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Abstract
Let q > 2 be an integer, n ≥ 2 be a fixed integer with (n,q) = 1, ψ be a non-principal
Dirichlet character modq. An upper bound estimate for character sums of the form

∑

a∈C(1,q)
ψ (a)

is given, where C(1,q) = {a | 1≤ a ≤ q – 1,aa ≡ 1(modq),n � (a + a)}.
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1 Introduction
Let q be an odd integer, c be a fixed positive integer with (c, q) = . For each integer a with
 ≤ a ≤ q –  and (a, q) = , it is clear that there exists one and only one integer b with
 ≤ b ≤ q –  such that ab ≡ c(modq). If a and b are of opposite parity, then a is called a
Lehmer number. Let A(c, q) denote the set of all Lehmer numbers, and r(c, q) the number
of A(c, q). Lehmer [] posed the problem of finding r(, q).

Before proceeding we need to recall that the notations U = O(V ) and U � V are equiva-
lent to |U| ≤ cV for some constant c > . We write �ρ and Oρ to indicate that this constant
may depend on the parameter ρ .

∑′
means summing over reduced residue classes, a de-

notes the multiplicative inverse of a modulo q and for a real x we denote e(x) = eπ ix, {x}
the fractal part of x, and 〈x〉 = min{{x},  – {x}}.

In , Zhang [] proved that

r
(
, pα

)
=

φ(pα)


+ O
(
pα/ ln(pα

))
,

r(, pl) =
φ(pl)


+ O

(
(pl)/ ln(pl)

)
,

where p, l are two distinct odd primes, α is a positive integer, and φ(q) is the Euler function.
For arbitrary odd integer q ≥ , he [] soon obtained

r(, q) =
φ(q)


+ O

(
q/d(q) ln q

)
,

where d(q) is the classical divisor function.
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Later, Lu and Yi [] generalized this problem to incomplete intervals. In fact, let q ≥ 
be an integer, n ≥  and c be two fixed integers with (n, q) = (c, q) = ,  < δ, δ ≤ , they
defined

rn(δ, δ, c; q) =
∑′

a≤δq

∑′

b≤δq
ab≡c( mod q)

n�(a+b)

,

and got an asymptotic formula as follows:

rn(δ, δ, c; q) =
(

 –

n

)
δδφ(q) + On

(
q/d(q) log q

)
.

Recently, interesting connections between Lehmer numbers and character sums were
investigated by some scholars. For example, for an odd prime p, and a fixed prime w less
than p, let

B(w, p) =
{

a |  ≤ a ≤ p – , aa ≡ (modp), a ≡ a(modw)
}

.

Then, for any non-principal Dirichlet character χ mod w, Ma, Zhang and Zhang [] got
an upper bound estimate of character sums over B(w, p) as

p–∑

a=
a∈B(w,p)

χ (a) �w p/+ε .

At almost the same time, Han and Zhang [] obtained an upper bound estimate of the
character sums over Lehmer numbers as

∑

a∈A(,p)

χ (a) =
p–∑

a=
�(a+a)

χ (a) � p/ ln p, (.)

where χ is an arbitrary non-principal character modulo an odd prime p.
The results of character sums over other special numbers or polynomials can also be

found in [] and []. For more properties of character sums and their various applications,
see [, ] and the references therein.

It seems that (.) cannot be extended to arbitrary integer q by their methods in [].
However, relying on the methods in [], we can overcome the obstacles.

Let q ≥  be an integer, n ≥  be a fixed integer with (n, q) = , ψ be a non-principal
Dirichlet character modulo q. If n � (a + a), then a is called a generalized Lehmer number.
Denote the set of all generalized Lehmer numbers by

C(, q) =
{

a |  ≤ a ≤ q – , aa ≡ (modq), n � (a + a)
}

.

Following the same technique as in [], we obtain the following.
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Theorem Let q ≥  be an integer, n ≥  be a fixed integer with (n, q) = , ψ be a non-
principal Dirichlet character mod q. Then we have the upper bound estimate

∑

a∈C(,q)

ψ(a) =
q∑′

a=
n�(a+a)

ψ(a) �n q/d(q) log q.

Let q ≥  be an odd integer, n =  in the theorem, we may immediately obtain the fol-
lowing.

Corollary  Let ψ be a non-principal Dirichlet character modulo q. Then we have

∑

a∈A(,q)

ψ(a) =
q∑′

a=
�(a+a)

ψ(a) � q/d(q) log q.

Let q be an odd prime p, n =  in Corollary , then (.) can be deduced directly as
follows.

Corollary  Let ψ be a non-principal Dirichlet character modulo p. Then we have

∑

a∈A(,p)

ψ(a) � p/ log p.

2 Some lemmas
To prove the theorem, we need the following several lemmas. First we need an upper
bound estimate of the general Kloosterman sum S(m, n,χ ; q) as follows.

Lemma  Let q be a positive integer and χ a Dirichlet character mod q. Then for any
integers m and n, we have

S(m, n,χ ; q) � q/(m, n, q)/d(q),

where S(m, n,χ ; q) is defined by

S(m, n,χ ; q) =
∑

a mod q

χ (a)e
(

ma + na
q

)
.

Proof See Lemma  of []. �

Lemma  Let q be a positive integer, χ be the principal Dirichlet character mod q, ψ be
a non-principal character modq, r, r be integers with  ≤ r, r ≤ q – . Then we have

∣∣G(r,ψ)G(r,χ)
∣∣ ≤ q/(r, q)(r, q).

Proof By Lemma  of Chapter . in [], we have

G(r,χ) = μ

(
q

(r, q)

)
φ(q)φ–

(
q

(r, q)

)
≤ (r, q),

where we have used the fact φ(q)/φ(t) ≤ q/t if t | q.
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Note that ψ is a non-principal character mod q, we only need to consider the following
cases.

If (r, q) = , we have

∣∣G(r,ψ)
∣∣ =

∣∣ψ(r)G(,ψ)
∣∣ =

∣∣G(,ψ)
∣∣ = q/.

If (r, q) > , and ψ is a primitive character mod q, we have

∣∣G(r,ψ)
∣∣ =

∣∣ψ(r)G(,ψ)
∣∣ ≤ q/.

If (r, q) > , and ψ is a non-primitive character mod q, then Lemma  of Chapter . in
[] indicates that there exists one and only one q∗ such that q∗ | q, with χ∗ the primitive
character mod q∗ corresponding χ . Thus

∣∣G(r,ψ)
∣∣ ≤

∣∣∣∣χ
∗
(

r

(r, q)

)
χ∗

(
q

q∗(r, q)

)
μ

(
q

q∗(r, q)

)
φ(q)φ–

(
q

(r, q)

)
τ
(
χ∗)

∣∣∣∣

≤ q/(r, q).

Combining the above, we have
∣∣G(r,ψ)G(r,χ)

∣∣ ≤ q/(r, q)(r, q). �

Lemma  Let q ≥  be an integer, χ , ψ be Dirichlet characters mod q such that ψ �= χ and
ψψ = χ. Then we have the estimate

∑

χ mod q
χ �=χ
χ �=ψ

G(r,χψ)G(r,χ ) � φ(q)q/(r, q)/(r, q)/d(q).

Proof Combining Lemmas  and , we have
∑

χ mod q
χ �=χ
χ �=ψ

G(r,χψ)G(r,χ )

=
∑

χ mod q

G(r,χψ)G(r,χ ) – G(r,ψ)G(r,χ) – G(r,χ)G(r,ψ)

=
∑

χ mod q

q∑

a=

χψ(a)e
(

ar

q

) q∑

b=

χ (b)e
(

br

q

)

– G(r,ψ)G(r,χ) – G(r,χ)G(r,ψ)

= φ(q)
q∑′

a=

ψ(a)
q∑′

b=
ab≡( mod q)

e
(

ar + br

q

)

= φ(q)S(r, r,ψ ; q) – G(r,ψ)G(r,χ) – G(r,χ)G(r,ψ)

� φ(q)q/(r, r, q)/d(q) + q/(r, q)(r, q)

� φ(q)q/(r, q)/(r, q)/d(q). �
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Lemma  Let  < ρ ≤ 
 , x, x, . . . , xk be a sequence of real numbers such that

〈xk – xk′ 〉 ≥ ρ, xk �= xk′ ,

and 〈x〉 = min{〈x〉, . . . , 〈xk〉}. Then we have

K∑

k=


〈xk〉 � ρ– log(K + ).

Proof See Lemma  of Chapter . in []. �

Lemma  Let q ≥  be an integer, ψ be a character mod q, n ≥  be a fixed integer with
(n, q) = , l be an integer with  ≤ l ≤ n. Then we have

q∑′

a=

q∑′

b=

ψ(a)e
(

(a + b)l
n

)
� q/φ(q)d(q) log q.

Proof The relations

 ≤ l ≤ n,  ≤ r ≤ q – , (n, q) = 

imply that

l
n

–
r
q

�= .

And also

ψ(a) =

q

q∑

r=

G(r,ψ)e
(

–
ar
q

)
=


q

q–∑

r=

G(r,ψ)e
(

–
ar
q

)
.

Thus

q∑′

a=

q∑′

b=

ψ(a)e
(

(a + b)l
n

)

=
q∑

a=

ψ(a)e
(

al
n

) q∑′

b=

e
(

bl
n

)

=
q∑

a=


q

q–∑

r=

G(r,ψ)e
(

–
ar
q

)
e
(

al
n

) q∑′

b=

e
(

bl
n

)

=

q

q–∑

r=

G(r,ψ)
q∑′

b=

e
(

bl
n

) q∑

a=

e
((

l
n

–
r
q

)
a
)

=

q

q∑′

b=

e
(

bl
n

)( q–∑

r=

G(r,ψ)
f (l, r, n, q)

e( r
q – l

n ) – 

)
,

where f (l, r, n, q) =  – e(( l
n – r

q )q).
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Apply the upper bound
∣∣G(r,ψ)

∣∣ ≤ q/(r, q),

we have

q–∑

r=

G(r,ψ)
f (l, r, n, q)

e( r
q – l

n ) – 
� q/

q–∑

r=

(r, q)
|e( r

q – l
n ) – |

� q/
q–∑

r=

(r, q)
| sinπ ( r

q – l
n )| � q/

q–∑

r=

(r, q)
〈 r

q – l
n 〉

= q/
∑

d|q
d<q

∑

r≤q–
(r,q)=d

d
〈 r

q – l
n 〉 = q/

∑

d|q
d<q

d
∑

m≤ q–
d

(m,q)=


〈md

q – l
n 〉

= q/
∑

d|q
d<q

d
∑

k|q
μ(k)

∑

m≤ q–
kd


〈mkd

q – l
n 〉 .

Now write k
q/d = h

q
, where q ≥ , (h, q) = , we have q

kd = q
h

≤ q ≤ q
d . Then Lemma 

implies
〈

mikd
q

–
mjkd

q

〉
=

〈
(mi – mj)h

q

〉
≥ 

q
if i �= j,  ≤ i, j ≤ q – 

kd
.

So we get

q–∑

r=

G(r,ψ)
f (l, r, n, q)

e( r
q – l

n ) – 
� q/

∑

d|q
d<q

d
∑

k|q
q log

(
q – 
kd

+ 
)

� q/
∑

d|q
d<q

d
∑

k|q

q
d

log q � q/d(q) log q. (.)

Thus
q∑′

a=

q∑′

b=

χ(a)e
(

(a + b)l
n

)
� q/φ(q)d(q) log q. �

3 Proof of the theorem
In this section, we shall complete the proof of the theorem.

Proof of the theorem From the orthogonality relation for Dirichlet characters mod q and
the trigonometric sum identity, we can get

∑

a∈C(,q)

ψ(a) =
q∑

a=

ψ(a) –
q∑

a=
n|(a+a)

ψ(a)

=
q∑

a=

ψ(a) –
q∑′

a=

q∑′

b=
n|(a+b)

ab≡( mod q)

ψ(a)
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= –


φ(q)
∑

χ mod q

q∑′

a=

q∑′

b=
n|(a+b)

ψ(a)χ (ab)

= –


nφ(q)
∑

χ mod q

q∑′

a=

q∑′

b=

ψ(a)χ (ab)
n∑

l=

e
(

(a + b)l
n

)

= –


nφ(q)
∑

χ mod q
χ �=χ
χ �=ψ

q∑′

a=

q∑′

b=

ψ(a)χ (ab)
n∑

l=

e
(

(a + b)l
n

)

–


nφ(q)

n∑

l=

q∑′

a=

q∑′

b=

ψ(a)e
(

(a + b)l
n

)

–


nφ(q)

n∑

l=

q∑′

a=

q∑′

b=

ψ(b)e
(

(a + b)l
n

)

:= –E – E – E.

First of all, we shall estimate E. Making use of Lemma , we get

E =


nφ(q)
∑

χ mod q
χ �=χ
χ �=ψ

q∑′

a=

q∑′

b=

ψ(a)χ (ab)
n∑

l=

e
(

(a + b)l
n

)

=


nφ(q)
∑

χ mod q
χ �=χ
χ �=ψ

n∑

l=

q∑

a=

χψ(a)e
(

al
n

) q∑

b=

χ (b)e
(

bl
n

)

=


nφ(q)
∑

χ mod q
χ �=χ
χ �=ψ

n∑

l=

q∑

a=


q

q–∑

r=

G(r,χψ)e
(

–
ar

q

)
e
(

al
n

)

×
q∑

b=


q

q–∑

r=

G(r,χ )e
(

–
br

q

)
e
(

bl
n

)

=


nφ(q)q

∑

χ mod q
χ �=χ
χ �=ψ

n∑

l=

q–∑

r=

G(r,χψ)
q–∑

r=

G(r,χ )

×
q∑

a=

e
((

l
n

–
r

q

)
a
) q∑

b=

e
((

l
n

–
r

q

)
b
)

=


nφ(q)q

n∑

l=

q–∑

r=

q–∑

r=

f(l, r, n, q)f(l, r, n, q)
(e( l

n – r
q ) – )(e( l

n – r
q ) – )

×
∑

χ mod q
χ �=χ
χ �=ψ

G(r,χψ)G(r,χ )
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� 
φ(q)q

n∑

l=

q–∑

r=

q–∑

r=

φ(q)q/(r, q)/(r, q)/d(q)
|e( l

n – r
q ) – ||e( l

n – r
q ) – |

=
d(q)
q/

n∑

l=

q–∑

r=

q–∑

r=

(r, q)/(r, q)/

|e( l
n – r

q ) – ||e( l
n – r

q ) – |

� d(q)
q/

n∑

l=

( q–∑

r=

(r, q)/

|e( l
n – r

q ) – |

)

.

Similar to (.), we have

q–∑

r=

(r, q)/

|e( l
n – r

q ) – | �
∑

d|q
d<q

d/
∑

k|q

q
d

log q = q log q
∑

d|q
d<q

d–/
∑

k|q
 � qd(q) log q.

Then

E � d(q)
q/ qd(q) log q = q/d(q) log q. (.)

Second, we estimate E. By Lemma , we have

E � 
φ(q)

q/φ(q)d(q) log q = q/d(q) log q. (.)

In the same way we can get the estimate

E � q/d(q) log q. (.)

Combining (.), (.), and (.), we obtain the result. �
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