Li and Xue Journal of Inequalities and Applications (2016) 2016:252 ® Journal of |nequa|ities and Applications

DOI 10.1186/513660-016-1201-2

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Endpoint estimates for the commutators
of multilinear Calder6n-Zygmund operators
with Dini type kernels

Zhengyang Li and Qingying Xue”

“Correspondence:
gyxue@bnu.edu.cn

School of Mathematical Sciences,
Laboratory of Mathematics and
Complex Systems, Ministry of
Education, Beijing Normal
University, Beijing, 100875, People’s
Republic of China

@ Springer

Abstract

Let T; and Tryp be the commutators in the jth entry and iterated commutators of the
multilinear Calderén-Zygmund operators, respectively. It was well known that the
commutators of linear Calderén-Zygmund operators were not of weak type (1, 1) and
(H', L"), but they did satisfy certain endpoint L log L type estimates. In this paper, our
aim is to give more natural sharp endpoint results. We show that Tz and Ty, are

bounded from the product Hardy space H' x --- x H' to weak L7 space, whenever
the kernel satisfies a class of Dini type condition. This was done by using a key lemma
given by Christ, a very complex decomposition of the integrand domains, and
carefully splitting the commutators into several terms.

Keywords: commutators; multilinear Calderén-Zygmund operator; C-Z kernel of w
type; Dini type conditions; Hardy spaces

1 Introduction

1.1 Commutators of classical C-Z operators

In 1976, Coifman, Rochberg, and Weiss [1] first introduced and studied the commutator
of classical linear Calderén-Zygmund singular integrals, which was defined by

Tof = b, TIf = bT(f) - T(5f).

The L? boundedness of T}, was given in [1] for 1 < p < co when b € BMO(R"). 1t is well
known that T}, fails to be of weak type (1,1) and is not bounded from H(R") to L'(R").
Counterexamples were given by Pérez [2] and Paluszynski [3]. As an alternative result
of the weak (1,1) estimate of T}, Pérez [2] obtained the following L(log L) type endpoint
estimate:

|{xeR”:|be(x)|>k}|§C/ lf(;)|<l+log*<lf(;)|>)dx, A>0.

R

Moreover, alternative results of the (H', L) boundedness were also considered in the work
of Alvarez [4], Pérez [2], and Liang, Ky, and Yang [5], which concerned with the bound-
edness of T, on the subspace of atomic Hardy spaces, or concerned with the (H},L!)
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boundedness of T}, if b belongs to a subspace of BMO which is associated to the weight
function w.

On the other hand, another more reasonable and alternative result of weak type (1,1)
and (H',L') estimate was given by Liu and Lu [6] in 2002. The authors [6] showed that
T, is bounded from H'(R") to LV*°(R") if b € BMO(IR"). We note that T} also fails to be
bounded from H?(R”) to L»*°(R") for 0 < p < 1 by the generalized interpolation theorem
[7], pp.63. Therefore, the (H*, L“**) boundedness of T, becomes a sharp endpoint esti-
mate. Moreover, always L(log L)(S"™!) C H'(S"!) if f vanishes on the unit sphere. How-
ever, there is no such inclusion relationship on R”. Moreover, the inverse including rela-
tionship is still not true, since the following example shows that H*(R”) ¢ L(log L)(R").

Example 1.1 Let

X
% for some ¢ > 0,
xlogy™ L
X fG)
a;(x) = f(l {X,_,_] + XL 1y} x 2, Aj= ity
S o 7Ty 2

Thus, f(x) = Z]O:ol Ajaj(x), and it is easy to verify that each 4; is a (1, 00, 0)-atom. Notice that

i fwﬁ)uil Z
i| = _— — = < 00,
j=1 ' j=1 Y j=1 7 2/+1 IOgHE Qﬁl (I 1)t

then we have f € H(R"). Obviously, f ¢ L(log L)(R").

Thus, the (H*, L**°) boundedness and the Llog L type estimate of T, are independent in

the sense that one cannot cover the results of the other.

1.2 Commutators of multilinear operators

In recent years, the theory of multilinear Calderén-Zygmund operators with standard ker-
nels have been developed very quickly and a lot of work has been done. Among such
achievements is the celebrated work of Coifman and Meyer [8-10], Christ and Journé
[11], Kenig and Stein [12], Grafakos and Torres [13, 14], and Lerner et al. [15]. In order to

state some well-known results, we need to introduce some definitions.

Definition 1.2 (C-Z kernel of o type [16, 17]) Let w(t) be a non-negative and non-
decreasing function on R*. Let K(x,y1,...,¥) be alocally integrable function defined away

from the diagonal x = y; = - - - = y,, in (R”)"*1, Denote (x,%) = (%, y1,...,¥m), we say K is an
m-linear Calderén-Zygmund kernel of w type, if there exists a positive constant C such
that
- Co
Kx)y)| < = (L1)
| | Qo | =yl
Co d
K(x,y) - K(«',y ( o , (1.2)
| ( )| (Z] 1 |x }’/|)’”” Zj:l |x —J’/|
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whenever |x — x| < %maxlgim |x — y;l, and
K6 Y15 s Yir s Ym) =K (%05 s Vir s Ym) |

Co 1y = yil ) L3
S(Xﬁnx—nwww(iﬁnx—x|’ 13)

whenever |y; - yi| < % maxi<j<, [x* — yjl.

Definition 1.3 (Multilinear C-Z singular integral operators [16, 17]) Let K(x,y) be a C-
Z kernel of w type. For any]? =(fi,.. o fw) € LR") x L(R") x -+ x L(R”) and all x ¢
ﬂ;:l supp f;, we define the multilinear Calderén-Zygmund singular integral operators as
follows:

T(f)(x) = /(Rn)m K@Y s V) AODs o fin ) dyr - -+ dy

Definition 1.4 (Commutators of multilinear C-Z operators) Let b; € BMO(R") and T be
the operator defined in Definition 1.3. The commutators in the jth entry and the iterated
commutators of T are defined by

M S
@.\_

j=1

Zb(x T(f,....f; .,fm)(x)—T(ﬁ,...,bjﬁ,...,fm)(x)] (1.4)
j=1

and
Tr(F) = [bu, [b2s - [t [ Tl |-+ 1,110

) /(]Rn)m l_[(bj(x) = b)) K@% y1, -5 ym)i01) -+ fon ) . (L5)
j=1

Remark 1.5 Obviously, in the special case, w(t) = t° for some ¢ > 0, then the operator T
defined in Definition 1.3 coincides with the standard multilinear Calderén-Zygmund oper-
ator defined and studied by Grafakos and Torres [13]. Moreover, if w(#) = £°, the weighted
strong and L(log L) type endpoint estimates for T3(f;, .. Z] 1 T (f ) and T, have
already been studied in [15] and [18], respectively.

Definition 1.6 (Dini(a) type conditions) Let w(t) be a non-negative and non-decreasing
function on R*. w is said to satisfy the Dini(a) condition if

1 a
/ () dt < oo.
0 t

o is said to satisfy the log-Dini(a) condition if the following inequality holds:

1 a
/ () <1 + log 1) dt < 00. (1.6)
o ¢ t
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Remark 1.7 It is easy to see that the log-Dini(4) condition is stronger than the Dini(a)

condition and if 0 < a; < a,, then Dini(a;) C Dini(a;).

In 2009, Maldonado and Naibo [17] showed that, when w is concave and w € Dini(1/2),
the bilinear Calderén-Zygmund operator of w type is bounded from L! x L! to L3, In
2014, Lu and Zhang [16] improved the results in [17] by removing the hypothesis that w is
concave and reducing the condition @ € Dini(1/2) to the weaker condition @ € Dini(1). Lu
and Zhang [16] also extended the weighted strong and L(log L) type endpoint estimates to
the commutators defined in (1.4) whenever o satisfies the log-Dini(1) condition, which is
stronger than Dini(1) condition but it is much weaker than the standard kernel w(t) = ¢°.
More previous work on the commutators of multilinear operators with () = £ can be
found in [18-21] and [22].

1.3 Main results

In this paper, we will consider the sharp endpoint estimates for both the commutator in the
jth entry defined in (1.4) and the iterated commutators defined in (1.5) with a C-Z kernel
of @ type. We show that they are bounded from a product Hardy space H! x --- x H! to
a weak L™ space, whenever the kernel satisfies a class of Dini type condition. However,
the proof is very difficult and complex. In particular, in the case of iterated commutators,
we need to control six summations and three integrals at the same time even for m = 2.

We formulate our main results as follows.

Theorem 1.1 Let T be a multilinear Calderén-Zygmund operators with a C-Z kernel of
type and T; be the commutators of the jth entries defined in (1.4) with b € BMO™. If w()
satisfies the log-Dini(1) condition, then there exists a constant C > 0, such that the following
inequality holds:

- - 1
[ e R | Ty > A} < Chap o [TV gy (1.7)
j=1

With a stronger condition assumed on the function w(#) than in Theorem 1.1, but a
weaker condition than the standard kernel w(¢) = £°, we obtain the following theorem for

the iterated commutators.

Theorem 1.2 Let w(t) be a doubling function, satisfying the log-Dini(1/2m) condition, that

! 1
f a)(t)ﬁt_l (1 +log Z) dt < oo.
0

Let T be a multilinear Calderon-Zygmund operators with a C-Z kernel of  type and Ty
be the iterated commutators defined in (1.5) with b € BMO™. Then there exists a constant
C > 0, such that the following inequality holds:

s,

m 1

e e R | Trp(H@)] > A} | < Chiron 7 [ LUy (1.8)

Jj=1
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This article is organized as follows. In Section 2, the proof of Theorem 1.1 will be given.

Section 3 will be devoted to the proof of Theorem 1.2.

2 Proofs of Theorem 1.1
To prove Theorem 1.1, we need the following key lemma given by Chirst [23], which pro-

vides a foundation for our analysis.

Lemma 2.1 ([23]) For any o > 0 and any finite collection of dyadic cubes Q and associated
positive scalars Lo, there exists a collection of pairwise disjoint dyadic cubes S such that
1) Xocsraq =2"a|S|, for all S;
2) XISl =a™ Y hg;
3 ZQg any s20lQI™ xollLomn < .

Proof of Theorem 1.1 For simplicity, we only consider the case for m = 2, because there is
no essential difference for the general case.

Since Tj is bounded from L*(R") x L*(R") into L'(R") [16], and finite sums of atoms are
dense in H'(R"), we will work with such sums and will obtain desired estimates which is
independent of the number of terms in each sum. Thus, for any given f; € H'(R”) (j = 1,2),
we may assume that f; = ij )»k,ﬂk,- is a finite sum of H'-atoms, where each ai isa (1,00,0)
atom, with 3 | < Clfllany- Set Co = [ Tyll2ur2 i and Co= TN, 1. By
linearity, it is sufficient to consider the commutator of T with only one symbol, that is, for
b=be BMO(R"), we will consider the operator

Ty(h,f2) (%) = bR T (fi, o) (x) — T(Bf1, f2) ().

To prove inequality (1.7), without loss of generality, we may assume that ||f;||;;1gn) = 1 for
j=1,2. For fix A > 0, we only need to show that there is a constant C > 0, independent on
the variables and f; (j = 1,2), such that

[{x e R": | T, (A, )(x)| > A}| < C(Co + Cy + Cy)2A7M2 (2.1)

Let y be a positive number to be determined later. Take the finite collection of dyadic cubes
Qj;» which is associated with the positive scalars Aq,, in the given atomic decomposition
"

1/2

of f;. Now, we take o = (y1)"* in Lemma 2.1. Then there exists a collection of pairwise

disjoint dyadic cubes S;;, such that

M > kg <2"N)PISyl forall Sy

Qik; CSjly
-1/2 .
@ YISl =eR™ Y rgui
Sj’li QI'](j CS/',[/,

<(yM"
LO°(R?)

-1
(111) H > A | Qi 1™ X

Qj,ki ¢ any 5;‘,1/
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Denote S}, =8/nS;y;, S; = Uz for] 1,2,and §* = U/ 1S Set

=) . hguaq, and gx)=f®) - k).

Sivlj Q/'kj CSN],
By the definition of g; and 4, (I1I), and the properties of the (1, 00, 0) atoms, we have

lgle@n < 2% lglnen < D gyl <D Ikl < Clifllmny
Q/’,k~,¢_ any Sj,lv ki

Wyl < Y Z |AQ,k|/ |an|dx<Z|Ak|<cnf||H1Rn

11 Q/k C
Now, we introduce some more notations as follows:

E = {x eR”: |Tb(g1,g2)(x)| > A/4}; E, = {x e R"M\S*: |Th(h1,g2)(x)| > k/4};
Es={x e R\S*: |Ty(gi, o) (x)| > M4}, Ea={x € R"\S*: | Ty(hy, ha)(x)| > A/4}.

By (II), it follows that

2
|5*] < Z|S*| < Z Z| Gl =Co™PY 0 DT kg, <Clay (2.2)
J=1 Sy,

j=1 lel] CS/vl]'

From the L? x L* — L"* boundedness of T3, the Chebyshev inequality, and ||gjl| o @m) <
(yA)2, one may obtain
1
|E1l < CA7 gl 2 ey g2l 2gemy < CHAT yn)? ||g1||L1(Rn g2l s gy

3 1.1
<CCyIn 1|[f1||H1 Bl fi g = CC1y 2072 (2.3)

Therefore, we get

4
[{x e R": | Ty(f) ()| > 2} §Z|E|+C|S*

4
IEi| + Cy )2 + CCry2a-t. (2.4)
s=2

Hence, to finish the proof of Theorem 1.1, we only need to consider the contributions of
each |E| for 2 <s < 4, separately.

e Estimate for |E,|. By the definition of g; and /;, the moment condition of H L atoms,
and employing the linearity of T}, it now follows that

Ty (1, 82)(x)

Z Z AQu //n (b(x)—le_,q)(K(x,yl,yz)—K(x,cl,kl,yz))

S1 Quig Sy
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X AQy 1y 01)g2002)d

£ D // o (bou, = BO)K G001, On)ea(r2) 45

Siyy Quig CS1y

=:D1(x) + Ipp(x). (2.5)
Therefore, we have

Ey| < |[{x e R'\S* : | La(x)| > A/8}| + |{x € R'\S* : | a(%)| > A/8}|

=|Ex| + |Eapl.

Thus, to show the contributions of E;, we only need to consider the contributions of E;;
and Ej 5, respectively.

To estimate |E,;|, we fix k; and denote %’{k 272 /nQui )\ VnQix), i =1,2,.
Then it is obvious that R"\S* C R"\Q;, C U %, - Let c14, be the center of cube Q1,1<1,
lQl'k1 be the side length of cube Q;, Then, for any y; € Qi and x € %’{Jq, we have

1 )
=l = 5V/nlay,  and lx— el = 27 Wnlg,, - (2.6)

By the Chebychev inequality and (1.3), it follows that

|E2a| < —||g2||LOOZ Z |)‘Q1k1|/ - /Rn |b(x)—bQ1,k1|

S1y Quig CS1y

@1,k (1) < [y1 = cLi
w

(I =yl + e =212\ |x—y1] + [ — 32

> dy, dy, dx. (2.7)

Since R"\S* C U;‘fl ‘%{,kl and w is non-decreasing, together with (2.6) and noticing that
ar, € L'(R"), one obtains

laq,, (1)l -
/ / / Qlk Bk 2 a)( D1~ v )dy1 dy, dx
rRi\s* JRr JRA Ul =yil + e = 32027 \le =31l + [x = y2]

E |20, 0] 1 = il
= bx) - b . a)< ’1)d dy, dx
i=1 /ik '/”/R”| Ql'kl|(|x—y1| + [ = y2])?" lx — 1] Y1652

3 " |Q )
= Z / / |b(x) bQUq I l_kly B dy, dx
=€ o2 ) g b() - by, |d
B ;w( )|2l+2Q1,k1| 2i+2QLk1‘ (x) Ql,k1’ X
> . >
<CY iw(27)bl. <C.

I
—

Putting the above estimate into (2.7) and noticing the fact that ||gj||co®n) < (Y )2, we
have

|E21|<— DY S Jagy | = CCoyiaa, (2.8)

S1y Quig CS1yy
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. 1
Now, we are in the position to estimate |E;5|. The L' x L! — L3> boundedness of T

implies that

1 1 1
Eaal <CCIATY " 3™ Iy 1 (6@) = oy, )y, | 2 en 1821 21

S1yy Quiy CSiy

1

1 1 1 5 1

<CCirzy Y l)‘QLkll(—|Q I |b(n) = bo,, | dyl) Vol 2 oy
Sl,ll Ql,kl CSLll Lki Ql,kl

1.1 4
<CCYlb|lir2

1
<CCiae. (2.9)

Therefore in all, combining (2.8) and the above estimate, we conclude that
1,1 11
|Es| < C(CoyZA 2+ CHA 2).
e Estimate for |E3|. The estimate of |E3| is similar to |E;|. In fact,
Ty (g1, h2) (%)

- Z Z A Qas,y // (b(x) = bay ) (K(x,91,52) = K (%31, ¢205))

n)2
S2,1y Qaky CS2,1 (R")

x gi(y1)aq,,, (v2) dy

+ Z Z AQz,k2 /fRn)Z (sz,kz - b(yZ))K(xryl’yZ)gl(.yl)“Qz,kz (y2) dy

So15 Qaky CS2,0 (

=:I3;(x) + I35(x).
Repeating the same steps as we have done for |E;|, we may obtain
sl < C(Coydad v clard),
e Estimate for |E4|. First, we split Tj(hy, h3) in the form as follows:

Ty (1, 1) ()

)IDIEDIEDD f /(Rn)z(b@c)—bol,kl)(K(x,ywz)—K(x,cl,kl,yz))

S1n Quiq CSuy S2,0y Qo CS2,0y

X )\’Ql,kl aQ i (yl))‘Qz,/Q aQy (y2) dy

+ Z Z / /( - (bayy, = b)) K @31, ¥2)hqy s, ayy, 01)H2(y2) dY

Siyy Quig CS1y

= L1 (%) + 142(%).
Hence, we have

|Eal < [{x € R\S* : |1 ()| > A/8}| + |{x € R'\S* : |Isa(x) | > A/8}]. (2.10)
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For fixed k,, denote e%é"kz = (2" /nQa, )\ (2" /nQa,), h = 1,2,.... Recalling the defini-
tion of %{'Y,{l , it is easy to check

(@K

(S*)C = R”\S* C R”\(Qikl U QT,/Q) C

oo
i h
U ( {,k] n %Z,kz)‘

1i=1

=
I

Therefore, one may obtain

D((S*)C”( {,klﬂ%’,b)). (2.11)

h=1 i=1

)= (5 (UG( 2 m%&)) -

00
h=1 i=1 =

By the Chebychev inequality, (1.3), and (2.11), it follows that

[{x e R\S* : |L1(x)| > 2/8}|
8C,
S MDD VD I B | IR
S1ny Quk CS1Ly S20y Q2 CS2,0 RIS ®")

|)‘Ql,k1 ||“Ql,k1 Ol |)‘Qz,k2 ||aQ2,k2 02)| ( ly1 = CLh
(| =y + |2 = y2])?" lx — y1] + [x = 32

Moreover, by (2.11), the integrals in the above summations can be controlled by

o0 o0
bx)-b
Z Z (SN2 4 N2} / /(R”)2’ (x) = bay, |

i=1 h=1

|)‘Q1,1<1 ||‘ZQ1,1<1 Ol |}“Q2,k2 ||aQ2,k2 02l < [y1 = €Lk |

dy, dy, dx
(Ix = y1l + lx = y21)*" | = 1] ) N

o0

= 27 b(x) - b
- ;;w( )/(S*)Cm%’i,klﬁ%h ./ /(Rn)z| () Ql:k1|

2,ky
x |)‘Q1,1<1 | |“Q1,k1 01 | |)‘Qz,k2 | |”Q2,k2 ()’2)|

1
X sup
yiyzes ([ =yl + [x = y2])?"

dy dy, dx. (2.13)

For fixed x € (§%)¢, and any y1,y, € S, we have
inf |x —y1| & [x — 1], inf |x —ya| & |x - yal.
nes y2€S

This implies that

1 1
sup = — .
yiges (X =yl + [x—y2)?"  (infy e |x — y1| + inf), 5 % — 2 )"
1

(Ix =yl + [x =y )2

(2.14)

Note that {Sju}y; are pairwise disjoint dyadic cubes, by (I) and (2.14), it now follows that
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Z Z /lAQ2k2||“sz2(Y2)| L dy,

x =yl + [x—ya])?"
S2y Qo S ylyzeS (| =yl + [x = y2l)

22 Z 12Qu, |

Sa,ly Qa,ky CS2,07

§CZ< > I/\QMQI) sup .

2n
x—y|+ |x—
S NG o, yryaes (8 =yl + 12— y2])

2 [ Jacus, 0]

su
y1y265(|x J’1|+|x ya])?"

1
<) 2"yW)"S2| sup
; 2 Y1,92€S (|x—y1|+|x—y2|)2"
2

< C()/)u)l/z Z /

Sop, (=1l + Ix J’2|)2"

1
<Clya)"?———. (2.15)
¢ — y11”

Combining (2.12), (2.13), and (2.15), we obtain

|{x e R"\S*": |I4,1(x)| > )»/8}|

oo o0
<CCyirty M ZZa) fsww i, /Rn|b(x) boy, |
1,k

Siy Quig CSyy i=1 h=1

Ay, Nlaq,, 1)l
X ————————————————————————

¢ — y1 |27

<CC0y2k2Z > Z "fl /\b —bay, |

Sin Quk CSiy =1

)1 ax

|)‘Q1,1<1 ||“Q1,1<1 o)l
X — YT

[ — y1 12"

<Gy tY Y |AQ1k1|Z |2H2Q1k1| - |b®) - bay,, | dx

Sin Qi CSiy

dy, dx

<CGolbllyazy. Y |)”Q1k1|2

S1y Quig CSiy

< CCyy2a7t. (2.16)

The estimate of |[{x € R"\S* : [I42(x)| > A/8}] is similar to (2.9). In fact, we only need to
replace g, by %, in (2.9), and noting that ||/ ||;1 < C||f2|l 1, we have

1
[{x e RN\S* : [luo(®)| > 1/8}| < CCI 3. (2.17)
Putting (2.16) and (2.17) into (2.10), it yields

1
|Eq| < C(Coy%)(% + CZZ)F%).
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Thus, we have proved that
1.1 i1
|Ej| <C(Coy2A"2 +C7172) fors=2,3,4. (2.18)

Set y = (Co + C1 + Cy)7%, by (2.4) and (2.18), we have

4
e eR": | To(D@)| > )] < Y I+ Cya)™ 2 + CCry 2072
s=2
< C(Co+ Cy + G012,

The proof of (2.1) is finished. Since we have reduced the proof of Theorem 1.1 to (2.1), the
proof of Theorem 1.1 is completed. d

3 Proof of Theorem 1.2

Proof of Theorem 1.2 Since there is no essential difference for the general case, we will
also only consider Theorem 1.2 for the case m = 2. Thus, it is sufficient to consider the

following operator:
Tnb(ﬁ:ﬁ)(x) = [bl; [bZ! T]27]1(ﬁr 2)

/ H b)) K3 72 01)a02) sy,

where f; € H'(R") (j = 1,2) with Ifill igny = 1 for j = 1,2. Since Trp(fi, 2)(x) is bounded
from L*(R") x L*(R") into L'(R") [18], we may set C; = || Tl 2512 11,00 Recall C, =

1T, o oo
sufficient to show that

following the same argument as in the proof of Theorem 1.1, it is also

{x e R": | Tus (i o)) > 1} < C(Co + Cf + Co) 2712, (31)

The same decomposition for f; € HY(R") (j =1,2) as in Theorem 1.1 yields

hj = Z Z }‘Q/,k,“Qj,kj’ i) = gi(x) + h(x), (3.2)

Sty Gk <5y

where g; and /; enjoy the same properties as in Theorem 1.1.

With abuse of notations, we may still set

E = {x eR”: |T7,b(g1,g2)(x)| > )»/4};
Ey = {x € RN\S" 1 | T (h1,22) (%)| > 1/4};
Es = {x e R\S" : | Tp(g1, h2) (%) | > 1/4};

Ey={x e R\S* 1 | Trp (1, o) (x)| > /4 }.
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Then (2.2) still gives
’S* | < C(yk)—llz‘

Note that C] = || Tpll ;22— 110, Fepeating the arguments as in the estimates of (2.3), we
may obtain

1| < CCly a7t

Therefore,

4 4
e eR": | T ()] > 1} < S 1B+ C|S*| < D IE| + Clya) ™2 + CCry 272,

s=1 s=2
Thus, to show Theorem 1.2 is true, we only have to show that

1

_1
|E| < C(Coya2 + Cy2a73), fors=2,3,4. (3.3)

In fact, let y = (Co + C| + Cz)’% , it is easy to check that the inequality (3.1) is true.
e Estimate for |E;|. Employing the linearity of T, and the atomic decomposition of /;,
we may get

Trp(h1,2)(%)
- /( - i[(b,(x) = b)) K (@, 31, y2) (1) (v2) dy1 dy»
- SZ ) ZS Ay (1W)b2 () T (g, »£2)(%) = b2 () T (Brag, ;, » 82) ()
_‘ b (;c) T(;;Qm 1 b2g0) (%) + T(brag, , » brg2) (%))

= Z Z )”Ql,kl (bl(x) - bLQ1,k1)(b2(x) - bz,Ql,kl)T(“QLkl’gZ)(x)

Sty Quiky Sy

- Z Z )‘Ql,lq (bZ(x) - bZ,Ql,/q)T((bl - bval,kl )“Ql,kl 'gz)(x)

S1yy Quig Sy

- Z Z )‘Ql,lq (bl(x) - bLQL/q)T(“QL/q by - bZ:Quq )gZ)(x)

S1yy Quig Sy

30 hau T((0r - bigyy agy, (b = brg,, )2) ()

Sy Quk CSy

=:0y1 (%) + Lo (%) + I 3(x) + Ipa(x).

Thus

|Es| = |{x € R : | Trp(g1, o) )| > /4 }]

<|{{x eR": [La()] > 1/16}| + |{x € R": | B (x)| > A/16} ]
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+ |{xeR” : \Iz,g(x)| >A/16}| + |{xe R": |12,4(x)| >)L/16}|

=:|Ex1| + |Egp| + |Ex| + |Eoal.

By the definition of I; and the moment condition of H'-atoms, we have

h(x) = Z Z )‘Quq (bl(x) - bl,QLkl)(bZ(x) - bQOl,kl)

Sy Quk CSiy

X //( . (K(x,1,52) — K(x, Cl,kl’y2))aQLkl )& (y2) dy1 dys.
Rn

Putting the above identity into the definition of |E;;| and noting that ||g || e @n) < (yA)V2,
RN\S* c U5, ‘@ikl , together with the Chebyshev inequality and condition (1.3), we have

16
1Bzl < N Z Z A, | /(S*)C /:/(]R")Z [b1() = briayy, ||b2%) = oy, |

S1yy Quig CS1y

X |K(x,91,2) = K (%, cui 32)[|aqy,, 00)]|g2(02)| dyr dys dx

<CC Y T g 1Y) f | / / b16) ~ by |
~ Jai, J @

S1yy Qi CS1y i=
a1, (1)l
2n w
(Ix =31l + lx = y2l)

X (w) dy, dy, dx. (3.4)
1% = 1] + % = 2

X [B2%) = bay, |

By (2.6) and the non-decreasing property of w, we have

o0
1/24 -1/2
Bl < Cor S 3 b 13 /. ’ //(W)2|h1(x>—bl,gl,kll
= ki

Sty Quig CSiy i=

|a1x, )l
(Ix = y1l + lx = y21)?"

[e.¢]
< CC, 1/2)\—1/2 A / // b _b
" 2,2, e 21: (502} (JR”)2| 1= brau|

X [ba(x) = baqy, | w(27) dyy dy, dx

Siyy Qi CSiy i
lar, )l o
X [ba(%) = ba,qy ||x_lww(2 ) dy, dx
o0
< CCoy'?271? Z Z 1AQu, | Z/ t / |1 (%) - b]’Ql,k1|
S1yy Qi CSiy i-1 (5*)”ﬂ%’1‘k1 R”
|1, (1) »
a0~ bran |52 g, ) s
K1
.- 1
125 -1/2 y
SCCY"™ 7Y T DT gy, | Y o(2 )m
Sl,ll Ql,kl Csl,ll i=1 k1

x /@i |b1(x) - bval,kl i |b2(x) - b2yQ1,k1 | dx. (3.5)
k1

1,
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By the Holder inequality, one obtains

1
|2i+2ﬁQ1Jq | X!

1 L\
e 7= by(x) - by, dx)
( 1252/nQui | Jaivz gy | |

1 | iZ 1/2
X\ ———F— bz (x) - b2, dx)
( 1242/ Q44 | 242 fiQu Qhy

= Ci|lb||». (3.6)

]bl(x) - b1,QLk1 ’ |b2(x) - bz:Ql,kl ‘ dx

Combining (3.5) and (3.6), we get

|Exil < CCop27 23 3 MQIh'Z Vi < CCoy a1,

S1y Quig CSiy

Now we begin to estimate |Ey;|.
Similarly to our dealing with |E,; |, and together with the size condition of H!-atoms, it
follows that

|Ezal < CCoy™2a712y " 3 |)‘Q1/<1|Z/) a // |b101) = buoyy, |
S*)en, i

Sy Quk CSiy

laq,, 00 y1 = cu
X |b2(x)—b2,QLk1| Ha < NGy

w
(=l + e =212\ |x—y1] + | — 32

<cCyry Y |)‘Q1k1|2/

Sy Quk CSiy

) dy, dy, dx

/R 100~ Bra|

SN,

1

— w2 ) dy dx
(1% — "1 Qux | () dn

X |b2(x) = b2y, |

< CCoy A2y, Z Z MQMJZ m

S1y Qi CSiy

x / |Ba®) = bay, | A%
($)NR] g

< CCoy" A 2 balluliballe Y Y Malkl@

S1ny Qi CSiy

< CCOyI/Z)\‘—l/Z'

The estimate for |E,3| is more complicated, and we need to split the domain of the vari-
able y,. First, similar to our dealing with |Ey;| in (3.4) and (3.5), we may get

|Exsl < CCoyM2a72 3™ % |)LQ1kl|Z/ o, // |b1(%) = by, |
*cn i

Siyy Quig CSiy

laq,, )] w( ly1 — cr |

lx — g1l + 12— y21)2" | —y1] + % — y2l

x by (y2) = b2,y | ( ) dy, dy dx.
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Denote %{‘Jq = (2"2/nQui )\ (2" /nQu,) and recall that Qi = 4v/nQi, then

y eR" C (U %{f,q) U Q.-
h=1

Thus |Ey 3| can be controlled by

)
CC 1/2)\’71/2 A / / f b _ b
" Z Z Pau| 21: (s*)eng] y, UG % ]R”| 1) Qk |

Sl,ll Ql,kl Csl.ll i= =1Lk

|“Ql,/<1 Ol ( ly1 = ciiy |

X |b -b
2202 Z'Ql'k1|<|x—yl|+|x—yz|>2"“’ e — 3| + |2 -y

)dyl dy, dx
o0

+ CCoy' 27 oy | / / bi(x)— b,
Z Z @h ; (SN2, I Qhyg R"| Ql'kl‘

S1yy Quig CS1y

lag,, Ol 91— g |
x |B272) ~ by, | H w( YL Gk

dy, dy, dx
(%=1l + [~y )2 |x—y1|+|x—)’2|> N

=t |E),| + |E3 5]
Foranyhe N, ify, € ‘%th,/q’ note that y; € Qy4,, then
e =yl +Ix =52l = I = g2l ~ lya —eii | ~ bwag -
On the other hand, forany i e N, ifx € %{'Jq and y; € Qy,, then
e =1l + k= gal = [x = y1] ~ byinag, , - (3.7)
By the geometric properties of y1, y2, x above, we may obtain
|25
o0 o0
SESTAE a0 MIDVICEND D) BY NN N BCTCEYoN
NGy, Ry TR

Sty Quiy CSiy i=1 =1 Y

lag,,, 0l ( [y1 — Ll

@
(Ix=y1l + e =22 \Jx—y1] + [x — 32|

oo o0
< CC, 1/2)\‘—1/2 A / / / b iy
SRS SID DIL ) D) D) NN I L et

S1gy Quig CSuy i=1 p=17S

X ’bg()lg) — bz'QLkl ’ ) dyl d_j/z dx

|aQ1,k1 ()’1)|
|2i+2 Ql,kl | |2h+2 Ql,kl |

X ’hz()/z) —byq ’ w(Z_i)l/zw(2_h)1/2 dy dy, dx. (3.8)

It is easy to see that

Za)(th)m/ M@, <Ciw(z*h)”2h||b l.<C (3.9)
— ‘@{',kl |2h+2QLk1| 2 = — 20l = C. .
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Since a(y,) € L'(R"), putting the above estimate into (3.8), we have

bi(x)-b |

1/24 -1/2 1/2 | : lQlk]

|E23| < CCoy"*A~ E E MQllq'Z /;HZQ Wd
1k

S1ny Quk CSiy

- _i\1/2
<CCoy"™ 272y > MMZ N illby s

Sy Quk CSiy

< CCOyl/Z)\’fl/Z.
If y, € Qf;,, note that x € (84/1Q1 )¢, then
¥ =1l + % = y2| = [x = 2| = Clg,, -

By the definition of |E3 ;| and (3.7), we have

B2, < CCoy?2 723 3 IkalkIIZ/*Wl /Q /Rn|b1(x)—b1,al,k1|
"1,k

S1y Quig Sy

|aQ1,k1 (yl) |
272 Qu Qx|

<cCy yl/Z)L—I/ZZ Z MQMJZ/ /|b1(x) biauy, |

S1y Qi CSiy

X |b2(y2) = ooy, | »(27) dy, dy, dx

|aQ1k1 Ol
|2”2Q ™

1/24 -1/2
= CCoy A7 Z Z MQl’qu |2l+2Q1k|

S1y Quig CS1yy

X / |b1(x) - bLQLk1 | dx
2H2Q1.k1

<CCoy"™ a2y 3 Melkllz “illbyll

Sy Quk CSiy

(2_i) dy, dx

< CC() yl/Z)\—l/Z'
Hence, we obtain
|Easl < |E)s| +|E3 3] < CCoy 272

Now we begin to consider |Ej4|. Similarly,

|Ez4| = CCo )/I/Z)L_I/ZZ Z |)‘Q11<1 | Z/ 7 // |b1(3’1) by Q1k1|
*)en, i

Sy Quk CSiy

laq,, 1)l < [y1 = cLi

w
(I =yl + e =212\ |x—y1] + [ — y2]

X by (y2) = baqy |

> dy, dy, dx.

Page 16 of 22
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Repeating the same steps as in the estimate of |E; 3|, we have

oo
|Ezal < CCoy' 21712 o / , / / |b101) - by, |
2.2 " Z1 (s, JUG 2Ly TR .

Sty Quik CSiy i=

|“Q1,k1 (y1)| ( [y1 — Cl,k1|

(2=l +lx =212\ |x—y1] + | — 32l

x |ba(ya) - by, | ) dyy dy dx

00
i=1

1/24 -1/2
FCCYYTY T ST agu I Y. /(S*)WL, /Q
“1,ky

S1y Quik CSiy

laq,, Ol < [y1 = cLil

w
(I =yl +lx =212\ |x = y1] + | — y2]

[ 1o0=buq

*
1,k

X ‘bz(yz) — bZ’Qqu ‘ ) d_)/l dyz dx

=t |E},| +|E3 4]

By the definition of |E} |, one may obtain

oo o0
1 1/24 -1/2 —
Bal=car™ Y ¥ e, LY [ s, /. [ I =b10y,|

Suy Quig CSuy i=1 h=1

X [ba(y2) = baquy, |

|“Q1,k1 )l (yl = CLi

1/2
w (27 dy, dy, dx.
= 22 Q| |x—y1|) (@) dydy,

By (3.9), and taking the integral for x first, we have

1 1/24 -1/2 = |b 1()/1)_191'(?1*1'
|ELy| < CCopa 23" 3 ag 1> o o O
=1 "Lk ¥ Lk

- x=nl"
Sy Qua vy . [Quie 1 = y1l

e\
a)( ! 1’1) dy, dx
% =l

~ |b1(01) = b1y, |
<Y T bl [, gy
k1 ’

S1ny Qi CSiy

SCCy" Ay 3 Ihgy, ikl

S1ny Quk CSiy

< CCoyl/z)fl/z.

The estimate for |E ,| is quite similar to |E3 5|, we may get |E3,| < CCoy?A71/2,
e Estimate for |Es|. Since |E3| is a symmetrical case of |E;|, we can obtain

|Es| < CCoy'2271"2.
e Estimate for |E4|.
Tl'Ib(hl» hZ) = [bl; [b27 T]Z) ]1(1/111 h2)

2
- /(Rn)m TT(566) = B30 Ky, 723 1) 32) by s

j-1
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Z Z Z }“Q],kl )‘Qz,kz (bl (%) - blyQLkl ) (bZ(x) - b2»Q1,k1)

S1n Quiq CSuy S2,0y Qoky CS2,0y

X T(aqy, » a0y, ) (%)

_Z Z Z Z )\'Ql,kl)"Qz,kg(bz(x)_bZ:Ql,kl)

S1ny Quky CS1y S20y Q2ky CS2,0
X T((bl - bl’Ql,kl )“Quq 1AQyk, ) (*)

- Z Z Z Z )“Ql,kl )‘Qz,kz (bl () - bLQLkl)

S1ny Quk CS1y Sa0y Qoky CS2,0
X T(aq,» (bs = b2,q,4, )30y, ) (%)

+Z Z Z Z )‘Ql,lq)‘Qz,kz

S1ny Quky CS1Ly S2,0y Q2ky CS2,00
x T((bl - bl:QI,kl )“Quq »(by — b2,Q1,k1 )“Qz,k2 ) (x)

=11 (%) + Dy (%) + Io3(%) + Lya(x).
Thus, we obtain

|Ea| = [{x € R"/S* ¢ | T (h, o) (%)| > A/4}|

IA

[{x € R"/S* 1 |1 (x)| > A/16}] + | {x € R"/S* ¢ [Lu2(x)| > A/16}|
+ Hx eR"/S*: |I4,3(x)| > A/16}’ + Hx eR"/S*: ‘14,4(x)| > )»/16}|

t|Eg1| + |Eapl + |Eg3] + |Egal.

Now we begin considering |E4;|. By the definition of I, ;(x), we can write

|I4,1(x)| = Z Z Z Z |)‘Q1,1<1 ||)‘Q2,k2| /_/(Rn)z (bl(x) _bl‘QLkl)

S1ny Quky CS1Ly S20y Q2 CS2,0
x (ba(x) — b2,y )K (%, V1,Y2)aq, 1)aq,,, (02) dyr dys

Fix for a moment k;, k, and assume, without loss of generality, that /(Q; ) < /(Qqx,). By
the moment condition of H'-atoms and the regularity condition (1.3) of the kernel K, we
have

‘/ K(x,y1,y2)a1,6, (1) dn
RVI

= ‘/ (K(x,yl,yz) - K(x, Cl,kpyz))ﬂl,kl ()’1)dy1
]Rﬂ

Co ( ly1 = CLh )
) > aq, .. n) dn
/Rn (=l + 12—yl \ =] + & —ya] J* Oh1

Recalling the definition of %{ K %é’ ko and note that y; € Qi x;, ¥2 € Qa,, it is obvious that,
for any fixed i, h, ki, ko, if x € (S*)°N ‘%{,kl N %gkz’ then we have

<

|x—y1| ~ 27@1,@ , e —y2| ~ 2th2,k2 :
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This and the non-decreasing property of w give

bi-ciil 1 Loy g 1 2 loig; 1 1 1
(\x—ymx—yzl) w(lx—)’1|+|x—y2\) <I1 @) _ 0210273
(e =yl +lx=p2)" = (o =yl + e =y )" ™ ] lk—y]2 ~ (2, 2th2’k2)%

By (2.11), the Chebychev inequality and the estimate above, we control |E4 ;| by

CC
CLE T S, .

S1n Quig CS1Ly S0y Qoky CS2,05 =1 h=1
|ﬂQ1k ()’1)||¢Q2k (72)|
k1 ko
<[] 00 bra 16266) - b | >
(R7Y2 (Ix = y1l + [ = y21)

ly1 = cLh )
o| ————=——— ) dydy, dx
(Ix—y1|+|x—yz| N

=PY Y Y Y T

S1n Quiky CS1y Soly Qoky CS2,0y =1 h=1

|b1(x) — brg
Xf | 1k1 (// |b2(x) bZQlkl}
(s*)en 28}, "l (2lq, " 2k, b )2 (Rny2

la Nla )1 _ 3
x — 2k OVllacy, b w( 1= cui | ) dn d)’z) dx. (3.10)
(lx = 1] + % = ya])" e = y1| + [ = y2|

.1=|»~

1
Y
)4 |)‘Q1,k1 ||)‘Q2,k2 |

Let us first consider the inside integrals, by the Holder inequality, we may have

|b1(x) — b,
/ 1k1 <// |b2(x) b2Q1k1|
(5900t g (2 2g,,,)? (R

la )|a )l _ 3
X Quy OV, 02 a)( 1= cui | ) dy, d)’z) dx
(lx = y1] + |x = ya])" e = y1| + [ = y2|

<( ! f lb1(x) — b |de)é
- (2th2,k2 )" %Qk 1 LQuk

( 1.k /gkc i
X
(ZZQ]( ﬁg

1
lagy, Ollaq,,, (y2n)|w( Iy1— ¢l )2 dy1 dy,
(lx = y1l + % = y2l) lx = y1l + [ = y2|

V’z(x) baquy, |

Nl

2
dx) ‘ (3.11)

Note that as, (y2) € L'(R"), a similar argument to (2.15) yields

1 1 1
(3-11)§h2||b2||f|:mfswﬂ@l /|b2x) b2Q1k1|
Ky

1
1 |y1—61k1| )2)
X Su w ) ; )d
: <( - (lx—y1|+|x—y2| | Ql,kl(yl | Y1

2 93
" dx]
yiyaes \ (1 = y1] + [x = y21)

Note that the integrals in the above inequality are independent of S, and Q,, and w is
doubling, similar to what we have done with (2.14), for fixed x € (S*)¢ and any y;,y, € S,
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we have
1

( 1 < [y1 = cLil )2)
sup 10
nyes \ (X =yl +lx =y )" \|x =yl + x —y3]

~ 1 w( |y1 - cl,kl | ) 2 (3 12)

(e =yl + e =y2D)"  \lx =yl + |x = ya]

Recalling (I) in Theorem 1.1 and putting the inequality above into (3.10), we may get

CCy Y w2 ) (! 1
=LY T T o) ol i (s
Sty Quig €Sy =1 h=1 Qi

[S*)Cﬁjz

1

1 ly1 = cih | )7>
X sup 1) . a )| d
mes<(|x Y1l + 5=y 1) (Ix—y1|+|x—y2| 901, 00|

2) 1 1 1
ccarli Y % 35 e ol o (G
S15 Quig CSiy =1 k=1
by(x) = by, ( /
/(S*)Eﬁyl /]R”| Qi Z S2,y |x y1|+|x y2|)

) 1

|_)/1—C1k1| )7 2 )7
ol ———— ] d d d
<|x—yl| + ] — 9] Y2 |“Q1,k1 ()’1)| 1| dx

o0 o0
<Gty Y YY) w2 b rg,, |
=1

Sl,ll Ql,kl CSl,ll i h=1

fRn|b2(x) by, (Z > |)“Q2k2)

So,ly Qaky TS0

1

2 2
dx)

Quiq )"

1

1 (! ) a)
—_— b -b d d.
((2 Ton s cm@g,k' 00t ([ Jows 00l )

o0 o0 1

LR

i=l h

Nh—t
Nh—t

AT

w
N
i
(ST
~
D=

<CCoy?27?

Now we begin with the estimate for |Ey|.

Recalling the definition of I, 5(x), the moment condition of H!-atoms and smoothness
condition (1.3). Similar to the estimates in (3.10), we may obtain

|E42|<—Z Z Z Z ZMQMI“)‘QNQ

Sun Quky CS1y S0y Qo CS2,0, i=1

|ﬂQ K (YI)”“Q K (Y2)|
[ - b 15202 - bagy |
(s0enz, w2 lx =l

1 |J’ Cl/q' )
X w d dy1 dy, dx. (3.13)
(%=1 + 1% — 3" <|x—J’1|+|x—J’2| e
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First, we consider the following summation.

A l180s, 2]
> / |b2(92) = ba,qy | Qi 18Qo 4, 2

x =yl + |x—y2|)"
Oye= (I =1l + |x = y21)

w<M> dys. (3.14)

e —y1] + | = y2]

Property (I) in Theorem 1.1, inequality (3.12), and the size condition of H!-atoms, that is,
||an’k2 e < |Qax,|™, together with the Holder inequality, enable us to obtain

B1=> > |)\Q2,k2|( fR n|b2(yz)—b2,QLkl|2|aQ2,k2(Yz)|dyz)

S,y Qaky €S20

1 |J’ _Clk1 ) )2
X w )| d
</R” (lx = y1l + lx = y21)?" (|x yil + [x = s i @, 02 |2

1
oy, 16212 su (
2020 2. P liball sup (%= 71| + [x—y2)"

S
So,ly Qaky TS0 yLr2€

1

( [y1 = criq )2)
of L= Pkl
|x = y1] + [ — ya

1
— 2
<Clynio(2 E f 1~ | ) dy,

o
Sos, (1% = y1I+|x y21)" \ % = y1] + [x = 32

ST

< C(yk)%w(Z‘i) .
Therefore, by (3.13) and noting that aQy, (y2) € LA(R"™), we have

1

n | —y1|?

|E42|<CCOV2)\2 MQ | /
S Sowtanf, |

S1n Qi €Sy i=1

X |b1(x) - bLQL/q ‘ ’“Quq 0/1)| dy, dx

1 i1 1,1
< CGllbllyirty Y I?»Qlkllz )20 < CCoyia73.

S1n Qi CSiy

Since |Ey 3| is a symmetrical case of |E4 2| we may also obtain
1.1
|Eqz| < CCoy 22
A similar argument still works as in (2.9), we may have
1
|Eqal <CCA72.

This completes the estimate for |E4|. Thus, we have proved inequality (3.3) and the proof
of Theorem 1.2 is finished. O
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