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Abstract
In this paper, we consider a perturbed compound Poisson risk model with stochastic
premiums and constant interest force. We obtain the upper bound and
Lundberg-Cramér approximation for the infinite-time ruin probability, and consider
the asymptotic formula for the finite-time ruin probability when the claim size is
heavy-tailed. We show that the model in our paper has similar results to the classical
risk process and some existing generalized models.
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1 Introduction
In the classical non-life insurance risk model, the Lundberg-Cramér surplus process has
the form

U(t) = u + ct –
N(t)∑

i=

Yi, (.)

where u ≥  is the initial capital of an insurance company, c >  is the rate of premium
income, {N(t), t ≥ }, which represents the total numbers of claims up to time t, is a ho-
mogeneous Poisson process with intensity λ, Yi describes the amount of the ith claim,
and {Yi, i ≥ } is a sequence of nonnegative independent and identically distributed ran-
dom variables, which is also independent of N(t). See Asmussen and Albrecher [] and
the references therein on this well-known model.

As an alternative, many papers assume that the premium income is no longer a linear
function of time t. For example, Boikov [] generalized the classical risk model to the
case where the premium was modeled as another compound Poisson process, he derived
the integral equations and exponential bounds for non-ruin probability. Melnikov [] and
Wang et al. [] also focused on this kind of risk model. In addition, perturbed risk models
have been discussed by many people since the pioneering work of Dufresne and Gerber
[]. See, for example, Furer and Schmidli [], Schmidli [] and the references therein.
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Recently, more and more actuaries have been paying an increasing amounts of atten-
tion to the study of model with interest rate or investment return due to the practical im-
portance. For example, Sundt and Teugels [] and Cai and Dickson [] studied the com-
pound Poisson risk model with a constant interest rate force. Paulsen and Gjessing []
and Kalashnikov and Norberg [] considered the classical risk model with stochastic in-
vestment. For a perturbed risk process with investment, see Cai and Yang [] and Zhu
et al. []. Melnikov [], Wang et al. [] and Wei et al. [] focused on risk models with
stochastic premiums and when all capital of the insurer was invested in stock.

In this paper, we consider a perturbed risk model with stochastic premiums and constant
interest force

U(t) = uert + c
∫ t


er(t–s) ds +

∫ t


er(t–s) d

N(s)∑

i=

Xi

–
∫ t


er(t–s) d

N(s)∑

i=

Yi + σ

∫ t


er(t–s) dB(s), (.)

where {U(t), t ≥ } denotes the surplus process, c >  is a fixed constant representing the
premium income rate, while {Xi, i ≥ } account for the extra stochastic premiums whose
arrival times constitute counting process {N(t), t ≥ }. {Yi, i ≥ } denote the claim sizes
with {N(t), t ≥ } being the total number of claims up to time t. {B(t), t ≥ } is a standard
Brownian motion, which adds an additional uncertainty to the aggregate claims or the
premiums because of market fluctuations, and σ ≥  is the diffusion coefficient. r >  is
the constant interest force, implying that, for example, the insurance company invests any
surplus into a bank account.

Throughout this paper, we assume that:
• {N(t), t ≥ } and {N(t), t ≥ } are Poisson processes with intensities λ and λ,

respectively;
• {Xi, i ≥ } and {Yi, i ≥ } are two sequences of i.i.d random variables with the same

distributions F(x) and G(y), respectively;
• {Xi, i ≥ }, {Yi, i ≥ }, {N(t), t ≥ }, {N(t), t ≥ } and {B(t), t ≥ } are mutually

independent;
• the positive safety loading condition holds true, i.e.,

c + λEX > λEY . (.)

We define the ruin time, infinite-time ruin probability, and finite-time ruin probability
as follows:

T = inf
{

t ≥ , U(t) < 
} (

inf{∅} = ∞)
;

ψ(u) = P
(
T < ∞|U() = u

)
;

ψ(u, t) = P
(
T ≤ t|U() = u

)
.

It is well known that ψ(u, t) ≤ ψ(u, t) ≤ · · · ≤ ψ(u) for t < t < · · · and limt→∞ ψ(u, t) =
ψ(u).
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In the rest of this paper, we consider the upper bounds and the Lundberg-Cramér ap-
proximation for the infinite-time ruin probability, and we obtain the asymptotic formula
for the finite-time ruin probability when the claim size is heavy-tailed. The results are
shown in Section  and the proofs are given in Section .

2 Main results
In risk theory, upper bound and asymptotic behavior are basic results for ruin probability,
so we also discuss these problems for model (.). For notational convenience, we intro-
duce

• m(η) = E(eηX) =
∫ ∞

 eηy dF(x), m(η) = E(eηY ) =
∫ ∞

 eηy dG(y);
• θ (z) = 

σ z – cz + λ(m(–z) – ) + λ(m(z) – );
• η = sup{η > , m(η) < ∞}, γ = sup{η > , supt>

∫ t
 θ (ηe–rs) ds < ∞}.

Theorem . Assume that η > , then for any  < η < γ , we have

ψ(u) ≤ sup
t>

exp

{∫ t


θ
(
ηe–rs)ds

}
e–ηu. (.)

Remark . From (.), by the convex property of θ (z) and noting the fact that θ ′() =
λEY – c – λEX < , θ () = , and θ (z) → ∞ as z → η, we know that there must exist
a unique positive number z such that θ (z) = . Since θ (z) <  for z < z, then for any
 < η ≤ z,

∫ t
 θ (ηe–rs) ds < . As a result, supt>

∫ t
 θ (ηe–rs) ds ≤  for any  < η ≤ z. There-

fore, taking η = z in (.), we can get ψ(u) ≤ e–zu. The right-hand side is exactly the upper
bound for the risk model without investment (see Melnikov []), and z is the correspond-
ing adjustment coefficient. The inequality shows that the ruin probability with interest is
smaller than the one without interest.

On the other hand, because
∫ t

 θ (ηe–rs) ds =
∫ η

ηe–rt
θ (s)
rs ds, therefore, when η > z, the

supremum over t >  in (.) is achieved at point where ηe–rt = z, and (.) can be pre-
sented in a much clearer and simpler form as

ψ(u) ≤ exp

{∫ η

z

θ (s)
rs

ds
}

e–ηu,

getting rid of the supremum.

Remark . In the result, γ has a complex and tedious expression. Actually, if assuming
that η > , we have γ = η.

First of all, for any ε > , by the definition, it is easy to know θ (η + ε) = ∞, then

sup
t>

∫ t


θ
(
(η + ε)e–rs)ds = sup

t>

∫ η+ε

(η+ε)e–rt

θ (s)
rs

ds =
∫ η

z

θ (s)
rs

ds +
∫ η+ε

η

θ (s)
rs

ds = ∞,

which implies γ ≤ η + ε, letting ε ↓  we have γ ≤ η.
Second, for all  < η < η, if η < z,

sup
t>

∫ t


θ
(
ηe–rs)ds = sup

t>

∫ η

ηe–rt

θ (s)
rs

ds ≤ ,
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else if η ≥ z,

sup
t>

∫ t


θ
(
ηe–rs)ds = sup

t>

∫ η

ηe–rt

θ (s)
rs

ds ≤
∫ η

z

θ (s)
rs

ds < ∞,

then we get γ ≥ η. As a result, γ = η.

Inspired by Remark ., we can obtain a tighter bound for the ruin probability as follows.

Theorem . Assume that η > , then we have

ψ(u) ≤ exp

{∫ η̃(u)

z

θ (s)
rs

ds
}

e–η̃(u)u, (.)

in which η̃(u) is the solution greater than z to the function θ̃ (z) = θ (z) – ruz = .

Remark . Note that θ̃ (z) = θ (z) – ruz = –ruz < , and that the function θ̃ (z) is con-
vex and converges to ∞ as z → η, it is easy to check that θ̃ (z) =  has a unique solution
greater than z. In addition, since θ̃ (η̃(u)) = , and θ̃ (z) = ∞ for all z > η, it follows that
η̃(u) ≤ η = γ . Thus, we find a suitable number η̃(u) so that we can get a best estimation
for the upper bound of the ruin probability.

Example . Let c = , σ = ., λ = , λ = , X ∼ exp(/), and Y ∼ exp(), we display
the numerical results for different η, u, and r in Table .

In this example, η = . solves the equation θ (z) = , then the upper bounds for
the model without investment could be obtained (see Remark .). However, we can find
tighter bounds since r > . For example, when r = . and u = , the result for η = .
is better than that for η = ., furthermore, better than those for other values of η in
Table . Actually, it corresponds to the best estimate of the ruin probability in this case,
i.e., η̃(u) = .. Similarly, ., ., and . are best choices of η for the cases
that r = . and u = , r = . and u = , r = . and u = , respectively.

For the Lundberg-Crámer approximation, we have the following theorem.

Theorem . If γ < ∞, then for any ε > ,

lim
u→∞ψ(u)e(γ –ε)u = , (.)

lim
u→∞ψ(u)e(γ +ε)u = +∞. (.)

Table 1 Upper bounds of ruin probability for different η, u, and r

η 0.1216 0.1299 0.1325 0.1381 0.1431

r = 0.08 u = 10 0.2964 0.2844 0.2859 0.2964 0.3165
u = 20 0.0879 0.0776 0.0759 0.0745 0.0757

r = 0.1 u = 10 0.2964 0.2815 0.2807 0.2848 0.2929
u = 20 0.0879 0.0768 0.0729 0.0716 0.0707
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Remark . The number γ here is the so-called adjustment coefficient or the Lundberg
exponent. It follows that limu→∞ – lnψ(u)

u = γ from (.) and (.), showing asymptotic be-
havior of ψ(u).

When the claim size is heavy-tailed, i.e., η = , asymptotic formula for the ruin prob-
ability will be considered usually. We recall several important classes of heavy-tailed dis-
tributions first.

We say a distribution G on [, +∞) is subexponential, denoted by G ∈ S , if Ḡ(x) =  –
G(x) >  holds for all x ≥  and the relation

lim
x→∞

G∗n(x)
Ḡ(x)

= n (.)

holds for some (hence for all) n = , , . . . , where G∗n denotes n-fold convolution of G.
We say a distribution G is long tailed, denoted by G ∈L, if the relation

lim
x→∞

Ḡ(x + y)
Ḡ(x)

=  (.)

holds for all y > .
We say a distribution G on [, +∞) has a regularly varying tail, denoted by G ∈ R–α , if

Ḡ(x) >  for all x ≥  and there exists some α >  such that the relation

lim
x→∞

Ḡ(xy)
Ḡ(x)

= y–α

holds for each y > .
It is well known that R–α ⊂ S ⊂ L. For more details of heavy-tailed distributions and

their applications, see Embrechts et al. [].
Now, we consider asymptotic formula for the finite-time ruin probability in model (.).

We write f (x) ∼ g(x) if limx→∞ f (x)
g(x) =  throughout this paper.

Theorem . If G ∈ S , then for each fixed t > ,

ψ(u, t) ∼ λ

r

∫ uert

u

Ḡ(y)
y

dy, u → ∞. (.)

Furthermore, we have the following result.

Theorem . If G ∈R–α for some α > , then for each fixed t > ,

ψ(u, t) ∼ λ

αr
Ḡ(u)

(
 – e–αrt

)
, u → ∞. (.)

Remark . These theorems generalize the results for the models in Tang [] where c = 
and σ = , Jiang and Yan [] where λ = , and extend the investigation for the model in
Wei et al. [] where σ = . Meanwhile, the conclusions are consistent with that of Ver-
averbeke [], who pointed out that the diffusion term could be asymptotically negligible
when the claims are subexponentially distributed.
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3 Proofs of the main results
For the reason of convenience, we first introduce the discounted surplus process V (t) given
by

V (t) = U(t)e–rt

= u + c
∫ t


e–rs ds +

∫ t


e–rs d

N(s)∑

i=

Xi –
∫ t


e–rs d

N(s)∑

i=

Yi + σ

∫ t


e–rs dB(s), (.)

obviously,

T = inf
{

t ≥ , V (t) < 
}

. (.)

It is easy to see that {(V (t), t), t ≥ } is a Markov process, let {Ft , t ≥ } be the natural
filtration of {V (t), t ≥ }, i.e., Ft = σ (V (s),  ≤ s ≤ t), then T is an Ft-stopping time. We
can construct a martingale by Dynkin’s formula, which indicates the relationship between
martingale and the infinitesimal generator of the Markov process, then we derive the up-
per bound for ruin probability via a martingale approach.

Lemma . Assume that η > , then for any  < η < γ , Mt = exp{– ∫ t
 θ (ηe–rs) ds – ηV (t)}

is an Ft-martingale.

Proof For any g ∈D(A), where A is the infinitesimal generator of {(V (t), t), t ≥ } andD(A)
is the domain of A. By the Itô formula, we know that

Ag(z, t) =


σ e–rt ∂

∂z g(z, t) +
∂

∂t
g(z, t) + ce–rt ∂

∂z
g(z, t)

+ λ

∫ ∞



[
g
(
z + xe–rt , t

)
– g(z, t)

]
dF(x)

+ λ

∫ ∞



[
g
(
z – ye–rt , t

)
– g(z, t)

]
dG(y). (.)

Trying a function of the form g(z, t) = a(t)e–ηz in (.), where a(t) is positive and differen-
tiable, we get

Ag(z, t) =


σ ηe–rtg(z, t) +

a′(t)
a(t)

g(z, t) – cηe–rtg(z, t)

+ λg(z, t)
∫ ∞


exp

{
–ηxe–rt}dF(x)

+ λg(z, t)
∫ ∞


exp

{
ηye–rt}dG(y) – λg(z, t) – λg(z, t).

Now let Ag(z, t) = , which is equivalent to



σ ηe–rt +

a′(t)
a(t)

– cηe–rt + λ

∫ ∞


exp

{
–ηxe–rt}dF(x)

+ λ

∫ ∞


exp

{
ηye–rt}dG(y) – λ – λ = ,
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hence

a(t) = exp

{
–

∫ t



(


σ ηe–rs – cηe–rt + λ

∫ ∞


exp

{
–ηxe–rs}dF(x)a(t)

+ λ

∫ ∞


exp

{
ηye–rs}dG(y) – λ – λ

)
ds

}

= exp

{
–

∫ t


θ
(
ηe–rs)ds

}
,

where we assume that a() = ; then for any  < η < γ , it follows from Dynkin’s formula
(Rolski et al. []) that Mt = exp{– ∫ t

 θ (ηe–rs) ds – ηV (t)} is an Ft martingale. �

Proof of Theorem . Choose t < ∞, then t ∧ T is a bounded stopping time, then by
Lemma . and the optional stopping theorem for a martingale, we have

EM = EMt∧T ,

which implies

e–ηu = E exp

{
–

∫ t∧T


θ
(
ηe–rs)ds – ηV (t ∧ T)

}

≥ E
[

exp

{
–

∫ T


θ
(
ηe–rs)ds – ηV (T)

}∣∣∣T ≤ t

]
P(T ≤ t).

Since V (T) < , we know that exp{–ηV (T)} ≥  for all η > , therefore

P(T ≤ t) ≤ e–ηu

E[exp{– ∫ T
 θ (ηe–rs) ds – ηV (T)}|T ≤ t]

≤ e–ηu

E[exp{– ∫ T
 θ (ηe–rs) ds}|T ≤ t]

≤
(

inf
<t≤t

exp

{
–

∫ t


θ
(
ηe–rs)ds

})–

e–ηu

≤ sup
<t≤t

exp

{∫ t


θ
(
ηe–rs)ds

}
e–ηu,

then (.) holds true by letting t → ∞ since limt→∞ ψ(u, t) = ψ(u). �

Proof of Theorem . By (.), we can obtain a finer upper bound for ruin probability as
follows:

ψ(u) ≤ inf
<η<γ

sup
t>

exp

{∫ t


θ
(
ηe–rs)ds

}
e–ηu

= exp

{
– sup

<η<γ

(
ηu –

(
sup
t>

∫ t


θ
(
ηe–rs)ds

))}

= exp

{
– sup

<η<γ

(
ηu –

(
sup
t>

∫ η

ηe–rt

θ (s)
rs

ds
))}
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= exp

{
– max

{
sup

<η≤z

(
ηu –

(
sup
t>

∫ η

ηe–rt

θ (s)
rs

ds
))

,

sup
z<η<γ

(
ηu –

(
sup
t>

∫ η

ηe–rt

θ (s)
rs

ds
))}}

= exp

{
– max

{
sup

<η≤z
(ηu), sup

z<η<γ

(
ηu –

∫ η

z

θ (s)
rs

ds
)}}

= exp

{
– max

{
zu, sup

z<η<γ

(
ηu –

∫ η

z

θ (s)
rs

ds
)}}

. (.)

In the following, we calculate supz<η<γ (ηu –
∫ η

z
θ (s)
rs ds), and compare it with zu.

Using the same method as in Zhu et al. [], we define the function

fu(η) = ηu –
∫ η

z

θ (s)
rs

ds

for η ≥ z. Then for η > z,

f ′
u(η) = u –


rη

θ (η),

f ′′
u (η) =


rη

(
θ (η) – ηθ ′(η)

)
.

Noting that θ (z) = , z > , and θ ′(z) > , θ ′′(η) > , it is easy to know that

θ (z) – zθ
′(z) = –zθ

′(z) < ,

d
dη

(
θ (η) – ηθ ′(η)

)
= –ηθ ′′(η) <  for all η > ,

we have

θ (η) – ηθ ′(η) ≤ θ (z) – zθ
′(z) <  for all η > z,

then it follows that

f ′′
u (η) =


rη

(
θ (η) – ηθ ′(η)

)
<  for all η > z.

So, for any fixed u > , the function f ′
u(η) is decreasing in η for η > z. Along with the fact

that f ′
u(z) = u >  and f ′

u(η) → –∞ as η → η = γ , we know η̃(u) is the unique solution
greater than z to the equation f ′

u(η) = . Therefor, we have

sup
z<η<γ

(
ηu –

∫ η

z

θ (s)
rs

ds
)

= sup
z<η<γ

fu(η) = fu
(
η̃(u)

)

= η̃(u)u –
∫ η̃(u)

z

θ (s)
rs

ds.
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Noting that fu(η̃(u)) > fu(z) = zu, by (.), we get

ψ(u) ≤ exp

{
– max

{
zu, sup

z<η<γ

(
ηu –

∫ η

z

θ (s)
rs

ds
)}}

= exp

{∫ η̃(u)

z

θ (s)
rs

ds
}

e–η̃(u)u. �

Proof of Theorem . For  < ε < η, take η = γ – ε
 , then by (.), we have

ψ(u) ≤ sup
t>

exp

{∫ t


θ

((
γ –

ε



)
e–rs

)
ds

}
e–(γ – ε

 )u,

hence, noting the fact that supt> exp{∫ t
 θ ((γ – ε

 )e–rs) ds} < ∞, we can get

ψ(u)eγ –ε ≤ sup
t>

exp

{∫ t


θ

((
γ –

ε



)
e–rs

)
ds

}
e– ε

 u → , u → ∞,

this proves (.).
In the following, we derive (.). Let {Ln, n ≥ } and {Sn, n ≥ } be the jump times of the

Poisson process {N(t), t ≥ } and {N(t), t ≥ }, respectively, then we have

∫ t


e–rs d

N(s)∑

i=

Xi =
N(t)∑

i=

e–rLi Xi,

∫ t


e–rs d

N(s)∑

i=

Yi =
N(t)∑

i=

e–rSi Yi.

Denote B = sup≤t≤t σ
∫ t

 e–rs dB(s) and K = sup≤t≤t

∑N(t)
i= e–rLi Xi, by the definition,

ψ(u, t) = P
(

inf
≤t≤t

V (t) < 
)

= P

(
inf

≤t≤t

(
u + c

∫ t


e–rs ds +

∫ t


e–rs d

N(s)∑

i=

Xi

–
∫ t


e–rs d

N(s)∑

i=

Yi + σ

∫ t


e–rs dB(s)

)
< 

)

= P

(
inf

≤t≤t

(
u +

c
r
(
 – e–rt) +

N(t)∑

i=

e–rLi Xi

–
N(t)∑

i=

e–rSi Yi + σ

∫ t


e–rs dB(s)

)
< 

)

≥ P

(
u +

c
r
(
 – e–rt

)
– sup

≤t≤t

N(t)∑

i=

e–rSi Yi

+ sup
≤t≤t

N(t)∑

i=

e–rLi Xi + sup
≤t≤t

σ

∫ t


e–rs dB(s) < 

)
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=
∫ ∞



∫ ∞


P

(
u +

c
r
(
 – e–rt

)
–

(
sup

≤t≤t

N(t)∑

i=

e–rSi Yi

)

+ v + s < 

)
dP(K ∈ dv) dP(B ∈ ds)

≥
∫ a



∫ a


P

(
u + b –

(
sup

≤t≤t

N(t)∑

i=

e–rSi Yi

)
< 

)
dP(R ∈ dv) dP(B ∈ ds)

= P

((
sup

≤t≤t

N(t)∑

i=

e–rSi Yi

)
> u + b

)
P(K ≤ a)P(B ≤ a), (.)

where b = c
r ( – e–rt ) + a and a is a positive constant. On the other hand,

P

((
sup

≤t≤t

N(t)∑

i=

e–rSi Yi

)
> u + b

)
= P

(N(t)∑

i=

e–rSi Yi > u + b

)

≥ P

(N(t)∑

i=

e–rt Yi > u + b

)

= P

(N(t)∑

i=

Yi > (u + b)ert

)

≥
∞∑

m=

P

(N(t)∑

i=

Yi > (u + b)ert , N(t) = m

)

≥
∞∑

m=

G
(
(u + b)ert

)
P
(
N(t) = m

)

= G
(
(u + b)ert

)
, (.)

then for each fixed ε, choose t such that γ +ε

ert > γ , i.e.,

t <
ln( + ε

γ
)

r
. (.)

Denote γ + ω = γ +ε

ert for some ω > , note the fact that ψ(u, t) ≤ ψ(u) for each t > , we
have

ψ(u)e(γ +ε)u ≥ ψ(u, t)e(γ +ε)u

≥ P(K ≤ a)P(B ≤ a)G
(
(u + b)ert

)
e(γ +ε)u

= P(K ≤ a)P(B ≤ a)e–b(γ +ε)G
(
(u + b)ert

)
e(γ +ε)(u+b)

= C · G
(
(u + b)ert

)
exp

{
γ + ε

ert
(u + b)ert

}

= C · G
(
(u + b)ert

)
exp

{
(γ + ω)(u + b)ert

}
, (.)

where C = P(K ≤ a)P(B ≤ a)e–b(γ +ε). Since γ = η and
∫ ∞

 e(η+ω)y dG(y) = ∞, so

G
(
(u + b)ert

)
exp

{
(γ + ω)(u + b)ert

} → ∞, u → ∞,
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consequently, by (.), we have

ψ(u)e(γ +ε)u → ∞, u → ∞. �

Proof of Theorem . By the definition

ψ(u, t) = P
(
V (t) <  for some  < t ≤ t|U() = u

)
.

Denote

p = sup
≤t≤t

c
∫ t


e–rs ds,

B = sup
≤t≤t

σ

∫ t


e–rs dB(s) and

K = sup
≤t≤t

∫ t


e–rs d

N(s)∑

i=

Xi.

From (.), for each t ∈ (, t], we have

u –
∫ t


e–rs d

N(s)∑

i=

Yi + σ

∫ t


e–rs dB(s) ≤ V (t) ≤ u + p –

∫ t


e–rs d

N(s)∑

i=

Yi + K + B,

thus, the ruin probability ψ(u, t) satisfies

ψ(u, t) ≥ P

(N(t)∑

i=

e–rSi Yi > u + p + K + B for some  < t ≤ t

)

= P

(N(t)∑

i=

e–rSi Yi > u + p + K + B

)
(.)

and

ψ(u, t) ≤ P

(N(t)∑

i=

e–rSi Yi > u + σ

∫ t


e–rs dB(s) for some  < t ≤ t

)

≤ P

(N(t)∑

i=

e–rSi Yi + sup
<t≤t

[
–σ

∫ t


e–rs dB(s)

]
> u

)
. (.)

Hence, if we prove that as u → ∞,

P

(N(t)∑

i=

e–rSi Yi > u + p + K + B

)
∼ λ

r

∫ uert

u

Ḡ(y)
y

dy (.)

and

P

(N(t)∑

i=

e–rSi Yi + sup
<t≤t

[
–σ

∫ t


e–rs dB(s)

]
> u

)
∼ λ

r

∫ uert

u

Ḡ(y)
y

dy, (.)
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then by (.) and (.) it follows that

ψ(u, t) ∼ λ

r

∫ uert

u

Ḡ(y)
y

dy, u → ∞.

Let us deal with P(
∑N(t)

i= e–rSi Yi > u) first. By the same method as in Tang [] or Jiang
and Yan [], we have, as u → ∞,

P

(N(t)∑

i=

e–rSi Yi > u

)
∼ λ

r

∫ uert

u

Ḡ(y)
y

dy, (.)

which also implies that
∑N(t)

i= e–rSi Yi is still long tailed. Therefore

lim
u→∞

P(
∑N(t)

i= e–rSi Yi > u + p + K + B)
P(

∑N(t)
i= e–rSi Yi > u)

=
∫ ∞



∫ ∞


lim

u→∞
P(

∑N(t)
i= e–rSi Yi > u + p + v + s)
P(

∑N(t)
i= e–rSi Yi > u)

P(K ∈ dv)P(B ∈ ds) = , (.)

where we use the fact that P(
∑N(t)

i= e–rSi Yi > u + p + v + s) ≤ P(
∑N(t)

i= e–rSi Yi > u) and the
dominated convergence theorem.

On the other hand, the results in Jiang and Yan [] show that

P

(N(t)∑

i=

e–rSi Yi + sup
<t≤t

[
–σ

∫ t


e–rs dB(s)

]
> u

)
∼ P

(N(t)∑

i=

e–rSi Yi > u

)
. (.)

Thus, (.) and (.) follow from (.), (.), and (.). This ends the proof of Theo-
rem .. �

Proof of Theorem . Similarly, we also deal with P(
∑N(t)

i= e–rSi Yi > u). Rewrite it as

P

(N(t)∑

i=

e–rSi Yi > u

)
= P

( ∞∑

i=

e–rSi YiI(Si ≤ t) > u

)
,

by Lemma  in Tang [] with θn = e–rSn I(Sn ≤ t), we have

P

(N(t)∑

i=

e–rSi Yi > u

)
∼ Ḡ(u)

∞∑

i=

Ee–rSn I(Sn ≤ t) =
λ

αr
Ḡ(u)

(
 – e–αrt

)
, u → ∞,

then (.) follows from (.), (.), (.), and (.). �
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