Stevic et al. Journal of Inequalities and Applications (2016) 2016:219

DOI 10.1186/513660-016-1159-0

® Journal of Inequalities and Applications

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Boundedness and compactness of a new
product-type operator from a general space
to Bloch-type spaces

Stevo Stevi¢'?", Ajay K Sharma® and Ram Krishan?

“Correspondence: sstevic@ptt.rs
"Mathematical Institute of the
Serbian Academy of Sciences, Knez
Mihailova 36/I1l, Beograd, 11000,
Serbia

2Operator Theory and Applications
Research Group, Department of
Mathematics, King Abdulaziz
University, PO. Box 80203, Jeddah,
21589, Saudi Arabia

Full list of author information is
available at the end of the article

@ Springer

Abstract

We characterize the boundedness and compactness of a product-type operator,
which, among others, includes all the products of the single composition,
multiplication, and differentiation operators, from a general space to Bloch-type
spaces. We also give some upper and lower bounds for the norm of the operator.
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1 Introduction

Let D be the open unit disk in the complex plane C, 3D its boundary, dA(z) the normalized
area measure on D (i.e., A(D) = 1), H(D) the class of all holomorphic functions on DD, and
S(D) the family of all holomorphic self-maps of D. Let

a—z
Na(2) = ——, a,zeD,
1-az

that is, the involutive automorphism of I interchanging points @ and 0. Simple calculation

shows that

1—|77a(z)|2 _ 1—|61|2 _’ /( )’
-2 [p-azp M@l

A strictly positive continuous function p on D is called weight. A weight p is called radial
if u(z) = n(|z|) for every z € D. A radial weight p is called typical if it is nonincreasing with
respect to |z| and u(z) — 0 as |z| — 1. For a weight p, the Bloch-type space B,, = B, (D) is
the space of all f € H(DD) such that

by(f) = sup u(2)|f'(2)| < oo.
zeD
The little Bloch-type space B, o = B,,0(D) consists of all f € B, such that

lim pu(z) If'(z)| = 0.
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The space B, is a Banach space with the norm

15, = O] +b.()

and if u is a typical weight, then B, is a closed subspace of B,,. When u(z) = (1 - |z|*)%,
a >0, B, reduces to the a-Bloch space, denoted by B, whereas B,, ¢ reduces to the little
a-Bloch space 3]. For some information on Bloch-type spaces, see, for example, [1, 2].

Likewise, for a weight u, the weighted-type space H;® = H;°(D) consists of all f € H(D)
such that

sup 11(2)|f (2)| < o0,

zeD

and the little weighted-type space H;}, = H;, (D) consists of all f € H° such that

lggllu(Z) [f(z)| =0

(see, e.g., [3]).
For0<p<o0,-2<g<00,and 0 < s < 00, the spaces F(p, q,s) and Fy(p, q,s) are defined
as the sets of all f € H(D) such that

1/p

M(f) = (sup/ﬂ)[f’(z)!p(l - z)*(1- |na(z)|2)s dA(z)) <00

achD

and such that

tim [ | @[ (1= 127) (1~ @) dace) - 0
al— D

for 0 < s < 00, respectively, whereas if s = 0, then F(p, q,0) = Fy(p, g, 0) is defined naturally
as the set of all f € H(D) such that

1/p
M(f) = (/D[f’(z)|p(1— |z|2)qu(z)) < 00.

The spaces F(p,q,s) and Fy(p, q,s) are known as general families of function spaces. For

1 <p< o0, F(p,q,s) is a Banach space with respect to the norm

”f”F(p,q,s) = V(O)| +M(f);

and Fy(p,q,s) is a closed subspace of F(p,q,s). The importance of these spaces stems

from the fact that for appropriate parameter values of p, g, and s, they coincide with sev-

eral classical function spaces. For example, F(2,1,0) is the Hardy space H?, F(p,p + @, 0),
2+q

2+ il §
a > —1, is the weighted Bergman space A%, F(p,q,s) = B7 and Fo(p,g,s) = B,” fors>1,

2+q

2+ =1
F(p,q,s) C BTq and Fy(p,q,s) C B,” for 0 <s <1, F(2,0,p) = Q, and Fy(2,0,p) = Qp0,
and F(2,0,1) = BMOA, the space of analytic functions with bounded mean oscillation,
and Fy(2,0,1) = VMOA, the space of analytic functions with vanishing mean oscillation.
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If g +s < -1, F(p,q,s) is trivial, that is, equal to the space of constant functions, whereas
for g + s > —1, it is nontrivial [4].
Let ¢ € S(D). The composition operator C, induced by ¢ is defined by

Cof =fop, feHD).

For ¢ € H(ID), the multiplication operator M, is defined on H(ID) by

Myf(2) =¥ (2)f (2), feHD).

The following product of these two operators W, = My o C,, the so-called weighted
composition operator, has been studied a lot recently.
The differentiation operator denoted by D is defined by

Df =f', feHD)

At first, the experts studied operator-theoretic properties of these operators on spaces
of holomorphic functions in terms of their symbols separately. A systematic study of prod-
ucts of concrete linear operators between spaces of holomorphic functions started approx-
imately a decade ago; see, for example, [5-32], and the related references therein. The first
product-type operators different from weighted composition operators, which have been
considerably studied, are the products of composition and differentiation operators (see,
e.g., [6,7,9,10, 13, 15, 16, 20, 25, 28] and the references therein). Quite recently, there
appeared some more complex product-type operators that include some of classical oper-
ators, such as composition, differentiation, multiplication, or integral-type operators (see,
e.g., [17-19, 28, 30, 33—35] and the related references therein).

The product-type operators consisting of exactly one composition, multiplication, and
differentiation operator are the following:

(M C,Df)(2) = ¥ (2)f ' (¢(2)),

(MyDC,f)(2) = ¥ (2)¢' 2)f '(¢(2)),

(CoMyDf)(2) = ¥ (0(2))f (¢(2))

(DM, Cof)(2) = ¥'(2)f (¢0(2) + ¥ (2)¢' (2)f ' (¢(2)),
(CoDMyf)(2) =¥ (9p(2)f (¢(2) + ¥ (0(@)f (¢(2)),
(DC,Myf)(2) = ' (9(2)¢' (2)f (¢(2) + ¥ (0(2)) ¢’ (2)f '(9(2)),

@

forze Dand f € HD).

To treat the operators in (1) in a unified manner, Stevi¢ et al. [23, 24] introduced a gen-
eralized operator and studied it on the weighted Bergman spaces. Motivated by that op-
erator, here we introduce the operator

5 of @ = @ (0@) + ¥ " (p(2), f e HD), )

where Y1, ¥, € HD), ¢ € S(D), and n € Ny. It is worth noticing that, among others, the
composition operator, multiplication operator, differentiation operator, as well as all the
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products of composition, multiplication, and differentiation operators in (1), can be ob-

tained from the operators Tgl,wz,w and Tl}q,ww by fixing y» and v,. More specifically,
0 0 0 1 0 0 1 0

we have C, = Ty, My =Ty, D=Tio, =Ty, MyCy =Ty, CoD=T, =T,

- 70 70 _7l 70—l _ 70 _
CoMy =Ty DCo =T 1, =Ty, MyD=Tg, =Ty, DMy =T, , , MyC,D =
0 _ 7l _ 70 _ Tl _ 70 Tl -
Towe = Tiop MyDCof = To 0 = Tyop CoMyD = Toyopy = Tyopor PMyCy =
0 _ 70 _ 0 =
Ty yorr CoDMy =Ty, DCoMy =Ty 0 o)y, NOte also that, for ¥, = 0, we

obtain the weighted differentiation composition operator, which was studied, for example,
in [17-19, 28, 30].

Our aim here is to characterize the boundedness and compactness of the operator
Ty, 4, from the F(p,q,s) and Fo(p,q,s) spaces to Bloch-type spaces. The paper can be
regarded as a continuation of our line of investigations in [6, 7, 9, 10, 15-24, 34, 35].

Throughout this paper, constants are denoted by C, they are positive and not necessarily
the same at each occurrence. The notation A < B means that B < A < B, where A < B
means that there is a positive constant C such that A < CB. We also use the standard

. k=1
convention [ [, a;=1.

2 Boundedness and compactness of T";,Wz’(p
In this section, we prove our main results. Namely, we characterize the boundedness and
compactness of the operator Ty, , , from the F(p,q,s) and Fy(p,q,s) spaces to Bloch-
type spaces. We also give some upper and lower bounds for the norm of T}
F(p,q,s) (or Fy(p,q,s)) = B,.

For this purpose, we need several lemmas. The next lemma can be found in [4].

Y29 °

Lemmal LetO<p,s<00,-2<g<00,q+5>-1,andf € F(p,q,s). Then

< .
I[fIIBz% S W lle@as

2+q

Moreover, if f € Fo(p,q,s), then f € BOT.
The following folklore point-evaluation result can be found, for example, in [2].

Lemma2 Let o >0 andf € B*. Then

1l 3, O<ac<l,
If@| S IflleIn =, o =1,
Ifll g
A—fzP)e T a>1
and
V‘(n)(z)| < ”f”B‘Y
~ (1 _ |Z|2)a+n—l

foreach neN.

The following lemma can easily be obtained by combining the inequalities in Lemmas 1
and 2.
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Lemma3 LetO<p,s<00,-2<g<00,q+s>-1,andf € F(p,q,s). Then

”f”F(p,q,s); p>q+ 2,
If2)| < If | F(p.q) In ﬁ, p=2+q,
%' pP<2+gq,
(1-|2|2) P
and
If"(2)] < _ Wllegas

2+ ’
(1 f22) 7
The following lemma gives us important test functions belonging to the Fy(p, g, s) space.

Lemma4 Let0<p,s<00,-2<q<00,q+5s>-1,and

Then sup,,cp fwllFp.qs) < 00 and f, € Fo(p, q,s) for every w € D.

Proof First, sup,,p [fwllF(pqs < 00 was proved in [36]. Second, f,, € Fo(p,q,s) for every
w € D is possibly a known statement too; however, we have not managed to find it in the

literature, so we give a proof. Let

@) - /D @ (1= 12P)(1 = |n.@)]*) dA).

If s > 1, then there is ¢ € (0,s) such that 2 + ¢ — ¢ > 0. Then by Proposition 1.4.10 in [37]
with # = 1 and some elementary inequalities, since s + ¢ —2 > -1 and s — ¢ > 0, we have

that, for |a| close to 1,

244\ (1~ [y ;
Ij,(a) = (%) WP [ s (L1 (1= o)) dA)

< A - |al?)’ 1 - |2[*)7*
~Jp 11 -wz|**|1 - az|*

A—lalPy [ Q-[z?)*?
S Qo fy o 40
1 - lal?) _
5m—)0 as|ﬂ|—>1, (3)

from which the statement follows in this case.
Now assume that 0 <s < 1. Let u and #’ be chosen such that

andletv=qg+ % (for s =1, we set 1/(1 — s) = +00).
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Let ¢ € (0,s) be such that

(v-eu>-1 and (g+s+e-v)u' >-1 (4)

(it is not difficult to see that such ¢ > 0 exists). Then, using the Holder inequality, Propo-
sition 1.4.10 in [37] with n = 1, (4), and the assumption s — ¢ > 0, we have

2\s 2\q+s
(@< / (1 - w?)PA - lal?) (1 - |z*)* dA(2)

|1 —wz|2*1*P|1 — az|*

dA(z)

/ 1- |W| Y1 |a| ¥ - || )(q+s+5—v)+v—g

|1 —wz|2+9+?|1 — az|>

v—e)u 1/u
s@wﬁ% Ei@——ﬂw)

D l1- WZ|(2+q+p)u

1 q+s+e—v)u' 1
(ta) ([ S o)

_ (- laPy

< —0, aslal—1,
1 -1Iwl®

from which the statement follows in this case. O

Our first result gives some characterizations for the boundedness of the operator
T:Zl V2,0 :F(p,q,s) (or Fo(p,q,5)) > By.

Theorem 1 Let 0 < p,s< 00, -2<g<00,q+5>-1, Y1, Y € HD), n € Ny, u be a typical
weight, and ¢ € S(D). Then the following statements are true.

() IfneN,orn=0andp<2+q,then Ty , ,:F(@p,q,s)(or Fo(p,q,s)) — B, is bounded
if and only if

(@) My :=sup,p (ZWE(; - <00,
<1( I)«)(Z)( o 'z )M (2)
[¥1(2) v3(2)|

(b) My 1= sup,p, “FHEEEIE <00, and
(1-lp()1?) P
(©) Ms:=sup,.p M(Z)Illfz(zz)w’(Z)I <00
* € + .
i P

Moreover, the following asymptotic relations hold:

Ml + M2 + M3 /S || TTZIJ/IZKP HF(p,q,s) (or Fo(p.g,s))— By

<My Myt My — O WO "

A= 1pO)P) 7 (1= |p(0)) 7"

(i) If p > 2 + q, then T‘l,1 vnp  F0:4,8) (or Fo(p,q,5)) — By, is bounded if and only if yr €

B,
(d) My :=sup,p %@;‘/’qzw < 00, and
(1-le@)2) P
(&) Ms := sup,p, LE2EGOL < o,

q .1

(-lp@2) P
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Moreover, the following asymptotic relations hold:

bl"(wl) + My + MS || Y1,¥2,¢ ”F(p,q,s) (or Fo(p,g,8))— By,

[¥2(0)]

S bu(Yn) + My + Ms + |y1(0) | + BEEE— v
1-1e0)*) 7

(6)

(i) fp=2+qand s>1,then T ]/[1 Vow :F(p,q,s) (or Fo(p,q,s)) — B,, is bounded if and
only if

(F) M := sup,cp u(2) |9 (@) In(=55m) < 00,
(g) My :=sup,., “OWNE D@ Wll( I)sf(:i)zl);%() o0, and

() My i= sup.cp “GLZEEE < oo,

Moreover, the following asymptotic relations hold:

M6 + M7 + M8 S‘ H Tl(;lrlhv‘ﬂ ”F(p,q,s) (or Fo(,9,8))— By,

2 [¥2(0)]
SMﬁ + M7 + Mg + |¢1(0)| 111(1 ~ |(,0(0)|2> + 1_ |90(O)|2 (7)

Proof (i) Suppose that # € N, or n = 0 and p < 2 + ¢, and that conditions (a), (b), and (c)
hold. Then by Lemma 3, for arbitrary z € D and f € F(p, g, s), we have

1w@|(T}, , f) @ = L@@ (02) + (V1(D¢' (@) + Y3(@))f " (0(2))
+ 12200 (2)f " (p(2)|

gu(z)< |¢{<z)| 1 |1/f1(2)<p(2)+1ﬁ2(2)|
(1- |<p(Z)I2)_*" (1- |<p(Z)I2)
[Y2(2)@ ()I l)wpms)_ ®)
a- |<p(Z)|) fons

On the other hand, we have

(T3, 00,ef ) O] = [¥10)F ™ (0(0)) + ¥2(0)f "V (¢(0)) |
< ( |41(0)] . |w2(0)|2+q
A= 1O 7" (1= o)) 7"

>”f||F(p,q,s)~ (9)

Hence, from (8) and (9) we obtain that T v :F(p,q,s) (or Fy(p,q,s)) = B, is bounded
and
M1 + M2 + Mg

Ol ()
A= 1O 7" 1= o)) 7"

” 1l//2¢’||F(pqs) (or Fo(p,g,8))— By ~

(10)

Conversely, suppose that T, . . : F(p,q,s) (or Fo(p,q,s)) = By, is bounded. First note
thatif 77, . ,:F(p,q,s) — B, isbounded, then Ty, , . :Fo(p,q,s) — B, is bounded, and

|| TlZl:WZ:w ||F0(p,q,s)4>BM = H Tllnllvl//%‘ﬂ “F(p,q,s)%Bﬂ' (11)
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Hence, if Ty, ,, , : Fo(p,q,s) — B, is bounded, then we have
” V1,92, wf” By ~ “ Y1,92,9 ||F0(10,q,8)—>6,¢ ”f”F(p,q,s) (12)
for every f € Fy(p,q,s)
Taking f(z) = z"/n! € Fo(p,q,s) in (12), we obtain that
Sgﬂgﬂ(z)|¢{(z)| S/ ” T‘Zlv‘/’Zv‘P HFQ(p,q,s)ﬁBﬂ' (13)
z

Taking f(z) = 2"*1/(n + 1)! € Fy(p, q,s) in (12) and using (13) and the fact that |¢(z)| < 1, we

have

$up ) 426 + VO S [T i, + 0NV

zeD

~ ” Y1,¥2.¢ ||F0(p,q,s)—>BM' (14)

Taking f(z) = 2"*2/(n+2)! € Fo(p, q,s) in (12) and using (13), (14), and the fact that |p(z)| < 1,

we easily get
Sup ,LL(Z) | Wz (Z)(/)/(Z)| 5 || T$1,1p2,¢ ”FO(P'%S)*’BM . (15)
zeD

For ¢ € D and n € Ny, consider the family of functions

£ = 1—[<2;q +].> (21% +].+1) 1- Iw(i)l;

j=1 A-e()2)?

_21—[<2;q+j_1>(2$+1.+ ) (1- |<p(§)|2)2

(1- w(C)Z) s
"2 2 1- 3)3

+IIC:g+ﬁJ)(+q*O( Y
[ERN p 1-9()2)?

Then by Lemma 4 it is easy to see that sup,p [[fz [|[F(pqs S 1 and that f; € Fo(p,q,s) for

every ¢ € D.
We also have

2@ = T2 -1) (22 (224 1) Gy
s P 4 i

( 1-1p(0)? 9 (1-1p@)?)? . 1-le@)P)? >
1-9@2) 7" -9 7" (-p)0) 7"

(n+1 - ¢_1)<2+q -)<2+q . 1>—Vl+1
( +J PR AGr A (¢(2))

j=1

((2+q > 1-p(0))?
X +n g
1-9@)z) 7 "

X
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2(2+q ) 1 -1e(0)*)?
2\ Al )
p (L-g()z) 7 ™

(2+q ) A-1e@)P)? )
+|——+n+2 s v B
P 1-¢@)7) 7 ™

and

(m +,-><2+q +;+1) @)
p p

2+q+n+1) 1—|<p(¢)|
(1 p(Q)e) 7+

—2(2+q+n+1) 2+q+n+2)—(1—|<p( O
(
2

1 (,0( )Z) ) 9 n+3

( +q ) 2+q ) (1—|s0(§)|3)3 )
+ +n+2 +tn+3 | —————
p p (1-9(@)z) 7+

Hence,

2e@)=0,  f"(e©) =0,

and

- A\ \H+2
A p(0) = (M +i—1>(2ﬂ +/>(2ﬂ +/+1> 2pler
I y ’ (1 o)) 7

Jj=

which, along with the boundedness of the operator, implies that

” Tﬁl,ww ”Fo(p,q,s)—>BH Z H Tzlﬂﬂz,&lf{ | By

2 @A (0©0) + (1109 @) + YN (9(2))
() O (9(0))]

n+2
=Ci(p, g, mu(C )WIZ({)@ (C)(QD(C)) 1 |, 16)
1- |</J(§)|2)THH
where
Cl(p’q’n)zzl_[(zﬂ Jf]’—l)(u +j>(2+q+j+1).
P p p p

j=1
From (15) and (16), for § € (0,1), we obtain

sup u(;)hﬁz(i)w ()]
¢ (1 Jp(p)P) 7!
_ RO IW2(0)e'(©) 1) Y2(0)e' (@)l
< su Ta + sup 7a
PO (L= |p(g)2) 7 ™ 1wOI=8 (1= |g(g)[2) 7 ™!
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HEOY2()e ()™
T b (1= o)) 7
1

+————— sup w(0)|v2(0)@(¢)]

1- 52)2%*”“ lp(¢)l<s

1 1 ;
S <8n+2 * (1 _ 82)2;q+n+1) || Tl/fM[/Zy‘ﬂ ||F0(quvs)‘>BM.

From this it follows that (c) holds and, moreover,

M3 S || TIZl,I//z,(ﬂ ||F0(p,q,s)—> Byu*

For ¢ € D and n € Ny, consider the family of functions

s (o) ) (50 o) o
g R P 1~ 7
_<2(2+q)+2n+3)n(m+j_1><m+]+l>%
’ et g 1-9@)2) 7"
+(2+q+”+1)n<2+q+j—1)(2+q+j) (1_|—¢(;)|223 ‘
g P P 1-¢0))7

Page 10 of 32

17)

Then by Lemma 4 it is easy to see that sup,p llg; | F(p.q5) < 1 and that gr € Fo(p, g,s) for

every ¢ € D.
We also have

= T[22 0i-1) (2 )) (2L w1 ) 0
j=1

p b

(<2+q ) 1-lp()P

X +n+2 T g

p 1-9@)2) 7™

(1-1lp©)*)?

- 2

1-p@)) 7
<2+q ) (1-1p(0)]?)? )
+ +n+1 Y g . )
p 1-9(Q)z) 7 ™"

+j> (zl’g +j+ 1) (m)"+l

2) 1- I<p(§2)|2

(1- mz)%mﬂ
A-le@)P)?

(1- wz)%mﬂ

2+4 >(2+q ) 1= le@P)’ )
+n+2 tn+l )| ————— )
g b A-@)a) 7 "

+2n+3)

+2n+3>
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and

(2+q >(2+q ><<2+q ) 1—|90(C)|2
X +n+1 +n+2 +n o
p p p 1-9@)2) 7 "
(2 o a (- le )Py
p (1-9()2) 7 fons

2+q ) (1—|<0(§)|3)3 )
tn+3 | —————
(1-p@)2) 7

Hence,
@) =0, g () =0

and

"V (p(2)) = H(zﬂ +},_1)(2+q+},)(2+q+},+1) (<ﬂ(§))”“2+q
P P P @L-lp@)) 7™

j=1

which, along with the boundedness of the operator Ty, . : Fo(p,q,s) — B,,, implies that

” TlZlﬂ/fz,(ﬂ ||F0(p q,5)—> By

~ ” Y1,Y2,086 ”BM
> 1)) () + (V109 () + ¥3(2))g" ) (¢(2))

+ 92009 ()¢ (9(0))|
|%@m@wwuowww“ 18)
1= lp(@)2) 7"+

= C2(P; q;”l) )

where

(2 2 2
Cz(p,q,n)zl_[( ;q+j—1><—;q+j)< ;q+j+1).

Jj=1

From (14) and (18), for § € (0,1), we obtain

w1 (0)e' (¢ )+%(§)|
ceb 1-1p()) 7
- HOWE)' ) + ¥ (DI w(OY1(0)¢'(§) + Y3 (0l
= sup sup 2+g
WO (@R WO (1 g P
1 sup 1@Y1£)e"(©) + Y3 Olle @)™

<
N R
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1
b sup 1(O)[Y(©)'(€) + P3¢
(1-82)7 " le@Is=s

1 1
5 <8n+1 + m) ” T‘Zlv‘/fzﬂﬂ HFO(p,q,s)—>BH'

From this it follows that (b) holds and, moreover,

M, S||T (19)

n
Y1,¥2,9 || Fo(p,q,s)—By"

Finally, for ¢ € D and # € Ny, consider the family of functions

h;(z):(m+n+l><2+q+n+2>
p p
2+qg  \(2+q . 1-1p(0))?
xH( +}>(— }+1>—2+q
p 1-9()2) 7
<2+q )( q+n+2>
" ( )(M”‘u) 1-le@)*)?
[N p 1-9@2) 7
<2+q )(2+q )
+ +n +n+1
p p

) )
j=1

I k a

&

Then, by Lemma 4 it is easy to see that sup,p, |7 | F(pq5) S 1 and that i, € Fo(p, g, s) for
every ¢ € D. We also have

1 () = "(2+q ‘_1><2+q ,><2+q
¢ (@) [1[ » +J » +] P
x(<2+q+n+l><2 +n+2>—1l¢(§)2|+2q
p p 1-9@)2) 7™
_2(2+q+n><2+q+n+2> (1- |<p(§)|2)2
p (1- w(é)) fonel
(2+q n)<2+q n+1> 1- |<p(4“)|3)3 )
p (1- 90(4“)) fome2

n+1 ( i 1)<2+q+j)<2+q+j+1)(m)n+1
p p
)( q+ +1)(M+n+2>
p

( — ()12 20-lp@OP? | _(A-lp@)P)’ )
1-2@) 7™ (-9 7™ (1-g@)) 7

+j+1>(m)n

+
BN

X

X
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and
hE—VHZ)(Z): <2+6]+J,_1> (Zﬂ +]_)(2+q+j+1)(@)n+z
s P P P
X (2+q +n>(2+q +n+1)<2+q +n+2>
P p p
( 2+q ) |§0(C)
X +n+l)————
p (1-0@)2) 7"
_2<2+q +n+2>%
p 1-9@)2)7 ™
(2+q ) 1- |§0(C)| 3)? )
+ tn+3 | ————
p (1-0@)2) 7
Hence,
hg"”)((o(i)) =0, "+2 ( ) =0
and
hg")(w(f)) =Cs(p, g, n) W) 24q . 1’
A -lp@)) 7"
where

"2+
Cg(qu,l’l)=2l_[< 1
(R

Thus, using the boundedness of the operator, we have

he |

|7 mllpo(,,qHB,L o LI
OB (9(©)) + (V1) (©) + v (@)™ (0(8))
+ ()@ ORI (p(0))]
Y1) (@©))]
A= lp)R) 7
From (13) and (20), for § € (0,1), we obtain

I
sup T
D (1-Jg(e)?) 7 "
< ap MO ©OQ)
I3 (1 - |p(0)) 7 OIS (1= [p(g)2) 7

<2 M(C)le(;“)( () 1| . 1 o OO
ot ‘>‘3 (1= o(@)2) 7" (1= 62) 55 lpiol=s

1 1
S (5_" * m) I Thvae HFO(p,q,s)_)BM‘

By

> Cs(p, q,m)u(¢)
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From this it follows that (a) holds and, moreover,

Ml S’ || T‘Zl"/’sz ||F0(p,q,s)~>8#' (21)
From (17), (19), and (21) we have
Ml + M2 + M3 < || VLY “Fg(p,q,s)—ﬂ’iﬂ' (22)

Hence, from (10), (11), and (22) we have that (5) holds, as desired.
(ii) Assume that n =0, p > 2 + g, Y1 € B,,, and that conditions (d) and (e) hold. If f €
F(p,q,s), then by Lemma 3 we have

u@\(T9, ,,f) @] < @ @|f (¢@)] + 1@ |[¥1(@)¢ @) + ¥3 )| [f (0(2)) ]
+ (@) |[¥2(2)¢' @[ (¢(2)) |
1(@)|Y1(2)¢' (2) + ¥ (2)]
A-lp@P) 7"

) ”f”F(p,q,s)

S <M(Z)|w{(2)| +

M(Z) V2 (Z)go (Z) |
(1 |<P(Z)|2) e
S (bu(vfl) + M4 + MS) ”f”F(p,q,s) (23)

and

(75102, ) O] = [¥10)f ((0)) + ¥2(0)f (¢(0) |

S <|1//1(O)| + %) ”f”F(p,q,s)- (24)
1 -p(0)>) 7

From (23) and (24) we see that T’ 1//1 Vo :F(p,q,s) (or Fo(p,q,s)) — B, is bounded and that

[¥2(0)] .

1= lp0)*) 7

+ My + Ms + [Y1(0)| + (25)

|| Y1, 1//2<P||I~'(pqs) (or Fo(p,g,8))— By ~ Sb (wl)

Conversely, if T} , . : F(p,q,s) — B, is bounded, then T} , . : Fo(p,q,5) — By is
bounded, (11) and (12) hold, and by using the function f(z) =1 € Fy(p,q,s) therein we
obtain that ¥, € B, and that (13) holds. From the proof of (i) for n = 0, we see that (d)
and (e) hold, as well as the asymptotic relations My < || T 11/1 1o Fopg9—8, and Ms <

0
1Ty, I Fo (.05 5, - Hence,

bu(‘ﬁl) + M4 + M5 5 ” T‘gl:‘//Z:(P “Fo(p,q,s)-’B;L,

from which, along with (11) and (25), we see that (6) holds.
(iii) Assume that n =0, p =2 + ¢, s > 1, and that conditions (f), (g), and (h) hold. Assume
that f € F(p,q,s). Then by Lemma 3 we have

1@(TY, 4, f) @ = 1@ @]|f ()] + 1) ¥1(D)¢ (@) + ¥2(2)||f (¢(2)]
@22’ @[ (¢(2)]
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, 2 w(@) V1 (2)¢' (2) + Yy (2)]
<
~ (“ (ZWI(Z)'I“( —|go(z)|2> e

w2 (2)yr(2)]
e )”f”””“

S (Me + M7 +M8)||f||F(p,q,s) (26)

and
(T35, 000 ) O)] = [¥10)f (#(0)) + ¥2(0)f (9(0))|

2 1>(0)
< ('1“(0)'1“(1— |go<0>|2) ' |<p(0)|2)”f”“”” 7

From (26) and (27) we see that T’ 1// W :F(p,q,s) (or Fo(p,q,s)) — B, is bounded and that

2 [¥2(0)]
|72 gy 5, S Mo + M + Ms + ””1(0)’1"< - |¢(o>|2) Foeop %Y
Conversely, suppose that T' w] voy P F0,9,8) — By, is bounded. Then T m ot Folos

q,s) — B,, is bounded too. For ¢ € D, let

2
=1 — ).
5@ n<1—¢(;)z>
Then
, @(¢) " (p(2))*
= d =7—-
=0 ™ P o

Easy calculation shows that f; € B}, ¢ € D, and that there is C > 0 such that supp Ifzlls <
C. Since s > 1, we have f; € Fo(p,¢,s) and sup,p |If; | F(pg.5) < C.

Therefore,

“ Tl(;l:‘ﬁz#’ ”Fo(p,q,s)—»BM =~ ” Y1, wzﬁaff ”BM Z K é‘)|( V1,92 wff)/(g)‘

O] (@) (@) + (V)" (©) + ¥5())f (9(2))

+92(0)e' )" (¢(0))]
/ 2 (0(2))?
= In[ —= el
()| ¥(0) “<1_ |<p(¢)|2) O
F 0P )+ v30) o) (29)
= el
for every ¢ € D, from which, along with the fact that |¢(¢)] <1, ¢ € D, we get
, 2
M(C)|¢1(C)|ln(w>
0 110" (0) + P3| 1¥2(8)¢'(8)]
S| T ”F"(”"”SHB" * 1—p(¢)? * A= lp@)P)? (30)
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From the proof of (i) we see that (g) and (h) hold and that

M; S||TY

Y1,¥2,9 ||F0(p,q,s)—>Bu and M8 5 H TO

YL.Y2,9 “ Fo(p:q,s)—>Bu*

Taking the supremum over D in (30) and then using the last asymptotic relations, we see
that

1»46 :5||7?2L¢Q,¢||F0QLqJ)A>BM'

Hence, we have Mg + M; + Mg < ”T&,sz,w
yields (7), completing the proof of the theorem. O

| Fo(pq.5)— B, » which, along with (11) and (28),

The next lemma is proved by using standard Schwartz’s arguments in [38].

Lemma5 Let 0 < p,s<00,-2<g<00,q+s8>-1,yY1,¥, € HD), n € Ny, p be a typical
weight, and ¢ € S(D). Then Ty o :F(p,q,s) (or Fo(p,q,5)) = B, is compact if and only
if for every bounded sequence (fi)ken in F(p,q,s) (or Fo(p,q,s)) that converges to zero on

compact subsets of D as k — oo, we have || Ty, . fcllp, — 0 ask— oo.

Theorem 2 Let 0 < p,s <00, -2<q<00,q+8>-1,Y1,V, € HD), n € Ny, u be a typical
weight, and ¢ € S(D). Then the following statements are true.
() IfneN,orn=0andp<2+gq,thenTy, , ,:F(p,q,s)(or Fo(p,q,s)) — B, is compact

if and only if Y € By, Yng' + ¥y € HY, Ya9’ € HYY, and
n@y{(2)| -0

+n-1

(@) limyg( -1 Tig
1-1p(2)?) 7
(b) lim\q;(z)|~>1 w@)y(2)e (zz):rqwz(Z)l =0, and
(-l 7 ™"
1@ ()¢ (2)| -0
29y
(1-le(2)[?) P

(i) If p > 2 + q, then Tgl‘,/,z"p :F(p,q,s) (or Fo(p,q,s)) = B, is compact if and only if Y, €
Bu,r 1//1¢/ + % € HZO, 1//2(9, [S HZO, ﬂnd

(d) limup(z)wl (@)Y (2)e (Z);:/:IZ(Z)I -0 and

(1-lp@1?) P
1@ ()¢ (@) -0
s =0.

g
(1-lp()1?) P
(i) If p=2+q and s > 1, then Tglyww :F(p,q,s) (or Fo(p,q,s)) = B, is compact if and
only if yn € B, Yn¢' + ¥y € H?, Yo' € H?, and

(£) limyy 1 1@ In(257) = 0,

. w212’ (@)+y5(2)]
(@) limjy@) o1 ——ogr —— =0, and

; @22’ (2) _
(h) llm‘w(zﬂ_)l % =0.

) lim\tp(z)l—ﬂ

(e) lim\(p(z)l—ﬂ

Proof (i) Supposethatn € N,orn=0andp <2+g,and Ty, , ,:F(p,q,s) (or Fo(p,q,s)) —

B, is compact. Let (zx)xen be a sequence in D such that |¢(z¢)| — 1 as k — oo (if such a
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sequence does not exist, then (a)-(c) obviously hold). Let

ﬁ@=ﬂ(ﬁﬁ+

& (2) =

and

hi(2) =

—lo(zx)?

JN—— i+l | ——
p 1-¢(z)2) 7
lp(zi)|*)?

2+q (1
LI (B ) =
H (1-pG2) 7
" 2+ mwnﬁ
DI 1) (5 9)
j=1 (1- (/’(Zk)z)p
<2 ) < )<2+q , ) 1-|p(zi)|?
+n+2 1) ———
p 1-¢(z)2) 7
—(2(2+q)+2n+3) - (2+q
P o\ P

j=

2 =2 2
+( +q+n+l) (ﬂ+j—1)< +q+
p i\ P p

j=

s P

(1 - l(z)[*)

) 1 -loz)P)?
) Ty
(1 -g(zr)z) »

2 2
( +q+n+1>< +q+n+2)
p V4
“(2+q N\(2+q . 1— ()]
X +j il ) ———
[N 4 p (1-9(z)2) 7
2 2
—2( +q+n)( +q+n+2)
V4 V4

xﬁ<2+q+j—1)<2+q+i+ ) 1- |‘/’(Zk)|2)2
1 i

(1- (P(Zk)z) ’

) 1 - lp(z)?)?
+j
(

q+2'

1- 92 7

) 24+q | 2y2
+j-1){ —+j+1 — %
p 1-glz)z) 7

Page 17 of 32

From the proof of Theorem 1 we know that (fi)xen, (gk)ken, and (/¢ )ken are norm bounded

sequences in Fy(p, q,s), and it is easy to see that they converge to zero uniformly on com-

pact subsets of D as k — co. Hence, by Lemma 5 we have

11m ||

hm ||

sl B, =0 klggc” T) 0ok 5, and

1/f11/f2<p “BM =0

From (16), (18), and (20) it follows that

120" () (@(§)"?]

w(&)

1= lp(@)) 7"

< H T$I,¢2,¢ﬁ< ” B’

(31
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|(¥1(£)e’(¢) + %(C))(w(é))””l
A-lp@)P) 7

u(g)

< ” 12,08k ”B,L, (33)

and

W) (@(0))"]
- lp@)R) 7 "

n) S ” V1, Y2, wthBM‘ (34)

Letting k — oo in (32)-(34) and employing (31), we get (a), (b), and (c).

Conversely, assume that ¥ € B, y1¢' + ¥3 € HY, Yo' € H?, and that (a), (b), and
(c) hold. Let (fi)xen be a sequence in F(p,q,s) (or Fy(p,q,s)) such that fy — 0 uniformly
on compact subsets of D and ||f||F(,qs) < 1. Then fk("), fk("“), and fk(’”z) converge to zero
uniformly on compact subsets of D as k — oo.

Since (a), (b), and (c) hold, for every ¢ > 0, there exists § € (0,1) such that

w(@) ¥ (2)] (@)Y (2)e (Z)+¢f2( )l

g <s, <e,
1-lp)2) 7 ™ 1-lp@P) 7

and

(Z)Wz(z) /( )]
1= lp@)2) 7"

when § < |p(z)] < 1.

Since ¥ € By, Y19’ + ¥y € Hi?, and Yo’ € HSY, we have Ny = sup,p, 14(2) |1 (2)] < 00,
Ny = sup,.p u(2)[¥1(2)¢' (2) + ¥y (2)| < 00, and N3 = sup,.p 11(2)|¥2(2)¢’(2)| < 0o. This, to-
gether with Lemma 3, yields

s
< sup (@) (T, i) @]

By

< suw 2| @ (0(2)] + sugu(Z)!(%(Z)w’(Z) + @) (0(2)))
+sup 1@V @e' Q" (¢(2))|

< sup u@|YE@||K" (o !+|S(u)1‘oau(Z)|w{(Z)\Vk(”)(w(Z))|
0(2)|>

lp(2)|<é

+ sup w@)|(Vi@¢' ) + vy @) || (0(2)]

lp(2)|<é

+ sup (@) (V120 @) + ¥5@) | [ (0(2)|

lp(2)|>8

+ sup M(Z)Il//z(zw(Z)Ilko)(qo(Z))|+ sup u(@)|¥2@2)e @[ (0(2)|

lp(2)] lp(2)|>6

SN sup |7 (p(@)] + sup M(z)wl(i)q'
lp(2)|<8 lp(z)|>8 (1- |(/J(Z)|2)7+n_1
+N, sup [f") (0(2)] + w(2)1¥1(2)¢’ (Z)+1//2(z)|
v s (- @)
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(n+2)

PNs sup [f D (p()| + sup D22 G
lp(2)|<8 @15 (1 — |<p(z)|2) p 9yl

<N sup 1) + Na sup (@) + N sup K2 @)] + 3.
¢l= ¢= ¢|=

From the arbitrariness of & and the fact that £, fk("”) , and fk(mz) converges to zero uni-
formly on compact subsets of D we have limy_, || T" . wfk”Bu =0, and so by Lemma 5,
Ty e F(p q,s) (or Fo(p,q,s)) — B, is compact.

(i) If T '//1 Vo :F(p,q,s) (or Fo(p,q,s)) — B, is compact, then it is bounded and from
Theorem 1 we see that Y1 € By, ¥1¢" + ¢, € HS?, and y2¢’ € HY. Relations (d) and (e)
follow from the proof of (i) with n = 0.

Now assume that p > 2 + g, Y1 € By, V9" € HY, y1¢' + Wﬁ € H;7, and that (d)
and (e) hold. Let (fy)xeny be a bounded sequence in F(p,q,s) (or Fo(p,q,s)) that con-
verges to zero umformly on compact subsets of D as k — oo. To show that T, ‘/,1 Vo
F(p,q,s) (or Fo(p,q,s)) — B, is compact, we need to show that, for each such sequence,
[ wulfzwfk”Bu — 0as k — oo.

From (d) and (e) we have that for every ¢ > 0, there exists § € (0,1) such that

w(@) Y1 (2)e'(z) + wz (Z)I w(@)|Y2(2)¢’ (2)]
and ——5, - <¢
1~ lp@) 7" 1-lp@)2) 7

when § < |p(2)| < 1.
We have

” V192, Wf"”BM
< sup (2| (T}, i) (@)

< sup ()| Y1 ()¢ (@) | + sup w(@)| (¥a(2)e' (@) + Y32 ¢ ()|
+ su}g w(z) | wz(z)gol(Z)fk”(V)(Z)) |

<Nisuplfi(¢(@)|+ sup wu(@)|(V1()¢' (@) + ¥52))||fi(¢(2)]

zeD lp(2)|<8

' S(u)1|)8M(Z)| (29’ (2) + v3,(2) ||l (¢(2))|
@(2)|>

* Jup w2 @I (@) + sup wi@lya(ale @ (o10)
¢2)|= lo(z

<N suplfk(z!+N2 sup i(e@)| + sup @)Y (2)¢’ (Z)+%(Z)|
2l=d lotz >'>5 1-lp@P) 7
+Ns sup | (¢(@)] + sup M(Z)Iwz(Z)goz/EqZ)l
lp(2)|=<s lo(@)I1>8 (1 — |<p(z)|2)7+1

< Nisuplfi(2)| + Na sup |f{(£)] + N3 sup [{(¢)] + 2,
zeD [¢]1<8 [¢1<é

where N}, j = 1,3, are as in (i).
From this and from the fact that f; and f;’ converge to zero on compacts of I as
k — oo, by Lemma 5.2 in [39] we have sup,.p |fk(z)] — 0 as kK — oo, and by the arbi-
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trariness of ¢ it follows that limy_ o || T ,/,1 safkllB, = 0. Hence, by Lemma 5, 1/,1 Voo
F(p,q,s) (or Fo(p,q,s)) = B, is compact.
(iii) If Tgl Vo :F(p,q,s) (or Fo(p,q,s)) — B, is compact, then it is bounded, and from
Theorem 1 we see that Yy € By, Y1¢’ + ¥ € H?, and 9" € H". Relations (g) and (h)
follow from the proofin (i) withn=0andp =2 +q.

Assume that (zx)ren is a sequence in D for which |¢(zx)] — 1 as k — oo (if such a se-

quence does not exist, then (f), (g), and (h) obviously hold). Consider the sequence of

functions
20 2 3 30 2 4 V12 2 >
gk( ) = In—— In—— In—— ,
M\ 1-9(zi)z 1\ 1-g(z)z /’Lk 1-o(z)z
where
2
ur=In——, keN.
= lp(zi)|?
Then

SNCTSERE T
S\ @) T e UM e

60 2 120 2 3
s (3o o
M\ 1-o(z)z 1-9(zi)z
+@( ) (@@
M\ 1- Mak (1-¢(z)2)?
120 360 2 2
+ ~(In -2 (n—=—
(1x) 1- qo(zk)z Wy 1-¢(zi)z
MO( 2 )j (p(z0))
+——|(1n — .
1y N\ 1-9@)z/) ) 1 -e(z)2)?
By some calculation we have g; € By, k € N, and sup; . llgkllz < C < 00. Since s > 1, we

have gi € Fo(p,q,s) and sup,y llgkllF(p,qs < 00. It is easy to see that gi converges to zero
uniformly on compact subsets of D and that

g (p(z) =0, g (p(z)) =0, and g(p(z)) = 21“(%)'

So if Tw1 Voo :F(p,q,s) (or Fo(p,q,s)) — B, is compact, then ||T21’w2,wgk||gu —0ask—

00, and, consequently,

2
11(z) |91 (1) | 111(1_'907)'2) ST 008 ”B# -0 (35)

as k — o0, so (f) holds.
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Now assume that p =2 + g, Y1 € By, Yo' € H®, Yn¢' + Y5 € HY, and that (f), (g), and
(h) hold. Let (fi)xen be a bounded sequence in F(p,q,s) (or Fo(p,q,s)) that converges to
zero uniformly on compact subsets of D as k — oco.

From (f), (g), and (h) we have that for every ¢ > 0, there exists § € (0,1) such that

2
wai@ |ln( ol )|2)

u(z)lwl(Z)w’( ) + Y5 (2)]
- lp(2)|?

W@ (2)¢' (2)] .
(1-1e(2)%)?

<¢g, and

when § < |p(2)] < 1.
Using the inequalities, we have

” T&,m,«;ﬁ‘ By

= sup w@)|(T5,.,0) @)
< sugu(Z)W{(Z)ﬁ(w(Z))l + sugu(Z)I (V1(2)¢'(2) + ¥3(2)fi (0(2)|
+supu 2)|V2(2)¢' @)f (¢(2))|

< sup u@|Y{@fi(e@)|+ sup wu2)|¥{(@)fi(p)|

lp(2)| <8 lp(2)|>8
+ sup w(@)| (V129 (2) + v, 2)|[fi (¢(2)) |
lp(2)|<8
' S(u)ll)aﬂ(z)| (V1(@)¢'(2) + ¥32) ||fi (9(2)) |
o(2)|>
g ?u)lpau 2)| 2200’ @) (4 )|+ sup MZ)IWz 2)¢'@)| [ (¢(2))|
(p <
2
<N, s
SN e Wle@)l+ s n@On e
, w(@) 1 (2)¢' (2) + ¥, (2)]
N
TN e @) s T
w(2) Y2 (2)¢’ ()]

N-
T |¢?§E5lfk (v@@)] + |¢s(3\>a (1-lp(2)?)?

< Nysuplfi(¢)| + Ny sup | (£)| + N3 sup |[f{'(¢)] + e,
ceb [¢]<é [¢]<é

where Nj, j = 1,3, are as in (i).

From this, since fi, f{, and f converge to zero on compacts of D as k — oo, by the
arbitrariness of ¢ it follows that limy_, o || T’ ,,,1 s2,fkllB, = 0. Hence, by Lemma 5, T, 51/1 Vo'
F(p,q,s) (or Fy(p,q,s)) = B, is compact. O

Theorem 3 Let 0 < p,s<00,-2<q<00,q+s>-1,vY1,v¥; € HD), n € Ny, u be a typical
weight, and ¢ € S(D). Then the following statements are true.
(i) fneN,orn=0andp<2+q,then Ty , ,:Fop,q,s) = By, is bounded if and
only if Y € Byo, Y19’ + ¥y € Hi, Y29’ € HiY, and conditions (a)-(c) of Theorem 1
hold.
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(i) Ifp>2+gq,then Tglywz,w :Fo(p,q,8) = By is bounded if and only if Y € B, 0,
V@' + Yy € Hiy, Y@ € HYy, and conditions (d) and (e) of Theorem 1 hold.

(ili) Ifp=2+qands>1,then Tglm,w 1 Fo(p,q,8) = By is bounded if and only if
V1 € Buo, Vn¢' + ¥y € HY, Y¢' € HiyYy, and conditions (f)-(h) of Theorem 1 hold.

Proof (i) First, assume that Ty, . : Fo(p,q,s) = By, is bounded. Taking the test func-
tions py(z) = 2X/k! for k € {n,n+1,n+2}, we easily get that ¥, € B, 0 and that the functions
Vn¢' + Y5 and Y29’ are in H. Moreover, as in the proof of Theorem 1, we can easily show
that conditions (a)-(c) hold.

Conversely, suppose that ¥ € B0, ¥1¢' + ¥y € HSY, Y2¢” € HpY, and that conditions
(a)-(c) of Theorem 1 hold. Then by Theorem 1(i) we know that the operator Ty v
Fo(p,q,s) = B, is bounded. Hence, to show that the operator Ty, , . : Fo(p,q,s) = B0
is bounded, it suffices to show that T, . f € By, for every f € Fo(p,q,5). Take any & > 0.
Let f € Fo(p,q,s). Then by Lemma 1, f € B(()q+2) . From this by using Propositions 7 and 8

in [2] we have that there is §; € (0,1) such that, for any z € D such that |z| > &1,

V(I') (2) | < €

2tq
A-l|z2)7 7

forje{n,n+1,n+2},whereneNorn=0andp<2+gq.

From this, using conditions (a)-(c) of Theorem 1, respectively, we have that

m@)|¥1(@)]

1@ | @f " (e(2)| < T~
A-le@P) 7™

< M;s, (36)

()| < EM(Z)Wfl(Z)(ﬂ/(Z) +Y5(2)| <

1@ V1@’ 2) + ¥ @) || (p(2) = Mae, (37)
A-le@)?) 7™

and

@) [¥n @ @[5 (p())| < s LNV _ (38)

24
(1-lp@)PR) 7 ™

when |¢p(z)| > 61, where

M, := K (Z)“/'{(i)q' . M= 1@ (2)¢'(2) 2t;/fé(Z)l ,
@R (1 |p(2)?) 7 " @ (1= e(z)|2) 7 ™
My = n@)¥(2)¢'(2)]

2 41
@R (1- |(2)*) 7

(note that these quantities are finite due to conditions (a)-(c)).
On the other hand, since ¥ € B0, Y1¢' + V5 € Hy, and Y2’ € HY,, we have that there
is 85 € (0,1) such that

n@)| v (@) <e(1-687) B,

1@ @' @) + ¥y <e(1-52) 7,



Stevic et al. Journal of Inequalities and Applications (2016) 2016:219 Page 23 of 32

and

—+n+1

@2 (2)¢' (2)| <e(1-67) 7

whenever |z| > §,.
From this, by Lemma 3 we have that, for |¢(z)| < 6; and |z| > 8,

1@ Y1 (2)|

1@[P@f " (p@)| < ufnp@,mT S elfllewas (39)
1-82)7 *

n-1

n@)Y1(2)¢'(2) + ¥3(2)]
(1 _ 812)¥+n

@[¥1(¢ @) + Y5 @[ (0(@)) | < If llEras)

5 SHfHF(p,q,S)r (40)
and
1@ ¥ (2)¢' @ |[f"? (e(2)| < |V||F@,q,s)% S ellflepgs)- (41)
_§2)p

Combining (36) and (39), (37) and (40), and (38) and (41), respectively, we have that,
whenever |z| > §,,

1@ (9@)] < (M If s e, (42)
w@)|¥1(2)¢' @) + v @) [ (0(2)| < Mo If g feo (43)
and
1@ V220’ @ [f"? (0(2))| < M3, 1f 1 Fpas | &- (44)
Hence,
w@|(T5, y,f) @] < @RS (0(2) | + 1@|¥1(2)¢' @) + 3| (0(2))]

+ 1(@) Y220’ @)|[f"? (¢(2)) |
SAML Mo, M3, f s o

from which it follows that Ty, , f € By, for every f € Fo(p,q,s) and, consequently, the
boundedness of the operator Ty, i Fo@:4,8) = Byuo.
(i) If Tm o - Fo(0:9,8) = By is bounded, then as in the proof of (i), we get that ¥, €
B0, vn¢' + ¥y € HY, Ya9' € HY), and that conditions (d) and (e) of Theorem 1 hold.
Conversely, suppose that Y1 € B0, Y19’ + ¥, € HY, V9" € H, and that condi-
tions (d) and (e) of Theorem 1 hold. Then by Theorem 1(ii) we know that the oper-
ator Tw1 voy * Fo0,q,8) — B, is bounded. Hence, as in (i), to show that the operator
T]/l1 Vo : Fo(p,q,s) = B, is bounded, it suffices to show that T’ wz,qf € B, for every

f€Fopq,s).
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Take any ¢ > 0. Then y; € B, implies that there is some §; € (0,1) such that

@)1 <e (45)

for |z| > 8;. Let f € Fy(p,q,s). Then by Lemma 1, f € B(()q+2)/p. From this, by Proposition 8
in [2] it follows that there is &, € (0,1) such that, for any z € D such that |z| > &5,

[f(j)(z)| < %

e

forj e {1,2}.
Thus, using conditions (d) and (e) of Theorem 1 respectively, we have that

@19 @ + 13| (p()| < WA O+ V@] (46)
A= lp@P) 7
and
1@ D @||f (p@)| < e LW @ 47)

24q,
1-lp@P) 7 "
when |¢(z)| > 82, where

Ni= sup w(@)|Y1(2)¢' (2) + Yy (2)| and N = w(2) V2 (2)¢’ (2)]

2+q 24
k@8 (11— |p(2)2) 7 lv@1% (1 - p(2)|2) 7

(note that these quantities are finite due to conditions (d) and (e) of Theorem 1).
On the other hand, since y1¢" + ¥, € H7, and ¥»¢" € H5,, we have that there is d; €
(0,1) such that

2+q
p

(@) |[Y1(2)¢' (2) + 5 (2)| < e(1-83)

and

)2P¥+1

(@) Y229 (2)] < (1 - 63

whenever |z| > 3.
Thus, for |¢(z)| < &5 and |z| > 83, we have that

W@ (2)¢'(2) + 3 (2)|
a-87

S EHf”F(p,q,s) (4-8)

1@ ()¢’ 2) + Y3 @)||f (0(@)| S If Lz

and

@) |[¥2@¢ @ (2@)| S I lEpas % S ellf Il Epags- (49)
1-85)7 "
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Combining (46) and (48) and, respectively, (47) and (49), we have that, whenever |z| > §3,

n@|v1@e¢' (2) + ¥3@|[f (@) | S (N I I Fpas e (50)

and

1@ v22)0 @[ (¢@)] S {Nos If Epas e (51)

From (45), (50), and (51), by Lemma 3 we have that

1@|(T), yof) @ < @)Y @S (02)| + 1@)|¥1(2)¢' (@) + Y32 |f (0(2))|
+ (@) |[¥2(2)e' @) | (¢(2))]
S AN N, 1 I Fpgs

when |z| > max{8;,83}. Hence, Tgl,]pz’wf € B, for every f € Fy(p,q,s), from which the
boundedness of Tx(/zn/fzyw :Fo(p,q,5) — B0 follows.

(iii) If T‘//1 Vo :Fo(p,q,s) = B, is bounded, then as in the proof of (i), we get that ¥ €

Byo, Y19 + vy € HYy, a9 € HiY, and that conditions (f), (g), and (h) of Theorem 1 hold.

Conversely, suppose that ¥ € B0, Y1¢" + ¥y € HY, ¥2¢' € Hy, and conditions
(f), (g), and (h) of Theorem 1 hold. Then by Theorem 1(iii) we know that the operator
TI(ZN/IZ:(P :Fo(p,q,s) — B, is bounded. As in the previous two cases, to show that the op-
erator Tgl'wz,(ﬂ :Fo(p,q,s) — B, is bounded, it suffices to show that T m vl € B, for
every f € Fo(p, q,5).

Take any ¢ > 0. Let f € Fy(p,q,s). Then by Lemma 1, f € By. From this, by [2], Proposi-
tion 8, and [8], Lemma 3, for the case # = 1 with f” replaced by f, it easily follows that there
is &1 € (0,1) such that, for any z € D such that |z| > 41,

[f(z)! <eln TP
and
0) _&
@ < 1 ~-z2y
forje {1,2}.

From this, using conditions (f), (g), and (h) of Theorem 1, respectively, we have that

1@\ @f (¢(2)| < en(2)|¥(2)|In p ( TTlo@E = Lig, (52)
@12 (@) + Y3 @) |f (0(2)| < € (z)h//ll(i)ﬁpg': 12191 < Lys, (53)

and

w(2)|¥2(2)¢’ (2)] -

- le@P? (54)

n@)| V220 @)||f"(¢(2)] <&
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when |¢(z)| > 81, where

’

, 2 w(@)n(2)¢'(z) + 3 (2)|
L := 1 _—, Ly =
! |¢(Sz})l£51 M(Z)WI(Z)‘ ! 1-|p(2)? : 10(2)]>81 1-1p(2)?
w(@)|¥2(2)¢’ (2)]

L3 = - =
s (1—le2)]?)?

(note that these quantities are finite due to conditions (f), (g), and (h) of Theorem 1).
On the other hand, since ¥; € B0, Y1¢' + V5 € H, and Y2’ € HY,, we have that there
is 85 € (0,1) such that

n@ Y@ <elln——,  w@|v1()¢ (@) +¥5@)| <e(1-57),

2
1-6%

and

1@V (@)¢' @) < £(1-62)

whenever |z| > §,.
Thus, for |p(z)| < &1 and |z| > &3, we have that

2
1@ @||f (¢@)] S IflFpaon@)|¥i(2)]In 1< elf s (55)
1

w@)|Y1(2)¢’ (2) + Yy (2)|
1-682

< elflrpgs» (56)

1@ (@)¢' (2) + Y3 2)||f (0@) | S If L

and

w(@) Y2 (2)¢’ (2)]

@ |[¥2@9' @[ (@) | S I g 1022
1

< 8||f||F(p,q,s)~ (57)

Combining (52) and (55), (53) and (56), and (54) and (57), respectively, we have that, when-
ever |z| > §,,

@[ @)|[f(¢@)| S {Lu Ifllepas fe (58)

@)1 (@) + Y5 @|f (@) | S {L2s If I F s o (59)
and

@2’ @[ (0@)| S {Ls If 1 Fpas }&- (60)

Thus, from (58), (59), and (60) we have that

1@(TS, ,, f) @) < 1@ @f (p(2)] + @) ¥1(D)¢' (@) + ¥22)||f (¢(2)|
+ 1@ V22’ @ |f" (¢(2)) |

< {LhLz,Ls, |Lf||F(p,q,s)}8
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when |z| > §,. Hence, T' ,/,1 " J € B, forevery f € Fy(p,q,s), from which the boundedness

of TY ., Fo(p,q,s) = By follows. 0

Theorem 4 Let 0 <p,s<00,-2<q<00,q+s>-1, Y, ¥y € HD), n € Ny, u be a typical
weight, and ¢ € S(D).

(i) IfneN,orn=0and p<2+q,and T]l,1 Vo' :F(p,q,5) = B, is bounded, then v, €

B0, Y19" + ¥y € Hy, Yag' € HY,, and conditions (a)-(c) of Theorem 1 hold.

Also, if Y € By, Y1¢' + Yy € Hyy, Y9’ € Hyy, and conditions (a)-(c) of Theorem 2
hold, then Ty, . F(p q,8) = By is bounded.

(ii) If2+q < pand TY e - F® @8) = By is bounded, then Y € Byo, Y1¢' +v; € Hi,
Yo' € H 0> and conditions (d) and (£) of Theorem 1 hold.

Also, lfl/fl € Byuo, Y19’ + ¥y € HY, Y29 € HYy, and conditions (d) and (f) of Theorem 2
hold, then T)) . ,:F(p,q,s) = By is bounded.

(i) If2+g=p,s>1, and Tl//1 vow  F®©:0:8) = Byo is bounded, then yn € B0, Y1¢' +
Uy € Hiy, Y@ € HYy, and conditions (f)-(h) of Theorem 1 hold.
Also, if Y € By, Y1¢' + ¥y € HYY, ¥og' € HiY, and conditions (f)-(h) of Theorem 2

hold, then Tgl Vo F®:q,8) = By is bounded.

Proof (i) Suppose that n € N, or n =0 and p <2 + ¢, and that Ty, , . : F(p,q,5) = B0
is bounded. Then T7, . . : Fo(p,q,5) — By, is also bounded, and so by (i) of Theorem 3,
Y1 € Buo, V¢’ + ¥y € Hi, Yo" € HY, and conditions (a)-(c) of Theorem 1 hold.

Conversely, suppose that y1 € B0, Y1¢' + ¥ € H, Y29 € HY, and conditions (a)-(c)
of Theorem 2 hold. Then by Theorem 2(i) we have that T m oo F0,q,8) — B, is com-
pact Hence, to show the boundedness of T, . - F(p,q,s) — B0, it suffices to show that

Ty, J € B, for every f € F(p,q,s). Take any ¢ > 0. By conditions (a)-(c) of Theorem 2
there is 8; € (0,1) such that

M(Z)W{(i)ql s, (61)
1-lp@P) 7 ™!
(@)Y (2)¢’ (Z) + Wz @l <e, (62)

(1- Iw(z)lz) o
and

W@ (2)¢' (2)]

> (63)
1-lp@)2) 7

when |p(z)| > 6;.
On the other hand, since 1 € B0, Y19’ + V5 € H, and ¥2¢" € H7Y), we have that there
is 8, € (0,1) such that

1

k@@ <e(-5) 77 w@n@e @) + 3@ < -57) F

and

9 in+1

(@)Y (@) ()] <e(1- 52)

whenever |z| > ;.
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Thus, for |p(z)| < 61 and |z| > &5, we have that

(Z)Itlf{(Z)qI < M(Z)Hiigzﬂ s, (64)

A-lp@P) 7~ @—e) 7
pEW @@ + 1@ _ pEIN@eE) - @], )

a- Igo(Z)Iz) p 1 82)*”
and

TN CICICIZICTACI 66)

A-lp@R) 7™~ -8

Combining (61) and (64), (62) and (65), and (63) and (66), respectively, we have that,
whenever |z| > §,,

1@}, f) @ < 1@ @F " (0@)| + @Y1 (2) + ¥22)| [f " (0 (2))|
+ 1@ V22)9' @ [f"*? (0(2))|

S ”f”F(p,q,s)Sr

from which it follows that Ty, f € By, for every f € F(p,q,5), as desired.
(ii) and (iii) These statements are proved similarly to (i). Hence, we omit the details. [J

The following lemma was essentially proved in [40].

Lemma 6 Let i be a typical weight. Then a closed set K in B, is compact if and only if
K is bounded and satisfies

lim sup u(2)|f'(2)| =
|Z‘_’1f61<

Theorem 5 Let 0 < p,s<00,-2<g<00,g+5>-1, Y1,V € HD), n € Ny, u be a typical
weight, and ¢ € S(D). Then the following statements hold.

() fneN,orn=0andp <2+q,thenTy , . :F(p,q,s)(or Fo(p,q,s)) = By, is compact
if and only if

(a) limjy_ 7’“2)%( )lm,]
1-1p(2)%) 1’
(z

(b) hm\z|~>1 w2y (2)e’ )“/fz

) 7"
p@lbEe@L _
2+q s S| R
(1-lp()1?) P
(i) If p> 2 + g, then T121 i - E@q,8) (or Fo(p,q,5)) = By is compact if and only if

101 € BM,O and

(d) lim‘z|*>1 % =0 and

(1-lp@?) P
(€) limy,_, 4 1@l @' @ _

24 q+1
(1-lp@@)12) 7
(i) Ifp=2+qands>1,then T w1 oo E0:4,9) (or Fo(p,q,5)) — By is compact if and
only if
(f) Timpz 1 (@) V@) In(27) = O,

=0,
—O and

(C) Hm\zl—)

Page 28 of 32
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. w@ (@)’ (@)+vy (@)
(g) 11m|z|_,1 W = 0 nd
(h) Timy, 1@l @@l _ o

(1-lp(@)[%)?

Proof (i) Suppose that n € N, or n =0 and p < 2 + ¢, and that (a), (b), and (c) hold.
Then by Theorem 1 the operator T} v - F0:4,8) (or Fo(p,q,s)) — B, is bounded,

Y1 € Buo, V19’ + Y5 € o and Yo' € H MO’ from which it follows that Tx/q Vo -
F(p,q,s) (or Fo(p,q,s)) — B,L,o is bounded, and, consequently, its image of the unit ball
in F(p,q,s).

Hence, due to Lemma 6, to show that Ty o :F(p,q,s) (or Fo(p,q,5)) = B, is com-

pact, we only need to show that

lim  sup [L(Z)|( Ity gaf)/(z)| =0. (67)
EI=L1f ) pp gy <1

From (8) we have

/ @Y1 (2)] M(Z)Ith(zxo (2) + Y5 (2)]
1@|(Ty,,y,0f) (@) 5( & : 2
(T p,.0f) @] .

Ce@DEFTT (1 e
M(Z)|1/12(Z)(2P (2)] 1 > T 68)
1-lp@)2) 7

Taking the supremum in (68) over all f € F(p,q,s) (or Fo(p,q,s)) such that ||f|lrp,qs <
1, then letting |z| — 1, and using conditions (a)-(c), we see that (67) holds, so Ty, , o
F(p,q,s) (or Fo(p,q,s)) — By, is compact.

Conversely, suppose that Ty, , . : F(p,q,s) (or Fo(p,q,s)) — By,0 is compact. Then
Ty, vy F®©,q5) (o1 Fo(p,q,5)) — B, is compact, so by Theorem 1 we have

w(2) Y1 (2)]

2+q =Y (69)
YA lp@R)
lim PENE@Y @ + @)1 _ (70)
lp(2)|—>1 (1- |90(z)|2)21’#m
and
miz )Iwz(z)w’( o (71)

Iw(z)\al( |§0(Z)|2) p 9 i n+1

On the other hand, using the test functions f(z) = zX/k!, k € {n,n + 1, n + 2}, which belong
to Fy(p,q,s), we have

lim 1@|¥1@)] =0, (72)
lim, (@) Y1 (2)¢'(2) + ¥5(2)| = 0, (73)
lim w(z)|v2(2)¢'(2)] = 0. (74)

|z|>1
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From (69) we have that for any ¢ > 0, there exists ¢ € (0,1) such that

(@)Y (i)ql 1 75)
1-lp@)2) 7 ™
when ¢ < |p(2)| < 1. From (72) it follows that there exists r € (0,1) such that
/ 2 244 11
1@ <e(t-12)7 (76)
when r<|z| < 1.
Therefore, when r < |z] <1 and ¢ < |¢(z)| < 1, we have
(@)1 (2)l
2 244 1y 1 ’
A -lp)?)»
whereas when r < |z| <1 and |¢(z)| < t, using (76), we have
’ 2 29 11
w(2) Y1 ()| P ) P -
2y 24,0 =
1-lp@P)7 ™" (A-lp@P)7 ™
Since ¢ is an arbitrary positive number, we get
lim M(Z)Illfl(i)ql _o,
- le@)P)
that is, condition (a) holds.
Similarly, we prove that (70) and (73) imply (b) and that (71) and (74) imply (c).
(ii) Assume that ¥ € B, and that (d) and (e) hold. Then by Theorem 1(ii), T&m(o :

F(p,q,s) (or Fo(p,q,s)) — B, isbounded, y1¢’' + ¥} € Hﬁf’o, and Yn¢' € HZ‘fo. From all these
facts it follows that Tghl]lw :F(p,q,s) (or Fo(p,q,s)) = B, isbounded, and, consequently,
so is its image of the unit ball in F(p, g, s).

Suppose that f € F(p,q,s) (or Fo(p, q,5s)) is such that ||f||r(,s < 1. Then by Lemma 3 we
have

I+ w@)|Y1(2)¢' (2) + Yy (2)| . w(2)|Y2(2)¢’ (2)]

1@|(T, ypof) @ S 1@ (2) Ty TG
1-lp@)*) 7 A-lp@)P2) 7"

from which, along with the assumptions v € B,,, (d), and (e), we have
lim sup{ ()| (T5,,4,,0f) ()] -f € F(p0,9) (01 Fo(,,9), I Iripasy =1} =0,

and so by Lemma 6 we get that Tg :F(p,q,s) (or Fo(p,q,5)) = B,.0 is compact.

1Y2.9
Conversely, if T&,m,«p :F(p,q,s) (or Fo(p,q,s)) = B, is compact, then for f(z) = 1, we
obtain that Tgl,wz,(pl =y, € By. Relations (d) and (e) follow from the proof of (i) with n = 0.

(iii) Assume that (f), (g), and (h) hold. Then by Theorem 1(iii) the operator Tl(;l,lllZ:(ﬂ :

F(p,q,s) (or Fo(p,q,s)) — B, is bounded, Yy € B0, Y1¢’ + ¥3 € H, and Yo' € HE.
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Thus, the operator Tw1 v F (p,g,s) (or Fo(p,q,s)) = B, is bounded, and so is its image
of the unit ball in F(p, g, s).

By Lemma 3 we have that for every f € F(p,q,s) (or Fo(p,g,s)) such that ||[f]lr(p,qs <1,
the following asymptotic relation holds:

w@)| Y (2)¢' (2) + ¥y (2)|
- lp(2)|?

/ 2
w@|(T5, 4,f) @] “(Z)Wl(z)'(ln 1- |¢(Z)|2> ’

W@ (2)¢' (2)]

P le@P? 77)

Taking the supremum in (77) over all f € F(p, q,s) (or Fo(p, q,s)) such that ||f|lrp,gs < 1,
then letting |z] — 1, and using Lemma 6, we obtain that T’ 1//1 vy F®q5) (or Fo(p,q,5)) —
B,.0 is compact.

If T121 i F0:4,8) (or Fo(p,q,5)) — B0 is compact, then T ,1,1 vy  FB:058) (or Fo(p,

q,s)) — B, is compact too. Hence, by Theorem 2(iii) we have that

lp(z)]—1

li 2)|¥1(2)|1 I, P
im w()|y(z n( <p(z)|2>_ )

which means that, for every ¢ > 0, there is ¢ € (0,1) such that

2
z)|w1(z |1n ne )|2 (78)
when ¢ < |p(z)| < 1.
On the other hand, ¥, € B,, o, which implies that there is r € (0,1) such that
, 2
w(@) ¥ ()| <e/1n1_ > (79)

when r < |z| < 1. Hence, (78) holds when r < |z| <1 and ¢ < |¢(z)| < 1, whereas form (79) we
see that (78) holds when r < |z| <1 and |¢(z)| < ¢, so that (f) holds.
Relations (g) and (h) follow from the proof of (i) withn=0andp =2 +4. 0
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