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Abstract
In this paper, by using a new type of Carleman formula with respect to a certain
Laplace operator, we estimate the growth property for solutions of certain Laplace
equations defined in a smooth cone.
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1 Introduction and results
Let Rn (n ≥ ) be the n-dimensional Euclidean space. A point in Rn is denoted by V =
(X, y), where X = (x, x, . . . , xn–). The boundary and the closure of a set E in Rn are denoted
by ∂E and E, respectively.

We introduce a system of spherical coordinates (l,�), � = (θ, θ, . . . , θn–), in Rn which
are related to cartesian coordinates (x, x, . . . , xn–, y) by y = l cos θ.

The unit sphere in Rn is denoted by Sn–. For simplicity, a point (,�) on Sn– and the
set {�; (,�) ∈ �} for a set �, � ⊂ Sn– are often identified with � and �, respectively. For
two sets � ⊂ R+ and � ⊂ Sn–, the set

{
(l,�) ∈ Rn; l ∈ �, (,�) ∈ �

}

in Rn is simply denoted by � × �.
We denote the set R+ × � in Rn with the domain � on Sn– by Tn(�). We call it a cone.

The sets I × � and I × ∂� with an interval on R are denoted by Tn(�; I) and Sn(�; I),
respectively. By Sn(�; l) we denote Tn(�) ∩ Sl . We denote Sn(�; (, +∞)) by Sn(�).

Let G�(V , W ) (P, Q ∈ Tn(�)) be the Green function in Tn(�). Then the ordinary Poisson
formula in Tn(�) is defined by

cnPI�(V , W ) =
∂G�(V , W )

∂nW
,

where ∂/∂nW denotes the differentiation at Q along the inward normal into Tn(�). Here,
c =  and cn = (n – )wn when n ≥ , where wn is the surface area of Sn–.

Let �∗
n be the spherical version of the Laplace operator and � be a domain on Sn– with

smooth boundary ∂�. Consider the Dirichlet problem (see [])

(
�∗

n + τ
)
ψ =  on �, (.)
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ψ =  on ∂�. (.)

We denote the least positive eigenvalue of (.) and (.) by τ and the normalized positive
eigenfunction corresponding to τ by ψ(�). In the sequel, for the sake of brevity, we shall
write χ instead of ℵ+ – ℵ–, where

ℵ± = –n +  ±
√

(n – ) + τ .

We use the standard notations h+ = max{h, } and h– = – min{h, }. All constants ap-
pearing in the expressions in the following sections will be always written M, because we
do not need to specify them. Throughout this paper, we will always assume that η(t) and
ρ(t) are nondecreasing real-valued functions on an interval [, +∞) and ρ(t) > ℵ+ for any
t ∈ [, +∞).

Recently, Li and Vetro (see [], Theorem ) obtained the lower bounds for functions
harmonic in a smooth cone. Similar results for solutions of p-Laplace equations under
Neumann boundary condition, we refer the reader to the papers by Guo and Gao (see [])
and Rao and Pu (see []).

Theorem A Let K be a constant, h(V ) (V = (R,�)) be harmonic on Tn(�) and continuous
on Tn(�). If

h(V ) ≤ KRρ(R), V = (R,�) ∈ Tn
(
�; (,∞)

)

and

h(V ) ≥ –K , R ≤ , V = (R,�) ∈ Tn(�),

then

h(V ) ≥ –KM
(
 + ρ(R)Rρ(R))ψ –n(�),

where V ∈ Tn(�) and M is a constant independent of K , R, ψ(�), and the function h(V ).

In this paper, we shall extend Theorem A to solutions of a certain Laplace equation (see
[] for the definition of this Laplace equation).

Theorem  Let h(V ) (V = (R,�)) be solutions of certain Laplace equation defined on Tn(�)
and continuous on Tn(�). If

h(V ) ≤ η(R)Rρ(R), V = (R,�) ∈ Tn
(
�; (,∞)

)
, (.)

and

h(V ) ≥ –η(R), R ≤ , V = (R,�) ∈ Tn(�), (.)

then

h(V ) ≥ –Mη(R)
(
 + ρ(cR)Rρ(cR))ψ –n(�),
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where V ∈ Tn(�), c is a real number satisfying c ≥  and M is a constant independent of R,
ψ(�), the functions η(R) and h(V ).

Remark In the case c ≡  and η(R) ≡ K , where K is a constant, Theorem  reduces to
Theorem A.

2 Lemmas
In order to prove our result, we first introduce a new type of Carleman formula for func-
tions harmonic in a cone (see []). For the Carleman formula for harmonic functions and
its application, we refer the reader to the paper by Yang and Ren (see [], Lemma ). Re-
cently, it has been extended to Schrödinger subharmonic functions in a cone (see [],
Lemma ). For applications, we also refer the reader to the paper by Wang et al. (see [],
Theorem ).

Lemma  Let h be harmonic on a domain containing Tn(�; (, R)), where R > . Then

χ

∫

Sn(�;R)
hψRℵ–– dSR +

∫

Sn(�;(,R))
h
(
tℵ–

– tℵ+
R–χ

)
∂ψ/∂n dσW + d + dR–χ = ,

where dSR denotes the (n – )-dimensional volume elements induced by the Euclidean met-
ric on SR, ∂/∂n denotes differentiation along the interior normal,

d =
∫

Sn(�;)
ℵ–hψ – ψ(∂h/∂n) dS

and

d =
∫

Sn(�;)
ψ(∂h/∂n) – ℵ+hψ dS.

Lemma  (See [], Lemma ) We have

PI�(V , W ) ≤ Mrℵ–
tℵ+–ψ(�)

∂ψ(�)
∂n�

for any V = (r,�) ∈ Tn(�) and any W = (t,�) ∈ Sn(�) satisfying  < t
r ≤ 

 .

PI�(V , W ) ≤ M
ψ(�)
tn–

∂ψ(�)
∂n�

+ M
rψ(�)

|P – Q|n
∂ψ(�)
∂n�

for any V = (r,�) ∈ Tn(�) and any W = (t,�) ∈ Sn(�; ( 
 r, 

 r)).
Let G�,R(V , W ) be the Green function of Tn(�, (, R)). Then

∂G�,R(V , W )
∂R

≤ Mrℵ+
Rℵ––ψ(�)ψ(�),

where V = (r,�) ∈ Tn(�) and Q = (R,�) ∈ Sn(�; R).
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3 Proof of Theorem 1
We first apply Lemma  to h = h+ – h– and obtain

χ

∫

Sn(�;R)
h+Rℵ––ψdSR +

∫

Sn(�;(,R))
h+(

tℵ–
– tℵ+

R–χ
)
∂ψ/∂n dσW + d + dR–χ

= χ

∫

Sn(�;R)
h–Rℵ––ψdSR +

∫

Sn(�;(,R))
h–(

tℵ–
– tℵ+

R–χ
)
∂ψ/∂n dσW , (.)

It is easy to see that

χ

∫

Sn(�;R)
h+Rℵ––ψdSR ≤ Mη(R)Rρ(cR)–ℵ+

(.)

and
∫

Sn(�;(,R))
h+(

tℵ–
– tℵ+

R–χ
)
∂ψ/∂n dσW ≤ Mη(R)Rρ(cR)–ℵ+

(.)

from (.).
We remark that

d + dR–χ ≤ Mη(R)Rρ(cR)–ℵ+
. (.)

We have

χ

∫

Sn(�;R)
h–Rℵ––ψdSR ≤ Mη(R)Rρ(cR)–ℵ+

(.)

and
∫

Sn(�;(,R))
h–(

tℵ–
– tℵ+

R–χ
)
∂ψ/∂n dσW ≤ Mη(R)Rρ(cR)–ℵ+

(.)

from (.), (.), (.), and (.).
It follows from (.) that

∫

Sn(�;(,R))
h–tℵ– ∂ψ

∂n
dσW ≤ Mη(R)

(ρ(cR) + )χ

(ρ(cR) + )χ – (ρ(cR))χ

(
ρ(cR) + 

ρ(cR)
R
)ρ( ρ(cR)+

ρ(cR) R)–ℵ+

,

which shows that
∫

Sn(�;(,R))
h–tℵ–

∂ψ/∂n dσW ≤ Mη(R)ρ(cR)Rρ(cR)–ℵ+
. (.)

By the Riesz decomposition theorem (see []), we have

–h(V ) =
∫

Sn(�;(,R))
PI�(V , W ) – h(W ) dσW

+
∫

Sn(�;R)

∂G�,R(V , W )
∂R

– h(W ) dSR, (.)

where V = (l,�) ∈ Tn(�; (, R)).



Huang et al. Journal of Inequalities and Applications  (2016) 2016:167 Page 5 of 8

We next distinguish three cases.
Case . V = (l,�) ∈ Tn(�; (/,∞)) and R = l/.
Since –h(V ) ≤ h–(V ), we have

–h(V ) =
∑

i=

Ui(V ) (.)

from (.), where

U(V ) =
∫

Sn(�;(,])
PI�(V , W ) – h(W ) dσW ,

U(V ) =
∫

Sn(�;(,l/])
PI�(V , W ) – h(W ) dσW ,

U(V ) =
∫

Sn(�;(l/,R))
PI�(V , W ) – h(W ) dσW ,

and

U(V ) =
∫

Sn(�;R)
PI�(V , W ) – h(W ) dσW .

We have the following estimates:

U(V ) ≤ Mη(R)ψ(�) (.)

and

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ(�) (.)

from Lemma  and (.).
We consider the inequality

U(V ) ≤ U(V ) + U(V ), (.)

where

U(V ) = M
∫

Sn(�;(l/,R))

–h(W )ψ(�)
tn–

∂φ(�)
∂n�

dσW

and

U(V ) = Mrψ(�)
∫

Sn(�;(l/,R))

–h(W )lψ(�)
|V – W |n

∂φ(�)
∂n�

dσW .

We first have

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ(�) (.)

from (.).
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We shall estimate U(V ). Take a sufficiently small positive number d such that

Sn
(
�; (l/, R)

) ⊂ B(P, l/)

for any V = (l,�) ∈ �(d), where

�(d) =
{

V = (l,�) ∈ Tn(�); inf
(,z)∈∂�

∣∣(,�) – (, z)
∣∣ < d,  < r < ∞

}
,

and divide Tn(�) into two sets �(d) and Tn(�) – �(d).
If V = (l,�) ∈ Tn(�) – �(d), then there exists a positive d′ such that |V – W | ≥ d′l for

any Q ∈ Sn(�), and hence

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ(�), (.)

which is similar to the estimate of U(V ).
We shall consider the case V = (l,�) ∈ �(d). Now put

Hi(V ) =
{

Q ∈ Sn
(
�; (l/, R)

)
; i–δ(V ) ≤ |V – W | < iδ(V )

}
,

where

δ(V ) = inf
Q∈∂Tn(�)

|V – W |.

Since

Sn(�) ∩ {
Q ∈ Rn : |V – W | < δ(V )

}
= ∅,

we have

U(V ) = M
i(V )∑

i=

∫

Hi(V )

–h(W )rψ(�)
|V – W |n

∂ψ(�)
∂n�

dσW ,

where i(V ) is a positive integer satisfying i(V )–δ(V ) ≤ r
 < i(V )δ(V ).

Since

rψ(�) ≤ Mδ(V ),

where V = (l,�) ∈ Tn(�), similar to the estimate of U(V ) we obtain

∫

Hi(V )

–h(W )rψ(�)
|V – W |n

∂ψ(�)
∂n�

dσW ≤ Mη(R)ρ(cR)Rρ(cR)ψ –n(�)

for i = , , , . . . , i(V ).
So

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ –n(�). (.)
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From (.), (.), (.), and (.) we see that

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ –n(�). (.)

On the other hand, we have from Lemma  and (.)

U(V ) ≤ Mη(R)Rρ(cR)ψ(�). (.)

We thus obtain from (.), (.), (.), and (.)

–h(V ) ≤ Mη(R)
(
 + ρ(cR)Rρ(cR))ψ –n(�). (.)

Case . V = (l,�) ∈ Tn(�; (/, /]) and R = l/.
It follows from (.) that

–h(V ) = U(V ) + U(V ) + U(V ),

where U(V ) and U(V ) are defined in Case  and

U(V ) =
∫

Sn(�;(,R))
PI�(V , W ) – h(W ) dσW .

Similar to the estimate of U(V ) in Case  we have

U(V ) ≤ Mη(R)ρ(cR)Rρ(cR)ψ –n(�),

which together with (.) and (.) gives (.).
Case . V = (l,�) ∈ Tn(�; (, /]).
It is evident from (.) that we have

–h ≤ η(R),

which also gives (.).
We finally have

h(V ) ≥ –η(R)M
(
 + ρ(cR)Rρ(cR))ψ –n(�)

from (.), which is the conclusion of Theorem .
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