (y1,52) € ,c5(0g1 (%) x 3g2(x)), there exists z € R such that
Nn= %Z, Y2=2% then

S1y2) = {x e RIfi(x) —xy; + g (i) < 0,i=1,2}

1 1 1 1
xeR‘ i) PV ——xz+—22§0,
2 2 4

|
e [2’2”] = 3 <0}
2|

1 1 1
xeR‘ —x* - xz+ 22 <0,=x*-xz+-72><0
4 4 2 2

3z,

Then S(y1, y2) is non-empty. Therefore {f; — g <0, f, — g2 < 0} holds by the assumption of
Theorem 2. However,

coneco((epifl* + epig;‘) u (epifz* + epig{‘) - (0 +0,g7(0) +g;‘(0))) + {0} x [0, +00)
=R x (0,+00) U {(0,0)}

is not a closed set, that is, (9) does not hold.
4 Conclusions

In this paper, we studied Lagrange-type duality for DC programming problems with DC
inequality constraints. It is well known that the maximum of DC functions is also a DC
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function. Based on this idea, we presented Theorem 3, which is a Lagrange-type duality
theorem for the maximum DC inequality constraint of the original DC inequality con-
straints. Theorem 3 has no relevance to Theorem 2, which is a previous Lagrange-type
duality for DC programming problems proved in [3]. More precisely, Theorem 3 does
not imply Theorem 2 and Theorem 2 does not imply Theorem 3. Also we proved The-
orem 4, which is a unified Lagrange-type duality result of Theorem 2 and Theorem 3.
Consequently, the class of DC programming problems to which Lagrange-type duality
theorems can be applied was broader than the class in previous research.

Appendix
In this section, we give proofs of Lemma 1 and Lemma 2.

ProofofLemmal Clearly, (11) holds when m = 1,2. Assume that (11) holds for some m € N.
Let C; C R” be convex sets forall i =1,...,m + 1. Then

m+1 m
co U C = co( (67N Cm+1)
i=1 i=1

= U (A co U Ci+(1- A)Cm+1> (. from the case when m = 2)

re[0,1] i=1

U (A U ZMQ +(1- A)Cm+1> (.- from the assumption)

1€[0,1] Ai=0  i=1
Z;ﬁl )\Fl

U (Xm: G+ (1= A)C,,M)
1i>0

r€[0,1] i=1
Z;Zl Ai=1

m+1

= U dne

1;=0 i=1
Sl

Therefore (11) holds for # + 1. From mathematical induction, the proof is completed. [

ProofofLemma 2 We may assume that all A; and B; are not empty. We show this lemma by
using mathematical induction. It is clear that (12) holds when m = 1. In the case of m = 2,
(12) holds from Lemma 1 by putting C; = A; + By and C, = A, + By. Assume that (12) holds
for some m € N. Let A;, B; C R” be convex sets forall i =1,...,m + 1. Then

m+1
co U Z()"iAi+(1_)Li)Bi)
A;=>0 i=1
Y h=1
m+1
=co U( U (Z()\iAi+(1—)\i)Bi)>>
0<A1=<1 \A2,...h/+1>0 \ i=1

T a1

Page 12 of 15
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m+1 m+1
:CO( U ( U <Z()‘-lAl+(1_)‘-l)Bl))> U <A1 +ZBZ>>
0=<A1<l \A2,0shpp4120 \ i=1 i=2

Y ai=L
= CO( U ()\IAI + (1 — )\1)31
0<ii<l
m+1 m+1
+ U (Z()”AL + (1 - K,)BJ)) U <A1 + ZB,))
A2seehm4120 \ i=2 i=2
T hisl
m+ 1-x
— A
:CO( U ()\,1A1+(1—)\1)Bl+(1—)\.1) U (Z( 1 i 1_)\.131)>>
0<ii<l A2seehin+1>0
27131 lAil =

m+1
U <A1 + ZB,»)). (14)
i=2

Foralli=2,...,m+1, since B; are convex sets,1—A; = (1—A; — ;) + A, and 1 —A; —A; > 0,

we have
1-2; 1-A1 =X A Ai A
lBl': ! lB,'+ ! Bl‘= 1- d Bl'+ ! Bl‘
1-XM 1-) 1-M 1-M 1-1
and then
m+1 )Li 1 )‘-z
U Z 1-x ' 1-x B
Adrds120 \i=2 N -
st e
m+1 )"l ; )Ll
= U Zl )»Ai+ 1—1 : Bl+1 ABl
Ao xm+1>o =2 N -M -M
st ok
1 m+1
A1 % ( Ai Iy
= Bi + U Z Al‘ +(1- Bl‘
1-A 43 Aedms120 \ i=2 1-4 1-4
S =
A m+1 m+1
1
= >+ (Z( A (1 A)B))
DI 0,20 Ni2
o
Hence,

m+1
(14) = CO( U ()\,1141 + (1 — )Ll)Bl + )\,1 ZB,

0<hi<1 i=2

+a-x) U (mi(uu( A))B;) )) <A1+§3)>

My 20 \ 12
Zm+1)\/
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m+1
=COo U )\.1A1 + (1 - )\.1)31 + )\.1 ZB,
0<ii<l i=2
m+1 m+l

+-r)co ([ (Do(Ai+ (1-2)B) ) Ju A+ D Bi) ). (15)
i=2

Byt 20 \ =2

3
From the assumption,
m+1
(15) =CO U )\1A1 + (1 — )\.I)Bl + )\.1 ZBl
0<ii<l i=2
m+1 m+1
+ (1—A1)00U<Ai + Z B,') UlA+ ZBi
i=2 i i=2
2<j<m+l
m+1
=Co U )\1A1 + (1 - )\.I)Bl + )\.1 ZB,
0<ii<l i=2
m+1 m+1
+(1—)»1)U(A,‘+ Z B]> U A1+ZBi
i=2 i i=2
2<j<m+l
m+1 m+1
= CO U M A1+ZBi +(1—)\.1) BI+U<Ai+ Z BI)
0<ii<l1 i=2 i=2 j#i
2<j<m+1
m+1 m+1
=cof |J (mlA+D Bi)+a-n) U(Ai+ZBj) ) (16)
0=<rm =1 i=2 i=2 j#i
By using Lemma 1,
m+1 m+1
(16) =col (A + Y B )u (] (Ai + ZB,)
i=2 i=2 ji
m+1
= coU(A,- + ZB}).
i=1 jii
Consequently, (12) holds for m + 1. O
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