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Abstract
This article is devoted to the proposal of two relative stochastic orders namely the
relative hazard rate and relative mean residual life orders. These stochastic orders are
applied to provide some stochastic comparisons between two additive frailty models.
Some closure properties of the model with respect to these relative stochastic orders
are presented. In addition, we demonstrate how the variation of the baseline variable
and the variation of the additive variable in the additive frailty model, each in one
time, has an effect on the model. Finally, a possible extension of the concept of
relative orders to the multivariate case is discussed.
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1 Introduction and preliminaries
In the context of reliability and survival analysis, various models have been introduced
in the literature for modeling and analyzing failure time data. Some of these models are
the proportional (additive) hazards model, the proportional (additive) reversed hazards
model, and the proportional (additive) mean residual life model (cf. [–]). The additive
hazards model, which is well known in the literature, has played a prominent role in mod-
eling survival data. For a non-negative random variable X with the probability density
function (pdf) f and the survival function (sf ) F̄ , the random variable Xx = (X – x | X > x)
for any x ∈ χ is known as the residual life of X at some fixed time x provided that X is
greater than x, where χ = {x : F̄(x) > }. Denote by r and m the hazard rate (hr) and the
mean residual life (mrl) functions of X, respectively, which are given by

r(x) = lim
δ→+

P(Xx ∈ (, δ])
δ

=
f (x)
F̄(x)

, x ∈ χ ,

and

m(x) =
∫ ∞

x F̄(u) du
F̄(x)

, x ∈ χ ,

which are connected by

r(x) =
 + d

dx m(x)
m(x)

.
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The additive hazards model considers a random variable Z, representing the changes in
the operating conditions with an additive effect on r(x) when Z = z, through the condi-
tional hazard rate

r(x | z) = r(x) + z, x ≥ . ()

Let r(x | z) be the hr function of the conditional random variable X(z). Then the sf of X(z)
is easily obtained:

F̄(x | z) = F̄(x)e–xz, x ≥ . ()

On the other hand, it has been recognized in many statistical procedures that individ-
uals vary in their vulnerability to causes of death or disease, response to treatment, and
impact of various risk factors. One way of taking this biological variation into account is
through the observed covariates. However, it is not possible to incorporate all risk factors
and all possible forms of inter-individual heterogeneity into consideration. In practice,
the heterogeneity is an issue that cannot be explained by observed covariates, which is a
serious problem because it may result in some misleading conclusions. To eliminate the
problem of heterogeneity in many practical populations, researchers have considered the
unconditional survival function of the additive hazards model (cf. [–]). As a result, the
expression in () could be regarded as a consequence of the influence of a random envi-
ronment on the hr r(x). Formally, let X(Z) be the overall random variable with the sf

Ḡ(x) = F̄(x)E
[
e–xZ]

, x ≥ , ()

which is known as the additive frailty model (cf. []).
The aim of this paper is to propose two relative stochastic orders namely the relative

mean residual life and relative hazard rate orders through which some relative stochastic
comparisons between two additive frailty models are developed. The organization of this
paper is as follows. In Section , main results of the paper are included. In Section .,
the definitions of the relative stochastic orders are given. Then we present some closure
properties in Section .. In Section ., the variation of the baseline variable and in Sec-
tion ., the variation of the additive mixing effect on the additive frailty model are studied.
A possible extension of the concept of relative stochastic orders to the multivariate case
is discussed and some examples of interest are given in Section .. Finally in Section ,
we close the paper with some remarks about the importance of the materials that will be
discussed throughout.

Before proceeding further, we present some definitions and background for various
stochastic comparisons (cf. [–]). Throughout this paper X and X are two non-
negative and absolutely continuous random variables with pdf ’s f and f, sf ’s F and F,
hr’s r and r and mrl’s m and m, respectively. The term increasing is used instead of
monotone non-decreasing and the term decreasing is used instead of monotone non-
increasing. We assume that all expectations are finite wherever they appear.

The random variable X is said to be smaller than X in the:
(i) Stochastic order (denoted X ≤st X) if F̄(x) ≤ F(x), for all x ≥ .

(ii) Hazard rate order (denoted X ≤hr X) if F(x)/F̄(x) is increasing in x ≥ .
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(iii) Likelihood ratio order (denoted X ≤lr X) if f(x)/f(x) is increasing in x ≥ .
(iv) Mean residual life order (denoted X ≤mr X) if

∫ ∞
x F(u) du/

∫ ∞
x F̄(u) du is

increasing in x ≥ .
(v) Aging intensity order (denoted X ≤AI X) if

∫ x
 [r(u)/r(x)] du ≤ ∫ x

 [r(u)/r(x)] du,
for all x ≥ .

The lifetime random variable X is said to have:
(i) The increasing [decreasing] likelihood ratio (ILR, DLR) property if f is a

log-concave [log-convex] function on the support of F.
(ii) The increasing [decreasing] hazard rate (IFR, DFR) property if F̄ is a log-concave

[log-convex] function on the support of F.
(iii) Decreasing (increasing) mean residual life (DMRL, IMRL) property if

∫ ∞
x F̄(u) du is

log-concave [log-convex] on the support of F.
The notion of total positivity (reverse regularity) is due to []. A non-negative measur-

able function β(x, y) is said to be totally positive of order  (TP) [reverse regular of order 
(RR)] in (x, y) ∈ χ × γ , if

∣
∣
∣
∣
∣
β(x, y) β(x, y)
β(x, y) β(x, y)

∣
∣
∣
∣
∣
≥ [≤],

for all x ≤ x ∈ χ and y ≤ y ∈ γ , in which χ and γ are two real subsets of R.
Finally, we will utilize frequently the following useful lemma from [].

Lemma . Let W ≥  be a random variable with df from the family � = {Hθ , θ ∈ � ⊆ R}
such that Hθ ≤st (≥st)Hθ , for all θ ≤ θ ∈ �. Suppose a measurable real function φ(w, θ )
for which Eθ [φ(W , θ )] exists. Then the function Eθ [φ(W , θ )] is:

(i) Decreasing in θ , if φ(w, θ ) is decreasing (increasing) in w and decreasing in θ .
(ii) Increasing in θ , if φ(w, θ ) is increasing (decreasing) in w and increasing in θ .

2 Main results
This section includes main results of the paper along with further discussions, conclusions
and examples. Most of the stochastic orders discovered and analyzed in the literature are
the ones which compare the ‘location’ or the ‘magnitude’ of the random variables and there
are other ones which compare the ‘variability’ or the ‘dispersion’ of the random variables
(cf. [] and []). As another perspective of stochastic comparison between lifetime vari-
ables, we devoted our attention here to other kinds of stochastic orders which compare
the random variables with respect to their ‘aging’ properties according to the well-known
reliability measures of hazard rate and mean residual life. These stochastic orders called
the relative hazard rate order and the relative mean residual life order, which will be dis-
cussed in the sequel, have been somewhat neglected in the literature. We provide further
properties of these stochastic orders. Because there is no theoretical base for choosing the
distribution of the additive effect variable in the additive frailty model it is important to see
how the overall variable is influenced by the variation of the additive effect and baseline
variables in the model. Such an investigation has been recently done in the context of vari-
ous reliability models (see, for example, [] and the references therein). Thus, as a second
lead, we use the relative hazard and the relative mean residual life orders for comparison
of additive hazards model. Possible extensions to the multivariate case are also discussed.



Kayid et al. Journal of Inequalities and Applications  (2016) 2016:158 Page 4 of 23

2.1 Relative orders
In the context of reliability and survival analysis, a probabilistic order based on the mono-
tonicity of the ratio r(x)/r(x) is studied in [, ]. The random variable X is said to be
aging faster than X if r(x)/r(x) is increasing in x. Based on this order relation, a general-
ized stochastic order has been introduced in []. The crossing hazards phenomenon has
been studied in connection with prognostic studies in the treatment of breast cancer in
[]. An increasing hazards ratio is a reasonable alternative to the proportional hazards
model in this case (cf. []). According to the foregoing points we propose the following
stochastic order.

Definition . The random variable X is said to be smaller than X in relative hazard
rate order (denoted X ≤rlhr X) if r(x)/r(x) is decreasing in x ≥ , or equivalently if ri(x)
is RR in (i, x) ∈ {, } × [,∞).

It is to be noted here that the notion of the relative hazard rate order given in Defi-
nition . is equivalent to the notion of ageing faster given in [] (see Definition  and
Proposition . in []).

In replacement and repair strategies, along with the hr function, the mrl function also
plays an important role as the latter summarizes the entire residual life function, whereas
the former describes only the risk of instantaneous failure at some fixed time x. Therefore,
in some situations, the mrl may be more appropriate than the hr in order to compare the
lifetime of two devices. It is well known that X ≤hr X implies X ≤mr X. To conclude
the inverse implication, a sufficient condition is that the ratio m(x)/m(x) is increasing
in x (cf. []). Therefore, the monotonicity property of the ratio of the mrl functions of two
lifetime random variables seems to be important for analysis. Using the notion of relative
mrl, some useful properties in reliability theory were studied in [, ].

Definition . The random variable X is said to be smaller than X in relative mrl order
(denoted X ≤rlmr X) if m(x)/m(x) is increasing in x ≥ , or equivalently if mi(x) is TP

in (i, x) ∈ {, } × [,∞).

In the following result, we establish some useful implications regarding the relative haz-
ard rate order and other well-known stochastic orders.

Theorem .
(i) If X ≤rlhr X such that X is IFR, then X is IFR.

(ii) If X ≤rlhr X and X ≤hr X, then X ≤lr X.
(iii) X ≤rlhr X implies X ≤AI X.
(iv) If limx→

f(x)
f(x) ≤ , then X ≤rlhr X implies X ≤hr X.

(v) If  < limx→∞ f(x)
f(x) < ∞, then X ≤rlhr X implies X ≤lr X.

Proof The proof of (i) is quite straightforward and hence omitted. The assertion (ii) has
been given in Theorem .C.(a) of []. To prove (iii), first observe that, because of X ≤rlhr

X, we have

[
r(u)
r(u)

–
r(x)
r(x)

]

≥ , for all u ≤ x,
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which is equivalent to

[
r(u)
r(x)

–
r(u)
r(x)

]

≥ , for all u ≤ x.

Therefore

∫ x



[
r(u)
r(x)

–
r(u)
r(x)

]

du ≥ ,

which implies that X ≤AI X. For proving (iv), note that F̄() = F̄() = . Since X ≤rlhr X

implies that r(x)/r(x) is decreasing in x > , we have

r(x)
r(x)

≤ lim
x→

{
f(x)
f(x)

F̄(x)
F̄(x)

}

= lim
x→

f(x)
f(x)

≤ , for all x > ,

which obviously gives X ≤hr X. For the sake of proving (v), observing that F̄(∞) =
F̄(∞) =  and using the L’Hospital rule we get

lim
x→∞

F̄(x)
F̄(x)

= lim
x→∞

f(x)
f(x)

=
[

lim
x→∞

f(x)
f(x)

]–

.

Now, since X ≤rlhr X we have

r(x)
r(x)

≥ lim
x→∞

r(x)
r(x)

= lim
x→∞

f(x)
f(x)

lim
x→∞

F̄(x)
F̄(x)

= .

That is, X ≤hr X, which in view of assertion (ii) implies that X ≤lr X. �

The following result illustrates another conclusion of the relative hazard rate order.

Theorem . Let X ≤rlhr X and limx→∞[r(x)/r(x)] = α > . Then F̄(x) ≤ F̄α
 (x) for all

x > .

Proof Let κ(x) = r(x)/r(x), since X ≤rlhr X we see that κ(x) is non-negative and decreas-
ing in x ∈ (,∞). Because we have limx→∞ κ(x) = α > , we can get, for all x > ,

– ln
[
F̄(x)

]
=

∫ x


κ(u)r(u) du

≥ κ(x)
∫ x


r(u) du

= –κ(x) ln
[
F̄(x)

]
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≥ – ln
[
F̄(x)

]
lim

x→∞κ(x)

= – ln
[
F̄(x)α

]
.

Therefore, ln[F̄(x)] ≤ ln[F̄(x)α] for all x > , which completes the proof. �

The next result provides some characterization properties involving the relationship of
the relative mean residual life order to other stochastic orders.

Theorem .
(i) If X ≤rlmr X such that X is DMRL, then X is DMRL.

(ii) If X ≤rlmr X and X ≤mr X, then X ≤hr X.
(iii) If  < limx→∞ f(x)

f(x) < ∞, then X ≤rlmr X implies X ≤hr X.
(iv) If E(X) ≤ E(X), then X ≤rlmr X implies X ≤mr X.

Proof The proofs of (i) and (ii) are easily obtained and hence omitted. To prove (iii), by
using the L’Hospital rule we have

lim
x→∞

∫ ∞
x F̄(u) du

∫ ∞
x F̄(u) dx

= lim
x→∞

F̄(x)
F̄(x)

= lim
x→∞

f(x)
f(x)

.

Now, let us observe that

m(x)
m(x)

≤ lim
x→∞

m(x)
m(x)

= lim
x→∞

∫ ∞
x F̄(u) du

∫ ∞
x F̄(u) du

lim
x→∞

F̄(x)
F̄(x)

= lim
x→∞

f(x)
f(x)

[

lim
x→∞

f(x)
f(x)

]–

= , for all x ≥ .

Therefore, we conclude that X ≤mr X, which by the result of assertion (ii) implies that
X ≤hr X. To prove (iv), for all x ≥  we have

m(x)
m(x)

≥ m()
m()

=
E[X]
E[X]

≥ ,

and the result is now deduced. �

In view of the fact that the hr order implies the mrl order (cf. []), one may wonder
whether the relative hazard rate order implies the relative mean residual life order. Exam-
ple . below gives a negative answer.

Example . Let X and X have respective survival functions

F̄(x) =

{
exp(–x),  ≤ x ≤ ,
x exp(–x), x ≥ ,
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and

F(x) =

{
exp(–x),  ≤ x ≤ ,
x exp(–x), x ≥ .

Obviously, F(x) = [F̄(x)], for all x ∈ R, which means X and X have proportional hazards
rate and hence X ≤rlhr X. After straightforward computation, one obtains

m(x)
m(x)

=

{
+ exp((x–))
(+exp(x–)) ,  ≤ x ≤ ,

x+x+
x(x+) , x ≥ .

The ratio m(x)/m(x) does not have a monotone behavior and hence neither X ≤rlmr X

nor X ≤rlmr X holds.

In general it seems that there is no relation between the relative hazard rate and the
relative mean residual life orders. In spite of this, the following result gives a sufficient
condition under which each of these orders implies the other one. The proof is straight-
forward and hence we omit it.

Theorem . Let + d
dx m(x)

+ d
dx m(x)

be increasing (decreasing) in x over [,∞). Then

X ≤rlmr X ⇒ X ≤rlhr X (X ≤rlhr X ⇒ X ≤rlmr X).

2.2 Closure properties of the model
Let λ be the hazard rate function of X(Z). Below we state the closure property of the addi-
tive frailty model with respect to the relative hazard rate order when appropriate assump-
tions are satisfied.

Theorem . X(Z) ≤rlhr X provided that X is IFR.

Proof In view of Theorem . in [], λ(x) – r(x) = E[Z | X(Z) > x], which is decreasing in x
from Corollary . in []. Since X is IFR by assumption, the result follows. �

To state and prove another closure property of the additive frailty model with respect to
the relative mean residual life order, we recall the following lemma from [].

Lemma . Let f (x, y) be an RR (TP) function in (x, y) ∈ [,∞) × [,∞), and let φi(y) be
TP in (i, y) ∈ {, } × [,∞). Then

�i(x) =
∫ ∞


φi(y)f (x, y) dy

is RR (TP) in (i, x) ∈ {, } × [,∞).

Theorem . X ≤rlmr X(Z) provided that X is IFR.
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Proof We need to show that l(x)/m(x) is increasing in x ≥ , where l is the mrl function
of X(Z). By (), we get

l(x)
m(x)

=
F̄(x)

∫ ∞
x Ḡ(u) du

Ḡ(x)
∫ ∞

x F̄(u) du

=
E[

∫ ∞
x F̄(u)e–uZ du]

E[
∫ ∞

x F̄(u)e–xZ du]

=
∫ ∞



[ ∫ ∞
x F̄(u)e–uw du

e–xw
∫ ∞

x F̄(u) du

]
e–xwh(w)

∫ ∞
 e–xwh(w) dw

dw

= E
[
φ(Wx, x)

]
,

where Wx is a non-negative random variable with pdf

h(w; x) =
e–xwh(w)

∫ ∞
 e–xwh(w) dw

, w ≥ ,

and

φ(w, x) =
∫ ∞

x F̄(u)e–uw du
e–xw

∫ ∞
x F̄(u) du

=
∫ ∞

 F̄(x + y)e–wy dy
∫ ∞

 F̄(x + y) dy
.

It can be shown that Wx is stochastically decreasing in x, and φ(w, x) is decreasing in w.
For each w ≥ , let

φi(y) =

{
, i = ,
e–wy, i = ,

and take f (x, y) = F̄(x + y) in Lemma .. We observe that φi(y) is TP in (i, y) ∈ {, } ×
[,∞). By the IFR property of X, we see that f (x, y) is RR in (x, y) ∈ [,∞) × [,∞). As
a result of Lemma ., for each fixed w ≥ , �i(x) is RR in (i, x) ∈ {, } × [,∞), which
means that �(x)/�(x) in decreasing in x > , that is, φ(w, x) = �(x)/�(x) is increasing
in x > , for all w ≥ . Now, Lemma .(ii) completes the proof. �

2.3 Variation in mixing variable
Let Zi be a mixing effect having pdf hi and let X(Zi) be the corresponding overall variable
in the additive frailty model with the sf

Ḡi(x) = F̄(x)E
[
e–xZi

]
, x ≥ , i = , . ()

We will assume, for each i = , , that X(Zi) has pdf gi given by

gi(x) = E
[
e–xZi

(
f (x) + ZiF̄(x)

)]
, x ≥ , ()
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and we assume that λi is the hr function of X(Zi) obtained from () and () by

λi(x) =
E[e–xZi (r(x) + Zi)]

E[e–xZi ]
, x ≥ . ()

In the following result we discuss conditions on the two additive effects Z and Z under
which the resulted overall variables from this effects with sf as in () are ordered according
to the relative hazard rate order. We assume that Z and Z are statistically independent,
Z = Z + Z and ei(z) = E(Zi | Z = z), i = , .

Theorem . Let X be IFR and let e(z) be decreasing in z ≥ . Then X(Z) ≤rlhr X(Z).

Proof We need to demonstrate that λ(x)/λ(x) is increasing in x > . Suppose that hZ is the
pdf of Z = Z + Z. Note that by the assumption because of the identity e(z) + e(z) = z, for
any z ∈ [,∞), e(z) is increasing in z. In view of () and because Z and Z are independent
one can get, for all x > ,

λ(x)
λ(x)

=
E[e–xZ (r(x) + Z)]E[e–xZ ]
E[e–xZ (r(x) + Z)]E[e–xZ ]

=
E[e–x(Z+Z)(r(x) + Z)]
E[e–x(Z+Z)(r(x) + Z)]

=
E[e–xZ{r(x) + e(Z)}]
E(e–xZ{r(x) + e(Z)})

=
∫ ∞



[
r(x) + e(w)
r(x) + e(w)

] {r(x) + e(w)}e–xwhZ(w)
∫ ∞

 {r(x) + e(w)}e–xwhZ(w) dw
dw

= E
[
φ(W , x)

]
,

where

φ(w, x) =
r(x) + e(w)
r(x) + e(w)

, w, x ≥ ,

and W is a non-negative rv with pdf

h(w | x) =
[r(x) + e(w)]e–xwhZ(w)

∫ ∞
 [r(x) + e(w)]e–xwhZ(w) dw

, w, x ≥ .

From the assumptions we see that φ is decreasing in w ≥ . Set e(w) = e(w) – e(w) and
note that e() = e() = , by which we have e() = . Because e is decreasing and e is
increasing, e is decreasing and hence e(w) ≤ e() = , for all w ≥ , i.e. e is a non-positive
function. Therefore, we see that

φ(w, x) =  +
e(w)

r(x) + e(w)

is increasing in x >  since r (the hr function of X) is increasing by the assumption. On
the other hand, it is easy to show that h(w | x) is RR in (w, x) ∈ [,∞) × [,∞), which
implies that W is stochastically decreasing in x. By applying Lemma .(ii), the proof is
completed. �
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The next result facilitates the use of one of the conditions in Theorem ..

Proposition . If Z is DLR, then e(z) is decreasing in z ∈ [,∞).

Proof Denote by hZ the pdf of Z = Z + Z and denote by hi the pdf of Zi, i = , . If we
denote by h the joint pdf of (Z, Z) then by the fact that Z and Z are independent, we
have h(z, z) = h(z)h(z), for any (z, z) ∈ [,∞) × [,∞). Therefore,

e(z) = E[Z | Z + Z = z]

=
∫ ∞


zhZ|Z=z(z | z) dz

=
∫ ∞

 zh(z)h(z – z) dz
∫ ∞

 h(z)h(z – z) dz
, for any z ≥ .

Now, it is adequate to see that ρ(i, z) =
∫ ∞

 φ(i, z)ψ(z, z) dz is RR as a function of i = , 
and of z ∈ [,∞), where φ(, z) =  and φ(, z) = z, and ψ(z, z) = h(z)h(z –z). It is easy
to see that φ(i, z) is TP in (i, z) ∈ {, }× [,∞), and also because Z is DLR; thus its pdf
is log-convex which shows that ψ(z, z) is RR in (z, z) ∈ [,∞) × [,∞). An application
of the basic composition formula, as reported in Lemma ., will complete the proof. �

Example . Suppose that Z and Z have exponential distributions with means /θ and
/θ, respectively, where θ > θ. Suppose also that the baseline variable X follows an ex-
ponential distribution with mean /θ . It is evident that Z is DLR and that X is IFR. By
Proposition ., e(z) is decreasing in z. Hence, the assumptions of Theorem . hold true.
After some routine calculations, one has λi(x) = /(x + θi) + θ , i = , . It can be seen that λ

decreases faster than λ so that λ/λ is increasing, i.e., X(Z) ≤rlhr X(Z), which confirms
the result of Theorem ..

In the rest of this subsection we study the problem of comparison of two additive frailty
models in () based on the relative mean residual life order. Note that, in view of (), the
mrl function of X(z) is given by

m(x | z) =
∫ ∞

x

F̄(u)e–uz

F̄(x)e–xz
du, x, z ≥ . ()

Let li(x) denote the mrl function of X(Zi) with the sf of (). By some calculation we have,
for each i = , ,

li(x) = E
[
X(Zi) – x | X(Zi) > x

]

=
∫ ∞

x

F̄(u)E[e–uZi ]
F̄(x)E[e–xZi ]

du

=
E[

∫ ∞
x F̄(u)e–uZi du]
E[F̄(x)e–xZi ]

. ()

Now, the following result is immediate.
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Theorem . Let Z ≤lr Z such that Z is DLR and let

X(z) ≤rlmr X(z), for all z ≤ z ∈ [,∞). ()

Then

X(Z) ≤rlmr X(Z).

Proof Because of () and because Z and Z are independent, we can get

l(x)
l(x)

=
Ee[–xZ m(x | Z)]E[e–xZ ]
E[e–xZ m(x | Z)]E[e–xZ ]

=
E[e–x(Z+Z)m(x | Z)]
E[e–x(Z+Z)m(x | Z)]

, for all x ≥ .

It therefore suffices to prove that

ρ(i, x) = E
[
e–x(Z+Z)m(x | Zi)

]

is TP in (i, x) ∈ {, } × [,∞). Before indicating that, by conditioning on Z = Z + Z, we
have

ρ(i, x) = E
[
e–x(Z+Z)m(x | Zi)

]

= E
{

E
[
e–x(Z+Z)m(x | Zi) | Z

]}

= E
{

e–xZE
[
m(x | Zi) | Z

]}
, i = , .

Now, it is enough to prove that ρ(, x)/ρ(, x) is increasing in x ≥ . First of all, suppose
that fZ denotes the pdf of Z = Z + Z. Then

ρ(, x)
ρ(, x)

=
∫ ∞

 e–xwE[m(x | Z) | Z = w]fZ(w) dw
∫ ∞

 e–xwE[m(x | Z) | Z = w]fZ(w) dw

= E
[
φ(Wx, x)

]
, ()

where φ(w, x) = E[m(x | Z) | Z = w]/E[m(x | Z) | Z = w], w ≥ , and Wx is a non-negative
random variable with pdf

h(w | x) =
e–xwfZ(w)E[m(x | Z) | Z = w]

∫ ∞
 e–xwfZ(w)E[m(x | Z) | Z = w] dw

, w ≥ .

Now, we can write

φ(w, x) =
∫ w

 m(x | y)fZ|Z=w(y) dy
∫ w

 m(x | y)fZ|Z=w(y) dy
.

Define for each fixed w ≥ 

�(i, x) =
∫ w


m(x | y)fZi|Z=w(y) dy, i = , .
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The purpose is now to prove that:
. φ(w, x) is increasing in x, for all w ≥ .
. φ(w, x) is decreasing in w, for all x > .
. Wx is stochastically decreasing in x.
Denote by h(z, z) the values of the joint pdf of (Z, Z). From () we observe that m(x | y)

is TP in (x, y), and

fZ|Z=w(y)
fZ|Z=w(y)

=
h(w – y, y)
h(y, w – y)

=
h(y)
h(y)

h(w – y)
h(w – y)

is increasing in y, i.e. fZi|Z=w(y) is TP in (i, y). Lemma . shows that �(i, x) is TP in (i, x) ∈
{, } × [,∞), and hence φ(w, x) is increasing in x. On the other hand, the identity of
φ(w, x) = E[φ(Y , w)] holds for all w ≥ , in which

φ(y, w) =
fZ|Z=w(y)
fZ|Z=w(y)

=
h(y)h(w – y)
h(y)h(w – y)

, y ∈ (, w],

which is decreasing in w ≥  and increasing in y, because Z ≤lr Z. For each fixed x > ,
Y is a non-negative random variable with pdf

h(y | w) =
m(x | y)fZ|Z=w(y)

∫ w
 m(x | y)fZ|Z=w(y) dy

=
m(x | y)

C(w)
fZ|Z=w(y), y ∈ (, w],

where C(w) is the normalizing constant. For all w ≤ w ∈ [,∞), we have

h(y | w)
h(y | w)

=
C(w)
C(w)

fZ|Z=w (y)
fZ|Z=w (y)

=
C(w)
C(w)

h(w – y)
h(w – y)

.

We know that h is log-convex, thus h(y | w)/h(y | w) is decreasing in y and therefore Y
is stochastically decreasing in w. Lemma .(i) implies that φ(w, x) is decreasing in w ≥ .
We have, for all w ≤ w ∈ [,∞),

h(w | x)
h(w | x)

∝ [
Ḡ(x)

]w–w E{m(x | Z) | Z = w}
E{m(x | Z) | Z = w} .

We can establish that

E[m(x | Z) | Z = w]
E[m(x | Z) | Z = w]

=
∫ ∞

 m(x | y)fZ|Z=w (y) dy
∫ ∞

 m(x | y)fZ|Z=w (y) dy
.
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We can verify that fZ|Z=wi (y) is RR in (i, y) ∈ {, } × [,∞), and we, moreover, know that
m(x | y) is TP in (x, y) ∈ [,∞) × [,∞). Hence, applying Lemma .,

�∗(i, x) =
∫ ∞


m(x | y)fZ|Z=wi (y) dy

is RR in (i, x) ∈ {, } × [,∞). This means that Wx is stochastically decreasing in x. Re-
peated application of Lemma .(i) to the identity given in () shows that E[φ(Wx, x)] is
increasing in x, and hence the proof is completed. �

The next example indicates that the condition that Z is DLR in Theorem . is not a
necessary one.

Example . Suppose Zi has density hi(z) = θ
i (z +θ )e–zθi /( +θiθ ), i = ,  in which θ > θ.

It can easily be shown that Z ≤lr Z and that Z is not DLR. If X is an exponential random
variable with mean /θ , then m(x | z) = /(θ + z). Thus, X(z) ≤rlmr X(z), for all z ≤ z.
Hence, the second assumption in Theorem . is not satisfied. It can be checked, after
calculations, that li(x) = /(x + θi) + θ , i = , . Now, one gets X(Z) ≤rlmr X(Z), which says
that the result of Theorem . remains true.

2.4 Variation in baseline variable
In this subsection, we discuss the impact of different baseline variables sharing the same
additive effect into the additive frailty model. Let Xi be the baseline variable with the sf F̄i,
the pdf fi and hr function ri, i = , . Let Xi(Z) be the overall variable arising from the
baseline variable Xi with additive mixing effect Z and denote its sf by F̄∗

i , which is given
by

F̄∗
i (x) = F̄i(x)E

[
e–xZ]

, x ≥ , i = , . ()

We use λ∗
i to denote the hrf of Xi(Z), for each i = , , which is given by

λ∗
i (x) =

E[e–xZ(ri(x) + Z)]
E[e–xZ]

, x ≥ . ()

Below we make the rhr order between X(Z) and X(Z) under some appropriate assump-
tions.

Theorem . Let X be IFR and X be DFR such that f(+) ≤ f(+), where fi(+) =
limx→+ fi(x) for each i = , . Then X(Z) ≤rlhr X(Z).

Proof We need to establish that λ∗
(x)/λ∗

 (x) is decreasing in x > . To this end, from ()
we can get

λ∗
(x)

λ∗
 (x)

=
E[e–xZ(Z + r(x))]
E[e–xZ(Z + r(x))]

=
∫ ∞



[
w + r(x)
w + r(x)

]
[w + r(x)]e–xwh(w)

∫ ∞
 [w + r(x)]e–xwh(w) dw

dw

= E
[
φ(W , x)

]
,
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where φ(w, x) = [w + r(x))/(w + r(x)], which by the assumptions is decreasing in x > , for
each fixed w ≥ , and, moreover, W is a non-negative rv with pdf

h(w | x) =
[w + r(x)]e–xwh(w)

∫ ∞
 [w + r(x)]e–xwh(w) dw

, w ≥ .

Note that we can write φ(w, x) =  – δ(x)/(w + r(x)), with δ(x) = r(x) – r(x). By the as-
sumptions, δ is increasing and thus

δ(x) = r(x) – r(x)

≥ lim
x→

[
r(x) – r(x)

]

= f
(
+)

– f
(
+) ≥ , for all x > .

Because of these observations, we can easily see that φ is increasing in w ≥ , for each
fixed x > . One can easily show that h(w | x) is RR in (w, x), which implies that W is
stochastically decreasing in x. By Lemma .(i) we obtain the proof. �

Example . Consider two baseline variables X and X with pdf ’s f(x) = (x + )e–x–x/

and f(x) = e–x//, respectively. It is seen that r(x) = x +  and that r(x) = /. Thus, X is
IFR and X is DFR. It is also observed that f(+) = / <  = f(+). Based on Theorem .,
we must have X(Z) ≤rlhr X(Z) for any random effect Z. Let Z have an exponential distri-
bution with mean /θ . It can then be directly derived that λ∗

 (x) = /(x + θ ) + x +  and that
λ∗

(x) = /(x + θ ) + /. Hence, λ∗
 /λ∗

 is an increasing function which validates the result of
Theorem . as expected.

Now, assume that Xi(Z) with the sf in () has the mrl function l∗i , i = , . In the following,
the relative mean residual life order between X(Z) and X(Z) holds when appropriate
assumptions are imposed.

Theorem . Let X ≤hr X and let

X(z) ≤rlmr X(z), for all z ≥ . ()

Then

X(Z) ≤rlmr X(Z).

Proof The proof will be obtained if we show that l∗(x)/l∗ (x) is increasing in x ≥ . We have

l∗(x)
l∗ (x)

=
E[F̄(x)

∫ ∞
x F̄(u)e–uZ du]

E[F̄(x)
∫ ∞

x F̄(u)e–uZ du]

=
∫ ∞



[ F̄(x)
∫ ∞

x F̄(u)e–uw du
F̄(x)

∫ ∞
x F(u)e–uw du

] [
∫ ∞

x F̄(u)e–uw du]h(w)
∫ ∞

 [
∫ ∞

x F̄(u)e–uw du]h(w) dw
dw

= E
[
φ(W , x)

]
,



Kayid et al. Journal of Inequalities and Applications  (2016) 2016:158 Page 15 of 23

where

φ(w, x) =
F̄(x)

∫ ∞
x F̄(u)e–uw du

F̄(x)
∫ ∞

x F̄(u)e–uw du

=
E[X(z) – x | X(z) > x]
E[X(z) – x | X(z) > x]

.

Because of (), φ is increasing in x ≥ . To discover the behavior of φ with respect to w,
we establish the following function of i and w. For fixed x ≥ , set

ρ(i, w) =
∫ ∞

x
F̄i(u)e–uw du,

where F̄i(u) is TP in (i, u) ∈ {, } × [x,∞) since X ≤hr X, and readily e–uw is RR in
(u, z) ∈ [x,∞) × [,∞). Therefore, on using Lemma ., ρ is RR in (i, w) ∈ {, } × [,∞),
which means that φ is decreasing in w ≥ , for each fixed x ≥ . Notice that W , for each
fixed x ≥ , is a non-negative rv with pdf

h(w | x) =
[
∫ ∞

x F̄(u)e–uw du]h(w)
∫ ∞

 [
∫ ∞

x F̄(u)e–uw du]h(w) dw
, w ≥ .

It is easy to show that h(w | x) is RR in (w, x) ∈ [,∞)× [,∞), which shows W is stochas-
tically decreasing in x. Now, Lemma .(ii) completes the proof of the theorem. �

Example . Let X and X have exponential distributions with means /θ and /θ,
respectively, such that θ > θ. Suppose now that Z has density h(z) = (z + θ)(z +
θ)e–zθ /c(θ , θ, θ) where θ >  and c(θ , θ, θ) is the normalizing constant. Evidently,
X ≤hr X and also X(z) ≤rlmr X(z), for all z ≥ . The assumptions of Theorem . hold.
By some calculation, one gets l∗(x)/l∗ (x) = ( + θ(x + θ ))/( + θ(x + θ )), which increases in
x as expected in Theorem ..

2.5 Multivariate extension
The aim of this subsection is to extend some results in Section  to the multivariate setting.
To this end, we propose the notion of multivariate relative hazard rate and multivariate
relative mean residual life orders. First, we recall the multivariate hazard rate and the mul-
tivariate weak hazard rate orders as defined in [].

Definition . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be two random vectors with re-
spective survival functions F̄ and Ḡ defined by F̄(x) = P(X > x) and Ḡ(x) = P(Y > x), x ∈R

n.
We say that X is smaller than Y in multivariate hazard rate order (denoted X �mhr Y) if

F̄(x)Ḡ(y) ≤ F̄(x ∧ y)Ḡ(x ∨ y),

for every x = (x, . . . , xn) and y = (y, . . . , yn) in R
n where x ∧ y = [min(x, y), . . . , min(xn, yn)]

and x ∨ y = [max(x, y), . . . , max(xn, yn)]. Similarly, we say that X is smaller than Y in mul-
tivariate weak hazard rate order (denoted X �mwhr Y) if

Ḡ(x)
F̄(x)

is increasing in x ∈ {
x ∈R

n : F̄(x) > 
}

.
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It not hard to see that the order �mhr is weaker that �mwhr , namely,

X �mhr Y ⇒ X �mwhr Y.

The multivariate hazard rate gradient of a random vector X = (X, . . . , Xn) with a partial
differentiable sf F̄ is given by rX = (r()

X , . . . , r(n)
X ) with

r(i)
X (x) =

∂iF̄(x)
F̄(x)

, x ∈ {
x ∈R

n : F̄(x) > 
}

,

where ∂iF̄(x) the partial derivative of F̄(x) with respect to xi. Notice that the multivariate
weak hazard rate order is characterized in terms of r(i)

X , i = , . . . , n, that is,

X �mwhr Y ⇔ r(i)
X (x) ≥ r(i)

Y (x), i = , . . . , n.

Now, we introduce the multivariate relative hazard rate order.

Definition . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be two random vectors. We say
that X is smaller than Y in multivariate relative hazard rate order (denoted X �mrlhr Y), if,
for every i = , . . . , n,

r(i)
Y (x)

r(i)
X (x)

is decreasing in x.

The following result shows that the multivariate relative hazard rate order is closed un-
der marginalization as shown below.

Theorem . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be two random vectors. Then

X �mrlhr Y ⇒ Xi �rlhr Yi, i = , . . . , n.

Proof The proof is directly obtained since rXi (xi) = r(i)
X (–∞, . . . , –∞, xi, –∞, . . . , –∞) and

rYi (xi) = r(i)
Y (–∞, . . . , –∞, xi, –∞, . . . , –∞). �

Now, we will extend the results of Theorem . to the multivariate context.

Theorem . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be positive random vectors with
respective marginal density functions fi and gi, i = , . . . , n.

(i) If for all i = , . . . , n, limx→
gi(x)
fi(x) ≤  then X �mrlhr Y implies X �mwhr Y.

(ii) If  < limxi→∞ Ḡ(x)
F̄(x) < ∞, i = , . . . , n then X �mrlhr Y implies Y �mwhr X.

Proof To prove (i), assume that X �mrlhr Y, then r(i)
Y (x)

r(i)
X (x)

is decreasing for every i = , . . . , n.

First, note that because limx→ F̄(x) = limx→ Ḡ(x) =  and limx→ ∂iḠ(x) = limxi→ gi(xi),
limx→ ∂iF̄(x) = limxi→ fi(xi). Thus

r(i)
Y (x)

r(i)
X (x)

≤ lim
x→

∂iḠ(x)
∂iF̄(x)

F̄(x)
Ḡ(x)

= lim
xi→

gi(xi)
fi(xi)

≤ .
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Consequently, r(i)
Y (x) ≤ r(i)

X (x) for any i = , . . . , n, which ensure that X �mwhr Y. To show
(ii), first observe from the L’Hospital rule

lim
xi→∞

∂iḠ(x)
∂iF̄(x)

= lim
xi→∞

Ḡ(x)
F̄(x)

=
[

lim
xi→∞

F̄(x)
Ḡ(x)

]–

,

because limxi→∞ F̄(x) = limxi→∞ Ḡ(x) = . Therefore, X �mrlhr Y implies

r(i)
Y (x)

r(i)
X (x)

≥ lim
x→∞

∂iḠ(x)
∂iF̄(x)

F̄(x)
Ḡ(x)

= lim
xi→∞

∂iḠ(x)
∂iF̄(x)

lim
xi→∞

F̄(x)
Ḡ(x)

≥ ,

and hence Y �mwhr X. �

Now, we will provide the multivariate version of Theorem ..

Theorem . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be non-negative random vectors

such that for all i = , . . . , n, limx→∞
r(i)
Y (x)

r(i)
X (x)

> . If X �mrlhr Y, then there exists α >  such that

Ḡ(x) ≤ F̄α(x) for all x > .

Proof For any x = (x, . . . , xn) such that xi > , i = , . . . , n, one has

∫ xn


r(n)

Y (x, . . . , xn–, u) du = – ln
[
Ḡ(x)

]
+ ln

[
Ḡ(x, . . . , xn–, )

]
,

∫ xn–


r(n–)

Y (x, . . . , xn–, u, ) du = – ln
[
Ḡ(x, . . . , xn–, )

]
+ ln

[
Ḡ(x, . . . , xn–, , )

]
,

...
∫ x


r()

Y (x, u, , . . . , ) du = – ln
[
Ḡ(x, x, , . . . , )

]
+ ln

[
Ḡ(x, . . . , )

]
,

∫ x


r()

Y (u, , . . . , ) du = – ln
[
Ḡ(x, , . . . , )

]
+ ln

[
Ḡ(, . . . , )

]
,

and hence

– ln
[
Ḡ(x)

]
=

n∑

i=

∫ xi


r(i)

Y (x, . . . , xi–, u, , . . . , ) du.

Since X �mrlhr Y, the function

ci(x, . . . , xi–, u, , . . . , ) =
r(i)

Y (x, . . . , xi–, u, , . . . , )
r(i)

X (x, . . . , xi–, u, , . . . , )
,
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is decreasing for every i = , . . . , n. In particular, one has

ci(x, . . . , xi–, u, , . . . , ) ≥ lim
x→∞

r(i)
Y (x)

r(i)
X (x)

= αi > .

Setting α = min(α, . . . ,αn) > , it follows that

– ln
[
Ḡ(x)

]
=

n∑

i=

∫ xi


ci(x, . . . , xi–, u, , . . . , )r(i)

X (x, . . . , xi–, u, , . . . , ) du

≥
n∑

i=

αi

∫ xi


r(i)

X (x, . . . , xi–, u, , . . . , ) du

≥ α

n∑

i=

∫ xi


r(i)

X (x, . . . , xi–, u, , . . . , ) du

= –α ln
[
F̄(x)

]
.

Thus, ln[Ḡ(x)] ≤ α ln[F̄(x)], that is, Ḡ(x) ≤ F̄α(x) and hence the proof is completed. �

In [], the concept of the mrl has been extended to the multivariate case. As stressed
in [], the multivariate mrl is particularly useful in modeling and analyzing multivariate
failure data when there is a lack of independence among the components (lifetimes). Such
a situation might be due to outside conditions which affect all components. The concept
of a multivariate mrl introduced in [] is given hereafter.

Definition . Let X = (X, . . . , Xn) be a random vectors with sf F̄ . The multivariate mrl
function associated to X is defined for all t ∈ {t ∈R

n : F̄(t) > } by

mX(t) =
[
m()(t), . . . , m(n)(t)

]
,

where

m(i)
X (t) = E[Xi – ti | X ≥ t]

=


F̄(t)

∫ ∞

ti

F̄(x(i), t) dx, i = , . . . , n,

with (x(i), t) = (t, . . . , ti–, x, ti, . . . , tn).
Let X be a random vector with a partial differentiable sf F̄ . In [], it is pointed out that

the multivariate mrl mX(t) and the multivariate hr gradient rX(t) are related by

r(i)
X (t) =

∂im(i)
X (t) + 

m(i)
X (t)

.

Based on this definition, one can introduce the multivariate mrl order and the multi-
variate relative mean residual life order as announced below.

Definition . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be two random vectors. We say
that X is smaller than Y in multivariate mrl order, denoted by X �mmr Y, if m(i)

X (t) ≤ m(i)
Y (t)
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for all i = , . . . , n. Similarly, we say that X is smaller than Y in multivariate relative mean
residual life order, denoted by X �mrlmr Y, if for all i = , . . . , n,

m(i)
Y (t)

m(i)
X (t)

increasing in t.

These stochastic orders are closed under marginalization as stated next.

Lemma . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be two random vectors, then

X �mmr Y ⇒ Xi �mr Yi, i = , . . . , n,

and

X �mrlmr Y ⇒ Xi �rlmr Yi, i = , . . . , n.

Proof The result is an immediate consequence of the fact that, for all i = , . . . , n,

mXi (ti) = m(i)
X (–∞, . . . , –∞, ti, –∞, . . . , –∞)

and

mYi (ti) = m(i)
Y (–∞, . . . , –∞, ti, –∞, . . . , –∞),

where mXi (ti) and mYi (ti) denote the mrl functions of Xi and Yi, respectively. �

The next result generalizes the result of Theorem . to the multivariate case.

Theorem . Let X = (X, . . . , Xn) and Y = (Y, . . . , Yn) be random vectors with respective
survival functions F̄ and Ḡ. Denote by fi and gi, i = , . . . , n, their marginal density functions,
respectively.

(i) If X �mrlmr Y and X �mmr Y then Y �mwhr X.
(ii) If  < limti→∞ Ḡ(t)

F̄(t) < ∞, i = , . . . , n, then X �mrlmr Y implies X �mwhr Y.
(iii) If E(Xi) ≤ E(Yi), i = , . . . , n, then X �mrlmr Y implies X �mmr Y.

Proof To show (i), first observe that

G(t)
F(t)

=
m(i)

X (t)
m(i)

Y (t)

∫ ∞
ti

Ḡ(x(i), t) dx
∫ ∞

ti
F̄(x(i), t) dx

.

Now, X �mrlmr Y and Y �mwhr X imply that t �→ m(i)
X (t)

m(i)
Y (t)

and t �→
∫ ∞

ti
Ḡ(x(i),t) dx

∫ ∞
ti

F̄(x(i),t) dx , respectively,

are non-negative decreasing functions. Therefore, t �→ G(t)/F(t) is decreasing, which en-
sures that Y �mwhr X. To prove (ii), first assume that  < limti→∞ Ḡ(t)/F̄(t) < ∞, i = , . . . , n.
Then, from the L’Hospital rule, one has

lim
ti→∞

∫ ∞
ti

Ḡ(x(i), t) dx
∫ ∞

ti
F̄(x(i), t) dx

= lim
ti→∞ Ḡ(t)/F̄(t) =

[
lim

ti→∞ F(t)/G(t)
]–

.
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Consequently,

m(i)
Y (t)

m(i)
X (t)

≤ lim
ti→∞

∫ ∞
ti

Ḡ(x(i), t) dx
∫ ∞

ti
F̄(x(i), t) dx

lim
ti→∞ F(t)/G(t)

= .

Finally, if E(Xi) ≤ E(Yi), i = , . . . , n and X �mrlmr Y then

m(i)
Y (t)

m(i)
X (t)

≥ m(i)
Y ()

m(i)
X ()

=
E[Yi]
E[Xi]

≥ ,

which completes the proof of (iii). �

Example . To illustrate the usefulness of Theorem ., let us consider the survival
function of the bivariate-Pareto family with scale parameters σ >  and σ >  and the
shape parameter α >  given by

F̄σ,σ,α(x, x) =
[

 +
x

σ
+

x

σ

]–α

, x ≥ , x ≥ .

Let mσ,σ,α(t, t) = [m()
σ,σ,α(t, t), m()

σ,σ,α(t, t)], t, t ≥  be the bivariate mean residual
life function associated to F̄σ,σ,α . Carrying out easy integrations we get

m()
σ,σ,α(t, t) =

∫ ∞
t

F̄σ,σ,α(u, t) du
F̄σ,σ,α(t, t)

=
σ

 – α

[

 +
t

σ
+

t

σ

]

, t, t ≥ ,

and

m()
σ,σ,α(t, t) =

∫ ∞
t

F̄σ,σ,α(t, u) du
F̄σ,σ,α(t, t)

=
σ

 – α

[

 +
t

σ
+

t

σ

]

, t, t ≥ .

Let X = (X, X) and Y = (Y, Y) be a random pairs with mean residual life functions
mσ,σ,α(t, t) and mσ ′

,σ ′
,α′ (t, t), t, t ≥ . In order to characterize the order �mrlmr in

terms of scale and shape parameters, first observe that

m()
σ ′

,σ ′
,α′ (t, t)

m()
σ,σ,α(t, t)

∝
m()

σ ′
,σ ′

,α′ (t, t)

m()
σ,σ,α(t, t)

.
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Thus, one has

X �mrlmr Y ⇔
m()

σ ′
,σ ′

,α′ (t, t)

m()
σ,σ,α(t, t)

is increasing in t, t ≥ 

⇔ φ(t, t) =
σ ′

t + σ ′
t + σ ′

σ
′


σt + σt + σσ
is increasing in t, t ≥ 

⇔ ∂φ(t, t)
∂t

≥  and
∂φ(t, t)

∂t
≥  for all t, t ≥ 

⇔
{

σ ′
(σσ – σ ′

σ) + (σσ
′
 – σ ′

σ)t ≥  for all t ≥ ,
σ(σ ′

σ – σ ′
σ

′
) + (σ ′

σ – σσ
′
)t ≥  for all t ≥ 

⇔
{

σ ′
(σσ – σ ′

σ) + (σσ
′
 – σ ′

σ)t ≥  for all t ≥ ,
σ(σ ′

σ – σ ′
σ

′
) + (σ ′

σ – σσ
′
)t ≥  for all t ≥ 

⇔ σ ′


σ
=

σ ′


σ
≤ .

Now, we use Theorem . to establish a sufficient condition for the order �mwhr . Clearly,

 < lim
xi→∞

F̄σ ′
,σ ′

,α′ (x, x)
F̄σ,σ,α(x, x)

< ∞, i = ,  ⇔ α = α′.

Thus, from (ii) of Theorem ., one has

α = α′ and
σ ′


σ

=
σ ′


σ

≤  ⇒ X �mwhr Y.

We use again Theorem . to obtain a sufficient condition for the order �mwhr . Indeed,
one can easily derive the next equivalence

E(Xi) ≤ E(Yi), i = ,  ⇔ σ

 – α
≤ σ ′


 – α′ and

σ

 – α
≤ σ ′


 – α′ .

It follows that

X �mrlmr Y and E(Xi) ≤ E(Yi), i = ,  ⇔ α ≤ α′,

X �mrlmr Y and E(Xi) ≤ E(Yi), i = ,  ⇔ α ≤ α′ and
σ ′


σ

=
σ ′


σ

≤ .

From (iii) of Theorem ., we get

α ≤ α′ and
σ ′


σ

=
σ ′


σ

≤  ⇒ X �mmr Y.

In addition, we observe from this analysis that the order �rmrm is only affected by the scale
parameters.

3 Conclusion
Most of the stochastic orders discovered and analyzed in the literature are the ones which
compare the ‘location’ or the ‘magnitude’ of the random variables and there are other ones
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which compare the ‘variability’ or the ‘dispersion’ of the random variables (cf. [] and []).
In this paper, as another perspective of stochastic comparison between lifetime variables,
we devoted our attention to other kinds of stochastic orders which compare the random
variables with respect to their ‘aging’ properties according to the well-known reliability
measures of hazard rate and mean residual life. These stochastic orders, called the rela-
tive hazard rate order and the relative mean residual life order, have been somewhat ne-
glected in the literature. We provide the interested reader with further properties of these
stochastic orders in both the univariate and the multivariate cases. On the other hand,
because there is no theoretical base for choosing the distribution of the additive effect
variable in the additive frailty model, it is important to see how the overall variable is in-
fluenced by the variation of the additive effect and baseline variables in the model. Such
an investigation has been recently done in the context of various reliability models (see,
for example, [] and the references therein). Thus, as a second lead, we use the relative
hazard and the relative mean residual life orders for comparison of additive hazards model
and we discussed various aspects of the study. Possible extensions to the multivariate case
are discussed.

Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Authors’ contributions
All of the authors have equally made contributions. All authors read and approved the final manuscript.

Author details
1Permanent address: Department of Mathematics and Computer Science, Faculty of Science, Suez University, Suez,
41522, Egypt. 2Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi
Arabia. 3Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
4Université du Québec à Trois-Rivières, C.P. 500, Québec, G9A 5H7, Canada.

Acknowledgements
The authors want to thank two anonymous referees for their constructive comments decisively contributed to improve
the paper. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud
University for funding this Research Group No. (RGP-1435-036). The third author thanks the Natural Sciences and
Engineering Research Council of Canada.

Received: 29 December 2015 Accepted: 8 June 2016

References
1. Di Crescenzo, A: Some results on the proportional reversed hazards model. Stat. Probab. Lett. 50, 313-321 (2000)
2. Badia, FG, Berrade, MD, Campos, CA: Aging properties of the additive and proportional hazard mixing models. Reliab.

Eng. Syst. Saf. 78, 165-172 (2002)
3. Sankaran, PG, Jayakumar, K: On proportional odds models. Stat. Pap. 49, 779-789 (2008)
4. Oliveira, PE, Torrado, N: On proportional reversed failure rate class. Stat. Pap. (2014). doi:10.1007/s00362-014-0620-8
5. Das, S, Nanda, AK: Some stochastic orders of dynamic additive mean residual life model. J. Stat. Plan. Inference 143,

400-407 (2013)
6. Nanda, AK, Das, S, Balakrishnan, N: On dynamic proportional mean residual life model. Probab. Eng. Inf. Sci. 27,

553-588 (2013)
7. Hanagal, DD: Modeling heterogeneity for bivariate survival data by the Weibull distribution. Stat. Pap. 51, 947-958

(2010)
8. Nair, NU, Sankaran, PG: Some results on an additive hazards model. Metrika 75, 389-402 (2012)
9. Gupta, RC, Gupta, RD: General frailty model and stochastic orderings. J. Stat. Plan. Inference 139, 3277-3287 (2009)
10. Nanda, AK, Bhattacharjee, S, Alam, SS: Properties of aging intensity function. Stat. Probab. Lett. 77, 365-373 (2007)
11. Shaked, M, Shanthikumar, JG: Stochastic Orders. Springer, New York (2007)
12. Müller, A, Stoyan, D: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002)
13. Karlin, S: Total Positivity. Stanford University Press, Stanford (1968)
14. Misra, N, Van der Meulen, EC: On stochastic properties ofm-spacings. J. Stat. Plan. Inference 115, 683-697 (2003)
15. Gupta, RC, Peng, C: Proportional odds frailty model and stochastic comparisons. Ann. Inst. Stat. Math. 66, 897-912

(2014)
16. Sengupta, D, Deshpande, JV: Some results on the relative ageing of two life distributions. J. Appl. Probab. 31,

991-1003 (1994)
17. Kayid, M, Izadkhah, S, Zuo, MJ: Some results on the relative ordering of two frailty models. Stat. Pap. (2015).

doi:10.1007/s00362-015-0697-8

http://dx.doi.org/10.1007/s00362-014-0620-8
http://dx.doi.org/10.1007/s00362-015-0697-8


Kayid et al. Journal of Inequalities and Applications  (2016) 2016:158 Page 23 of 23

18. Hu, T, Kundu, A, Nanda, AK: On generalized orderings and ageing properties with their implications. In: Hayakawa, Y,
Irony, T, Xie, M (eds.) System and Bayesian Reliability: Essays in Honor of Prof. R.E. Barlow, pp. 199-228. World Scientific,
Hackensack (2001)

19. Pocock, SJ, Gore, SM, Kerr, GR: Long-term survival analysis: the curability of breast cancer. Stat. Med. 1, 93-104 (1982)
20. Wei, X: Relative mean residual life: theory and related topics. Microelectron. Reliab. 32, 1319-1326 (1992)
21. Finkelstein, M: On relative ordering of mean residual lifetime functions. Stat. Probab. Lett. 76, 939-944 (2006)
22. Nanda, AK, Bhattacharjee, S, Balakrishnan, N: Mean residual life function, associated orderings and properties. IEEE

Trans. Reliab. 59, 55-65 (2010)
23. Arnold, BC, Zahedi, H: On multivariate mean remaining life functions. J. Multivar. Anal. 25, 1-9 (1988)
24. Zahedi, H: Some new classes of multivariate survival distribution functions. J. Stat. Plan. Inference 11, 171-188 (1985)


	Relative stochastic comparisons of additive frailty models
	Abstract
	Keywords

	Introduction and preliminaries
	Main results
	Relative orders
	Closure properties of the model
	Variation in mixing variable
	Variation in baseline variable
	Multivariate extension

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


