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Abstract
In this paper, we state and prove a new discrete q-fractional version of the Gronwall
inequality. Based on this result, a particular version expressed by means of the
q-Mittag-Leffler function is provided. To apply the proposed results, we prove the
uniqueness and obtain an estimate for the solutions of nonlinear delay Caputo
q-fractional difference system. We examine our results by providing a numerical
example.
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1 Background
The study of q-difference equations has gained intensive interest in the last years. It has
been shown that these types of equations have numerous applications in diverse fields and
thus have evolved into multidisciplinary subjects [–]. For more details on q-calculus,
we refer the reader to the remarkable monograph []. On the other hand, the fractional
differential equations have recently received considerable attention in the last two decades.
Indeed, many researchers have investigated these types of equations due to their signifi-
cant applications in various fields of science and engineering; see for instance the mono-
graphs [–] and the references therein.

The corresponding theory of fractional difference equations is considered to be at its
first stages of progress; we suggest [–] whose authors have taken the lead to promote
and develop this theory. The q-fractional calculus and differential equations have been re-
cently studied in many papers; we recommend the monograph [] and the papers cited
therein. For the q-fractional difference equations which serve as a bridge between frac-
tional difference equations and q-difference equations there have appeared some papers
which study the qualitative properties of solutions [, –]. However, less attention has
been paid to these types of equations in the literature.

The differential and integral inequalities, which are considered as an effective tools for
studying solutions properties, have also been under consideration. Due to its benefit in
the determination of uniqueness, boundedness and stability of solutions, in particular, the
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Gronwall inequality has been a main target for many researchers. There have appeared
several versions for the Gronwall inequality in the literature; we list here those results
which concern with fractional differential or difference equations [–].

For  < q < , we define the time scale Tq = {qn : n ∈ Z} ∪ {}, where Z is the set of
integers. For a = qn and n ∈ Z, we denote Ta = [a,∞)q = {q–ia : i = , , , . . .}. In [],
which is probably the first paper in this subject, the current authors have established a
discrete q-fractional version of the Gronwall inequality. Indeed, they obtained the theorem
given below.

Theorem  [] Let α > , u and μ be nonnegative real valued functions such that  ≤
μ(t) < 

tα (–q)α for all t ∈ Ta (in particular if  ≤ μ(t) < 
(–q)α ) and

u(t) ≤ u(a) + q∇–α
a u(t)μ(t).

Then

u(t) ≤ u(a)
∞∑

k=
qEk

μ,

where qEk
μ = μk (t–a)kα

q
�q(kα+) .

Based on the result of Theorem , the following particular estimate which is expressed
by means of the q-Mittag-Leffler function was also concluded.

Theorem  [] Let  ≤ δ(t) < 
(–q) for all t ∈ Ta. If

u(t) ≤ u(a) +
∫ t

a
δ(s)u(s)∇qs,

then

u(t) ≤ u(a)eq(t, a),

where eq(t, a) = qE(, t – a) is the nabla q-exponential function for the time scale Tq.

To apply these results, the authors considered the following discrete q-fractional initial
value problem:

{
qCα

a x(t) = f (t, x(t)),  < α ≤ , a ∈ Tq, t ∈ Ta,
x(a) = γ .

()

Here qCα
a means the Caputo fractional difference of order α and f (t, y) fulfills a Lipschitz

condition for all t and y. The uniqueness of solutions as well as the dependence on the
initial data were proved.

The purpose of our manuscript is to extend the results in Theorem  and Theorem 
and obtain a new discrete q-fractional version of the Gronwall inequality valid for nonlin-
ear systems containing delay arguments. As an application, we will prove the uniqueness
and obtain an estimate for the solutions of nonlinear delay Caputo q-fractional difference
systems. We examine our results by presenting a numerical example.
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2 Auxiliary assertions
Before starting, we provide some basic nabla notations, definitions, and lemmas that will
be used in the sequel. Let f : Tq →R. We define the nabla q-derivative of f by

∇qf (t) =
f (t) – f (qt)

( – q)t
, t ∈ Tq – {}. ()

The nabla q-integral of f has the following form:

∫ t


f (s)∇qs = ( – q)t

∞∑

i=

qif
(
tqi) ()

and for  ≤ a ∈ Tq

∫ t

a
f (s)∇qs =

∫ t


f (s)∇qs –

∫ a


f (s)∇qs.

The definition of the q-factorial function for n ∈N is given by

(t – s)n
q =

n–∏

i=

(
t – qis

)
. ()

In the case α is a nonpositive integer, the q-factorial function is defined by

(t – s)αq = tα

∞∏

i=

 – s
t qi

 – s
t qi+α

. ()

Below we present some of the properties of q-factorial functions within the following
lemma.

Lemma  [] For α,γ ,β ∈R, we have
(i) (t – s)β+γ

q = (t – s)βq (t – qβs)γq .
(ii) (at – as)βq = aβ (t – s)βq .

(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t – s)αq =
 – qα

 – q
(t – s)α–

q .

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t – s)αq = –
 – qα

 – q
(t – qs)α–

q .

For a function f : Tq → R, the left q-fractional integral q∇–α
a of order α �= , –, –, . . .

and starting at  < a ∈ Tq is defined by

q∇–α
a f (t) =


�q(α)

∫ t

a
(t – qs)α–

q f (s)∇qs, ()
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where

�q(α + ) =
 – qα

 – q
�q(α), �q() = ,α > . ()

One should note that the left q-fractional integral q∇–α
a maps functions defined on Tq to

functions defined on Tq.

Definition  [] Let  < α /∈ N. Then the Caputo left q-fractional derivative of order α

of a function f defined on Tq is defined by

qCα
a f (t) � q∇–(n–α)

a ∇n
q f (t) =


�q(n – α)

∫ t

a
(t – qs)n–α–

q ∇n
q f (s)∇qs, ()

where n = [α] + . In the case α ∈ N, we may write qCα
a f (t) � ∇n

q f (t). The (left) Riemann
q-fractional derivative is defined by (q∇α

a f )(t) = (∇qq∇–(n–α)
a f )(t).

In virtue of [], the Riemann and Caputo q-fractional derivatives are related by

(
qCα

a f
)
(t) =

(
q∇α

a f
)
(t) –

(t – a)–α
q

�q( – α)
f (a). ()

Lemma  [] Let α >  and f be defined in a suitable domain. Thus

q∇–α
a qCα

a f (t) = f (t) –
n–∑

k=

(t – a)k
q

�q(k + )
∇k

q f (a) ()

and if  < α ≤  we have

q∇–α
a qCα

a f (t) = f (t) – f (a). ()

The following identity plays a crucial role in solving the linear q-fractional equations:

q∇–α
a (x – a)μq =

�q(μ + )
�q(α + μ + )

(x – a)μ+α
q ( < a < x < b), ()

where α ∈ R
+ and μ ∈ (–,∞). The q-analog of the Mittag-Leffler function with double

index (α,β) is introduced in []. It was defined as follows.

Definition  [] For z, z ∈ C and R(α) > , the q-Mittag-Leffler function is defined by

qEα,β(λ, z – z) =
∞∑

k=

λk (z – z)αk
q

�q(αk + β)
. ()

In the case β = , we utilize qEα(λ, z – z) := qEα,(λ, z – z).

Example  [] Let  < α ≤  and consider the left Caputo q-fractional difference equa-
tion

qCα
a y(t) = λy(t) + f (t), y(a) = a, t ∈ Tq. ()
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The solution of () is given by

y(t) = aqEα(λ, t – a) +
∫ t

a
(t – qs)α–

q qEα,α
(
λ, t – qαs

)
f (s)∇qs.

If instead we use the modified q-Mittag-Leffler function

qeα,β (λ, z – z) =
∞∑

k=

λk (z – z)αk+(β–)
q

�q(αk + β)
,

then the solution representation becomes

y(t) = aqeα(λ, t – a) +
∫ t

a
qeα,α(λ, t – qs)f (s)∇qs.

Remark  [] If we set α = , λ = , a = , and f (t) =  in (), we obtain a q-exponential
formula eq(t) =

∑∞
k=

tk

�q(k+) on the time scale Tq, where �q(k + ) = [k]q! = []q[]q · · · [k]q

with [r]q = –qr

–q . We recall that eq(t) = Eq(( – q)t), where Eq(t) denoted a special case of
the basic hypergeometric series, namely

Eq(t) = φ(; q, t) =
∞∏

n=

(
 – qnt

)– =
∞∑

n=

tn

(q)n
,

where (q)n = ( – q)( – q) · · · ( – qn) denotes the q-Pochhammer symbol.

3 A generalized q-Gronwall inequality
We state and prove the generalized q-Gronwall inequality.

Theorem  Let α > , u(t), v(t) be nonnegative functions and w(t) be nonnegative and
nondecreasing function for t ∈ [a,∞)q = {q–ia : i = , , , . . .}, a = qn for some n ∈ Z such
that w(t) ≤ M where M is a constant. If

u(t) ≤ v(t) + w(t)q∇–α
a u(t), ()

then

u(t) ≤ v(t) +
∞∑

k=

(
w(t)�q(α)

)k
q∇–kα

a v(t). ()

Proof Define

Bφ(t) = w(t)
∫ t

a
(t – qs)α–

q φ(s)∇qs, t ∈ Ta.

It follows that

u(t) ≤ v(t) + Bu(t),
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which implies that u(t) ≤ ∑n–
k= Bkv(t) + Bnu(t). We claim that

Bnu(t) ≤
∫ t

a

(w(t)�q(α))n

�q(nα)
(t – qs)nα–

q u(s)∇qs ()

and Bnu(t) →  as n → ∞ for t ∈ Ta. It is easy to see that () is valid for n = . Assume
that it is true for n = k, that is,

Bku(t) ≤
∫ t

a

(w(t)�q(α))k

�q(kα)
(t – qs)kα–

q u(s)∇qs.

If n = k + , then

Bk+u(t) = B
(
Bku(t)

) ≤ wk+(t)
∫ t

a
(t – qs)α–

q

∫ s

a

(�q(α))k

�q(kα)
(s – qr)kα–

q u(r)∇qr∇qs

= wk+(t)
∫ t

a

∫ t

r

(�q(α))k

�q(kα)
(t – qs)α–

q (s – qr)kα–
q u(r)∇qs∇r

=
(w(t)�q(α))k+

�q(kα)

∫ t

a

[


�q(α)

∫ t

r
(t – qs)α–

q (s – qr)kα–∇qs
]

u(r)∇qr

=
(w(t)�q(α))k+

�q(kα)

∫ t

a
q∇–α

qr (s – qr)kα–
q u(r)∇qr,

where q∇–α
qr u(t) = 

�q(α)
∫ t

qr(t – qs)α–
q u(s) has been used. It follows from () that

Bk+u(t) ≤ (w(t)�q(α))k+

�q(kα)

∫ t

a
(s – qr)(k+)α–

q
�q(kα)

�q((k + )α)
u(r)∇qr

=
∫ t

a

(w(t)�q(α))k+

�q((k + )α)
(s – qr)(k+)α–

q u(r)∇qr.

Therefore, equation () is obtained. Furthermore and because the denominator goes to
infinity faster than the numerator in the below inequality, one can conclude that

Bnu(t) ≤
∫ t

a

(M�q(α))n

�q(nα)
(t – qs)nα–

q u(s)∇qs →  as n → ∞, t ∈ [a,∞)q.

To complete the proof, we let n → ∞ in

u(t) ≤
n–∑

k=

Bkv(t) + Bnu(t) = v(t) +
n–∑

k=

Bkv(t) + Bnu(t)

to obtain

u(t) ≤ v(t) +
∞∑

k=

Bkv(t).

With the help of the semigroup property q∇–α
a q∇–μ

a = q∇–(α+μ)
a and the definition of B we

get (). This completes the proof. �
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The following immediate consequence of the above theorem plays a key role in our sub-
sequent analysis.

Corollary  Under the hypotheses of Theorem , assume further that v(t) is a nondecreas-
ing function for t ∈ Ta, then

u(t) ≤ v(t)qEα

(
w(t)�q(α), t – a

)
, t ∈ Ta. ()

Proof From () and the assumption that v(t) is a nondecreasing function for t ∈ Ta, we
may write

u(t) ≤ v(t)

[
 +

∞∑

k=

∫ t

a

(w(t)�q(α))k

�q(kα)
(t – qs)kα–

q ∇qs

]

or

u(t) ≤ v(t)

[
 +

∞∑

k=
q∇–kα

a
(
w(t)�q(α)

)k
]

.

Then, with the help of () it follows that

u(t) ≤ v(t)

[
 +

∞∑

k=

(
w(t)�q(α)

)k
q∇–kα

a 

]

= v(t)

[
 +

∞∑

k=

(
w(t)�q(α)

)k (t – a)kα
q

�q(kα + )

]

= v(t)
∞∑

k=

(w(t)�q(α))k(t – a)kα
q

�q(kα + )
= v(t)qEα

(
w(t)�q(α), t – a

)
.

The proof is complete. �

4 Applications to nonlinear delay q-fractional difference systems
Let Rm be the m-dimensional Euclidean space and define Iτ = {τa, q–τa, q–τa, . . . , a},
N = {, , , , . . .} and Tτa = [τa,∞)q = {τa, q–τa, q–τa, . . .} where τ = qd ∈ Tq, d ∈ N

and Iτ = {a} with d =  is the non-delay case. We obtain our first application by proving
the uniqueness of the solution for the system:

{
qCα

a x(t) = Ax(t) + Ax(τ t) + f (t, x(t), x(τ t)), t ∈ [a,∞)q,
x(t) = ϕ(t), t ∈ Iτ ,

()

where qCα
a denotes the Caputo fractional difference of order α ∈ (, ), the state vector x :

Tτa →R
m, the constant matrices A and A are of appropriate dimensions, the nonlinear-

ity f : Tτa ×R
m ×R

m →R
m and the initial function ϕ : Iτ → R

m. Let | · | be any Euclidean
norm and ‖ · ‖ be the matrix norm induced by this vector. Let D = D(N ×R

m ×R
m,Rm)

be the set of all bounded functions (sequences). Clearly, the space D is a Banach space
induced by the norm ‖z‖D := supt∈Iτ z(t).



Abdeljawad et al. Journal of Inequalities and Applications  (2016) 2016:240 Page 8 of 13

We make use of the following assumptions:
(H.) f ∈ D(Tq ×R

m ×R
m,Rm) is a Lipschitz-type function. That is, there exists a

positive constant L >  such that

∥∥f
(
t, x(t), x(τ t)

)
– f

(
t, y(t), y(τ t)

)∥∥ ≤ L
(∥∥x(t) – y(t)

∥∥ +
∥∥x(t – τ ) – y(τ t)

∥∥)
,

for t ∈ [a,∞)q.
(H.) There exists a positive constant L such that ‖f (t, x(t), x(τ t))‖ ≤ L.

The first result in this section provides a representation for the solutions of system ()
that will be useful in the subsequent analysis.

Theorem  x : Tτa →R
m is a solution of system () if and only if

⎧
⎪⎨

⎪⎩

x(t) = ϕ(a) + 
�q(α)

∑t
s=(t – qs)α–

q [Ax(s) + Ax(τ s) + f (s, x(s), x(τ s))],
t ∈ [a,∞)q,

x(t) = ϕ(t), t ∈ Iτ .
()

Proof For t ∈ Iτ , it is clear that x(t) = ϕ(t) is the solution of (). For t ∈ Ta, we apply q∇α
a

on both sides of equation () to obtain

q∇α
a x(t) = ϕ(a)

t–α

�q( – α)
+ Ax(t) + Ax(τ t) + f

(
t, x(t), x(τ t)

)
,

where (q∇α
a q∇–α

a u)(t) = u(t) have been used. By using equation (), we end up with the
desired form

qCα
t x(t) = Ax(t) + Ax(τ t) + f

(
t, x(t), x(τ t)

)
, t ∈ [a,∞)q.

From system (), we can see that x(t) = ϕ(t) for t ∈ Iτ . For t ∈ [a,∞)q, we apply q∇–α
a on

both sides of equation () to get

q∇–α
a

[
qCα

a x(t)
]

=


�q(α)

∫ t

a
(t – qs)α–

q
[
Ax(s) + Ax(τ s) + f

(
s, x(s), x(τ s)

)∇qs
]
.

In view of equation (), one can easily see that

x(t) = ϕ(a) +


�q(α)

t∑

s=

(t – qs)α–
q

[
Ax(s) + Ax(τ s) + f

(
s, x(s), x(τ s)

)]
. �

Next we state and prove the uniqueness theorem.

Theorem  Let condition (H.) hold. If x(t) and y(t) are two solutions for the system (),
then x(t) = y(t).

Proof Let x and y be two solutions of system (). Denote z by z(t) = x(t) – y(t). Then one
can easily figure out that z(t) =  for t ∈ Iτ . This implies that system () has a unique
solution for t ∈ Iτ .
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For t ∈ Ta, however, we have

z(t) =


�q(α)

∫ t

a
(t – qs)q)α–

q
[
Az(s) + Az(τ s) + f

(
s, x(s), x(τ s)

)
– f

(
s, y(s), y(τ s)

)]∇qs.

If t ∈ Iτ– = {a, q–τ , . . . , τ–a}, then z(τ t) = . Therefore,

z(t) =


�q(α)

∫ t

a
(t – qs)α–

q
[
Az(s) + f

(
s, x(s), x(τ s)

)
– f

(
s, y(s), y(τ s)

)]∇qs. ()

This implies

∥∥z(t)
∥∥ ≤ 

�q(α)

∫ t

a
(t – qs)α–

q
[‖A‖

∥∥z(s)
∥∥ +

∥∥f
(
s, x(s), x(τ s)

)
– f

(
s, y(s), y(τ s)

)∥∥]∇qs

≤ 
�q(α)

∫ t

a
(t – qs)α–

q
[‖A‖

∥∥z(s)
∥∥ + L

(∥∥x(t) – y(t)
∥∥ +

∥∥x(τ t) – y(τ t)
∥∥)]∇qs

=


�q(α)

∫ t

a
(t – qs)α–

q
[(‖A‖ + L

)∥∥z(s)
∥∥ + L

∥∥z(τ s)
∥∥]∇qs

=
‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q
∥∥z(s)

∥∥∇qs. ()

By applying the result of Corollary , we have

∥∥z(t)
∥∥ ≤  · qEα

[(‖A‖ + L
)
�q(α), t

]
, ()

which implies that x(t) = y(t) for t ∈ Iτ– .
For t ∈ [τ–a,∞)q, we get

z(t) =


�q(α)

∫ t

a
(t – qs)α–

q
[
Az(s) + f

(
s, x(s), x(τ s)

)
– f

(
s, y(s), y(τ s)

)]∇qs

+


�q(α)

t∑

a
(t – qs)α–

q Az(τ s)∇qs. ()

It follows that

∥∥z(t)
∥∥ ≤ 

�q(α)

∫ t

a
(t – qs)α–

q
[‖A‖

∥∥z(s)
∥∥ +

∥∥f
(
s, x(s), x(τ s)

)
– f

(
s, y(s), y(τ s)

)∥∥]∇qs

+
‖A‖
�q(α)

∫ t

a
(t – qs)α–

q
∥∥z(τ s)

∥∥∇qs

≤ ‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q
∥∥z(s)

∥∥∇qs +
‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q
∥∥z(τ s)

∥∥∇qs.

Let z̄(t) = supθ∈Iτ ‖z(θ t)‖, then we get

z̄(t) ≤ ‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q z̄(s)∇qs +
‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q z̄(s)∇qs

≤ ‖A‖ + ‖A‖ + L

�q(α)

∫ t

a
(t – qs)α–

q z̄(s)∇qs. ()
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By applying the result of Corollary , we obtain

∥∥z(t)
∥∥ ≤ z̄(t) ≤  · qEα

[(‖A‖ + ‖A‖ + L
)
�q(α), t

]
. ()

Hence, we end up with x(t) = y(t) for t ∈ Tτa = [τa,∞)q. �

In the following theorem, we provide an estimate for the solution of system ().

Theorem  Let condition (H.) hold. Then the following estimate for the solution x(t) of
system () is valid:

∥∥x(t)
∥∥ ≤

[
‖ϕ‖ +

L + ‖ϕ‖(‖A‖ + ‖A‖)
�q(α + )

(t – a)αq

]
qEα

[(‖A‖ + ‖A‖
)
�q(α), t

]
. ()

Proof For t ∈ Ta = [a,∞)q, the solution of system () has the form

x(t) = ϕ(a) +


�q(α)

∫ t

a
(t – s)α–

q
[
Ax(s) + Ax(τ s) + f

(
s, x(s), x(τ s)

)]∇qs. ()

It follows that

∥∥x(t)
∥∥ ≤ ∥∥ϕ()

∥∥ +


�q(α)

∫ t

a
(t – s)α–

q
∥∥Ax(s) + Ax(τ s) + f

(
s, x(s), x(τ s)

)∥∥∇qs

≤ ‖ϕ‖ +
‖A‖
�q(α)

∫ t

a
(t – s)α–

q
∥∥x(s)

∥∥∇qs +
‖A‖
�q(α)

∫ t

a
(t – qs)α–

q
∥∥x(τ s)

∥∥∇qs

+


�q(α)

∫ t

a
(t – qs)α–

q
∥∥f

(
s, x(s), x(τ s)

)∥∥∇qs.

By the assumption (H.), the above inequality can be rewritten as

∥∥x(t)
∥∥ ≤ ‖ϕ‖ +

‖A‖ + ‖A‖
�q(α)

∫ t

a
(t – qs)α–

q

[
sup
θ∈Iτ

∥∥x(θs)
∥∥ + ‖ϕ‖

]
∇qs

+
L

�q(α)

∫ t

a
(t – qs)α–

q ∇qs ()

= ‖ϕ‖ +
L + ‖ϕ‖(‖A‖ + ‖A‖)

�q(α + )
(t – a)αq

+
‖A‖ + ‖A‖

�q(α)

∫ t

z
(t – qs)α–

q sup
θ∈Iτ

∥∥x(sθ )
∥∥∇qs, ()

where the power rule () has been used. Let v(t) = ‖ϕ‖ + L+‖ϕ‖(‖A‖+‖A‖)
�q(α+) (t – a)αq , then v

is a nondecreasing function. Therefore, Corollary  implies that

∥∥x(t)
∥∥ ≤ sup

θ∈Iτ

∥∥x(θs)
∥∥ ≤ v(t)qEα

[(‖A‖ + ‖A‖
)
�q(α), t

]
. ()

Hence, the solution x of () satisfies the estimate

∥∥x(t)
∥∥ ≤

[
‖ϕ‖ +

L + ‖ϕ‖(‖A‖ + ‖A‖)
�q(α + )

(t – a)αq

]
qEα

[(‖A‖ + ‖A‖
)
�q(α), t

]
. ()

The proof is complete. �
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Example  Consider the nonlinear delay fractional difference equation of the form

qC



a x(t) = x(t) + x(τ t) – sin x(t) +  sin x(τ t), t ∈ Ta = [a,∞)q, ()

with the initial function x(t) = cos t, t ∈ Iτ . Clearly, equation () is a scalar equation and
A =  and A = . The nonlinearity has the form f (t, x(t), x(τ t)) = – sin x(t) +  sin x(τ t).
Therefore, we have

∥∥f
(
t, x(t), x(τ t)

)
– f

(
t, y(t), y(τ t)

)∥∥

=
∥∥– sin x(t) +  sin x(τ t) + sin y(t) –  sin y(τ t)

∥∥

≤ 
(∥∥sin x(t) – sin y(t)

∥∥ +
∥∥sin x(τ t) – sin y(τ t)

∥∥)
.

Thus, condition (H.) holds with L = . By the consequence of Theorem , equation ()
has a unique solution. Moreover,

∥∥f
(
t, x(t), x(τ t)

)∥∥ =
∥∥– sin x(t) +  sin x(τ t)

∥∥ ≤ ,

which implies that condition (H.) is satisfied with L = . By Theorem , the solution has
the estimate

∥∥x(t)
∥∥ ≤

[
 +


�q( 

 )
(t – a)



q

] ∞∑

k=

(�q( 
 ))k(t – a)

k

q

�q( k
 + )

.

Remark  The following features can be concluded:
. The delay term in system () can be considered as a function

τ : Tq → [a – τ ,∞) ⊂R so that the solution will be defined on the interval [a – τ ,∞).
In this article our delay function acts from [a,∞)q to [τa,∞)q ⊂ Tq.

. Solving equation () is not an easy task. However, getting a bound for the solution
could be considered as a substantial step forward.

. Clearly, equation () cannot be dealt with using the results of Theorem  and
Theorem . Therefore, the results of this paper are essentially new and have their
own merits.

5 Conclusion
The Gronwall inequality has an important role in many differential and integral equations.
The recent years have witnessed the appearance of an increasing number of generalized
Gronwall inequalities which have been addressed to overcome difficulties encountered in
differential equations. To the best of the authors’ knowledge, however, there is no paper
that has dealt with a generalized q-fractional Gronwall inequality. In this paper, we ex-
tend our previous work and establish a new generalized version of discrete q-fractional
Gronwall inequality. The new established Gronwall inequality is designed to deal with de-
lay q-fractional difference systems. Therefore, we set an initial value problem involving
a nonlinear delay Caputo q-fractional difference system. We proved the uniqueness and
found an estimate for the solutions of this problem.



Abdeljawad et al. Journal of Inequalities and Applications  (2016) 2016:240 Page 12 of 13

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Physical Sciences, Prince Sultan University P. O. Box 66833, Riyadh, 11586, Saudi Arabia.
2Department of Mathematics, Çankaya University, Balgat, Ankara 06530, Turkey. 3Institute of Space Sciences, Magurele,
Romania.

Received: 25 August 2016 Accepted: 20 September 2016

References
1. Finkelstein, R, Marcus, E: Transformation theory of the q-oscillator. J. Math. Phys. 36(6), 2652-2672 (1995)
2. Finkelstein, RJ: The q-Coulomb problem. J. Math. Phys. 37(6), 2628-2636 (1996)
3. Floreanini, R, Vinet, L: Automorphisms of the q-oscillator algebra and basic orthogonal polynomials. Phys. Lett. A

180(6), 393-401 (1993)
4. Floreanini, R, Vinet, L: Symmetries of the q-difference heat equation. Lett. Math. Phys. 32(1), 37-44 (1994)
5. Floreanini, R, Vinet, L: Quantum symmetries of q-difference equations. J. Math. Phys. 36(6), 3134-3156 (1995)
6. Freund, PGO, Zabrodin, AV: The spectral problem for the q-Knizhnik-Zamolodchikov equation and continuous

q-Jacobi polynomials. Commun. Math. Phys. 173(1), 17-42 (1995)
7. Marin, M: On existence and uniqueness in thermoelasticity of micropolar bodies. C. R. Acad. Sci. Paris, Ser. II 321(12),

475-480 (1995)
8. Marin, M, Marinescu, C: Thermoelasticity of initially stressed bodies, asymptotic equipartition of energies. Int. J. Eng.

Sci. 36(1), 73-86 (1998)
9. Han, G-N, Zeng, J: On a q-sequence that generalizes the median Genocchi numbers. Ann. Sci. Math. Qué. 23(1), 63-72

(1999)
10. Marin, M: Lagrange identity method for microstretch thermoelastic materials. J. Math. Anal. Appl. 363(1), 275-286

(2010)
11. Ernst, T: A Comprehensive Treatment of q-Calculus. Birkhäuser, Basel (2012)
12. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,

Yverdon (1993)
13. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San

Diego (1999)
14. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
15. Jarad, F, Abdeljawad, T, Baleanu, D: Stability of q-fractional non-autonomous systems. Nonlinear Anal., Real World

Appl. 14(1), 780-784 (2013)
16. Abdeljawad, T, Jarad, F, Baleanu, D: A semigroup-like property for discrete Mittag-Leffler functions. Adv. Differ. Equ.

2012, Article ID 72 (2012)
17. Bastos, NRO, Ferreira, RAC, Torres, DFM: Necessary optimality conditions for fractional difference problems of the

calculus of variations. Discrete Contin. Dyn. Syst., Ser. A 29(2), 417-437 (2011)
18. Bastos, NRO, Ferreira, RAC, Torres, DFM: Discrete time variational problems. Signal Process. 91(3), 513-524 (2011)
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