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Abstract
In this paper, we prove that the function

x �→ exp
(
ψ

(
x +

1
2

)
–

1
24

1
x2 + 7/40

)
– x

is decreasing from (–1/2,∞) onto (0, 1/2) and convex on (–1/2,∞). As a consequence
of the main theorem, various type of bounds for the psi function are presented, which
essentially generalize or improve some known results.
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1 Introduction
For x > , the classical Euler gamma function � and psi (digamma) function ψ are defined
by

�(x) =
∫ ∞


tx–e–t dt, ψ(x) =

�′(x)
�(x)

, (.)

respectively. Furthermore, the derivatives ψ ′,ψ ′′,ψ ′′′, . . . are known as polygamma func-
tions.

As an important role played in many branches, such as mathematical physics, proba-
bility, statistics, and engineering, the gamma and polygamma functions have attracted the
attention of many scholars. Recently, many authors showed numerous interesting inequal-
ities for the digamma (psi) function ψ and the Euler constant defined by

γ = lim
n→∞

( n∑
k=


k

– ln n

)
= . · · · ,

where
∑n

k=

k := Hn is called the harmonic number. In particular, there has many approx-

imation formulas for psi function and harmonic number, which can be found in [–],
and closely related references therein.
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We would like to mention DeTemple and Wang’s paper [] for half-integer approxima-
tion formulas

γ + ln

(
n +




)
+


(n + ) < Hn < γ + ln

(
n +




)
+


n (.)

and

γ + ln

(
n +




)
+


n +





(n + ) < Hn < γ + ln

(
n +




)
+


n +





n . (.)

It was also proved in [, ], [], Lemma ., that

ln

(
x +




)
< ψ(x + ) ≤ ln

(
x + e–γ

)
(.)

for x > , where 
 and e–γ are the best possible constants, and γ = . · · · is the

Euler-Mascheroni constant. Thanks to formula (.) and the relation Hn = γ + ψ(n + ),
we have

γ + ln

(
n +




)
< Hn ≤ γ + ln

(
n + e–γ – 

)
(.)

for any n ∈ N. In , Batir [] further proved that




ln
(
x + x + e–γ

) ≤ ψ(x + ) <



ln

(
x + x +




)
(.)

for all x > , where e–γ and / are the best possible. As a direct consequence, he showed
that, for n ∈N,

γ +



ln
(
n + n + e–γ – 

) ≤ Hn < γ +



ln

(
n + n +




)
. (.)

Batir [, ] provided another interesting bound for the psi function:

a – ln
(
e/x – 

)
< ψ(x) < b – ln

(
e/x – 

)
, (.)

where x > , a ≤ ln , and b ≥ . Consequently, the double inequality

ln
π


– ln

(
e/(n+) – 

)
< Hn < γ – ln

(
e/(n+) – 

)
(.)

for all n ∈N was attained in Corollary . in []. Later, this inequality was sharpened to

 + ln(
√

e – ) – ln
(
e/(n+) – 

)
< Hn < γ – ln

(
e/(n+) – 

)
(.)

for all n ∈N by Alzer [].
For reader’s convenience, here we name this class of bounds for the psi function and

harmonic numbers the Batir-type bounds and call the corresponding inequality a Batir-
type inequality.
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Also, inequalities (.) are equivalent to

a ≤ eHn+ – eHn < b (.)

with the best constants a = e(
√

e – ) ≈ . and b = eγ ≈ . (see also []). For
a more general result, see [], Theorem .. Similarly, in the context, we call inequalities
(.) the Alzer-type ones.

Batir [] further proved some new Batir-type inequalities for the psi functions and
harmonic number, in particular,




ln
x + b

e/(x+) – 
≤ ψ(x + ) ≤ 


ln

x + b
e/(x+) – 

for x ≥ 

with the best constants a =  and b = e–γ (e – ). This implies that, for n ∈N, we have




ln
n + b

e/(n+) – 
≤ Hn ≤ 


ln

n + b
e/(n+) – 

,

where a =  and b = e–γ (e – ) –  ≈ . are the best possible. Obviously, it is equiv-
alent to the double inequalities

eγ (n + ) < eHn+ – eHn ≤ eγ (n + . · · · ).

Clearly, it is an Alzer-type inequality.
On the other hand, Villarino [], Theorem ., proved that the sequence

dn =


ψ(n + ) – ln(n + /)
–




(
n +




)

is increasing for n ∈ N, and meanwhile DeTemple and Wang [] by an approximation
argument for the harmonic number showed, for n ∈N, the following inequality:


(n + /) + /

< Hn – ln

(
n +




)
– γ <


(n + /) + /( – ln  + ln  – γ ) – 

with the best constants 
 and /( – ln  + ln  + ψ()) –  ≈ .. Yang et al. [],

Theorem , further showed that the function

x �→ Fa(x) = 
(
x + a

)[
ψ(x + /) – ln x

]
– 

is strictly completely monotonic on (,∞) if and only if a ≥ /.
Motivated by all these recent papers, the aim of this paper is to investigate the mono-

tonicity and convexity of the function related to the psi function and present some new
general, Batir-type, and Alzer-type inequalities for the psi function and harmonic number.

2 Preliminaries
In this section, let us recall a few of involving lemmas and some basic facts.
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Lemma  ([], pp.-) Let x >  and n ∈N. Then

ψ (n)(x + ) – ψ (n)(x) =
(–)nn!

xn+ . (.)

Lemma  ([], pp.-) As x → ∞, we have

ψ(x) ∼ ln x –


x
–


x +


x –


x , (.)

ψ ′(x) ∼

x

+


x +


x –


x +


x , (.)

ψ ′′(x) ∼ –


x –

x –


x +


x –


x . (.)

Lemma  ([]) Let f be a function on an interval I such that limx→∞ f (x) = . If f (x + ) –
f (x) >  for all x ∈ (a,∞), then f (x) < . Conversely, if f (x + ) – f (x) <  for all x ∈ (a,∞),
then f (x) > .

Lemma  ([], Lemma ) For n ∈ N and m ∈N∪{} with n > m, let Pn(t) be a polynomial
with n degrees defined by

Pn(t) =
n∑

i=m+

aiti –
m∑

i=

aiti, (.)

where an, am >  and ai ≥  for  ≤ i ≤ n– with i �= m. Then there exists an unique number
tm+ ∈ (,∞) satisfying Pn(t) =  such that Pn(t) <  for t ∈ (, tm+) and Pn(t) >  for t ∈
(tm+,∞).

Lemma  Let u be the function on (–∞,∞) defined by

u(x) =


x + 
. (.)

Then, for x �= –/, we have

p(x) = –


(x + /) – u′(x + ) + u′(x) < . (.)

Proof Differentiation leads to

u′(x) = –



x

(x + ) . (.)

Factoring gives

p(x) = –


(x + /) +



x + 

((x + ) + ) –



x

(x + )

= –


(x + /) –



,x + ,x + ,x + ,x – 

((x + ) + )(x + ) .
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Replacing x by (t – /) and factoring, we get

p(x) = –
,,t – ,t + ,,t – ,t + ,

t((t – /) + )((t + /) + ) ,

where t = x + /.
Note that the numerator of this fraction can be written as

p(t) = ,,t – ,t + ,,t – ,t + ,

= ,t(t – 
) +

,,


t +


(
t – 

) > , (.)

and the desired result easily follows. �

Lemma  Let u and p be defined by (.) and (.). Suppose that q and r are defined on
(–/,∞) by

q(x) =


(x + /) – u′′(x + ) + u′′(x),

r(x) = –


(x + /) – u′(x + ) – u′(x).

Then, for x > –/, we have

S(x) := –


(x + /) + r(x + ) +
q(x + )
p(x + )

– r(x) –
q(x)
p(x)

< . (.)

Proof An immediate computation yields

u′′(x) =



x – 

(x + ) . (.)

Then we get

q(x) =


(x + /) –



(x + ) – 

((x + ) + ) +



x – 

(x + ) , (.)

r(x) = –


(x + /) +



x + 

((x + ) + ) +



x

(x + ) . (.)

Substituting p(x), q(x), r(x) into S(x) and factoring it give

S(x) = –
 × 


S(x)
S(x)

,

where

S(x) = (x + )(x + )(x + 
)(x + x + 

)

× (
,,x + ,,x + ,,x + ,,,x

+ ,,,x + ,,,x + ,,,x
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+ ,,,x + ,,
)

× (
,,x + ,,x + ,,x + ,,x

+ ,,x + ,,x + ,,x

+ ,,x + ,
)
, (.)

S(x) = ,,,x + ,,,x +
,,,,


x

+
,,,,


x +

,,,,,


x

+
,,,,,


x +

,,,,,


x

+
,,,,,


x +

,,,,,,
,

x

+
,,,,,,

,
x +

,,,,,,
,

x

+
,,,,,,

,
x +

,,,,,,
,

x

+
,,,,,,

,
x +

,,,,,,
,

x

+
,,,,,,

,
x +

,,,,,,
,,

x

+
,,,,,,

,,
x +

,,,,,,
,,

x

+
,,,,,,

,,
x +

,,,,,,
,,,

.

We further prove that S(x), S(x) >  for x > –/. In fact, replacing x by (t – /) in (.)
and arranging, we obtain

S(x) = t(t + )(t – t + 
)(t + t + 

)

× (
,,t + ,,t + ,,t + ,,t

+ ,,t + ,,t + ,,t + ,,t

+ ,,
) × p(t),

where p(t) is defined by (.), and t = x + / > . Clearly, S(x) >  for x > –/.
Similarly, we have

S(x) = S(t) + tS(t),

where

S(t) = ,,,t + ,,,t +
,,,,


t

+
,,,,


t +

,,,,


t +
,,,,


t
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+
,,,,,


t +

,,,,


t

+
,,,,,

,
t +

,,,,,
,

t

+
,,,,,

,
t +

,,,,
,

t

+
,,,,,

,
t +

,,,,
,

t

+
,,,,,

,
t +

,,,,,
,,

t

+
,,,,,,

,,,
,

S(t) =
,,,,,

,
t –

,,,,,
,,

t

–
,,,,

,,
t +

,,,,,
,,

.

It is clear that S(t) >  for t = x + / > . To prove that S(x) >  for x > –/, it suffices to
prove that S(t) >  for t > . In fact, it is easy to check that

S′
(t) =

,,,,,
,

t –
,,,,,

,,
t

–
,,,,,

,,

has a positive zero point t ∈ (/, /) such that S′
(t) <  for t ∈ (, t) and S′

(t) <  for
t ∈ (t,∞). Since S(), S(∞) >  and

S(t) =
,,,,,

,
t
 +

,,,,,
,,

–
(

,,,,,
,,

t
 +

,,,,,
,,

t

)

>
,,,,,

,

(



)

+
,,,,,

,,

–
(

,,,,,
,,

(



)

+
,,,,,

,,



)

=
,,,,,,

,,,
> ,

so we get S(t) >  for t > , which proves that S(x) >  for x > –/ and completes the
proof. �

3 Monotonicity and convexity
In this section, we state and prove Theorems - on the monotonicity and convexity of
three important functions f(x), f(x), and f(x) concerning the psi function, respectively.
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Theorem  The function

x �→ f(x) = exp

(
ψ

(
x +




)
–





x + /

)
– x

is decreasing from (–/,∞) onto (, /) and convex on (–/,∞).

Proof With (.) in hand, f(x) can be written as

f(x) = eψ(x+/)–u(x) – x.

Differentiation of this formula yields

f ′
 (x) =

(
ψ ′(x + /) – u′(x)

)
eψ(x+/)–u(x) – , (.)

f ′′
 (x) =

ψ ′′(x + /) – u′′(x) + (ψ ′(x + /) – u′(x))

e–ψ(x+/)+u(x)

:=
g(x)

e–ψ(x+/)+u(x) . (.)

By (.) this yields

g(x + ) – g(x)

=
[
ψ(x + /, ) – u′′(x + )

]
+

[
ψ(x + /, ) – u′(x + )

]

–
{
ψ(x + /, ) – u′′(x) +

[
ψ(x + /, ) – u′(x)

]}

= p(x)
[

ψ(x + /, ) + r(x) +
q(x)
p(x)

]

:= p(x)h(x), (.)

where p(x), q(x), r(x) are defined by (.), (.), (.), respectively.
Similarly, we get

h(x + ) – h(x) = –


(x + /) + r(x + ) +
q(x + )
p(x + )

– r(x) –
q(x)
p(x)

= S(x).

By Lemma  we have h(x + ) – h(x) < . It follows from limx→∞ h(x) =  and Lemma  that
h(x) > limx→∞ h(x) = . Thanks to inequality (.), p(x) < , and Lemma , it follows that

g(x + ) – g(x) = p(x)h(x) < ,

which implies by Lemma  that g(x) > limx→∞ g(x) = . Thus, in combination with (.),
this leads to f ′′

 (x) > , that is, f is convex on (–/,∞), and f ′
 is increasing on (–/,∞).

Utilizing the asymptotic formulas (.)-(.), this yields

lim
x→∞ f ′

 (x) = lim
x→∞ f(x) = .
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Therefore, we get that f ′
 (x) < limx→∞ f ′

 (x) = , which implies that f(x) is decreasing on
(–/,∞). Moreover, we conclude that

 = lim
x→∞ f(x) < f(x) < lim

x→–/+
f(x) =




,

which completes the proof. �

Theorem  The function

x �→ f(x) = expψ

(
x +




)
– x exp

(





x + /

)

is decreasing from (,∞) onto (, e–γ /) and convex on (/,∞).

Proof We have

f(x) = exp

(





x + /

){
exp

[
ψ

(
x +




)
–





x + /

]
– x

}

= exp

(





x + /

)
f(x) := f(x)f(x).

Noting that

f ′
(x) = –




x
(x + /) exp

(





x + /

)
≤  for x ≥ ,

f ′′
 (x) =


,

,x + ,x – 
(x + /) exp

(





x + /

)
>  for x ≥ 


,

we have

f ′
(x) = f ′

(x)f(x) + f(x)f ′
 (x) <  for x ≥ ,

f ′′
 (x) = f ′′

 (x)f(x) + f ′
(x)f ′

 (x) + f(x)f ′′
 (x) >  for x ≥ 


.

A simple calculation leads to

lim
x→∞ f(x) = lim

x→∞ exp

(





x + /

)
lim

x→∞ f(x) =  and lim
x→+

f(x) =



e–γ ,

which completes the proof. �

Theorem  Let a ≥ . Then the function

x �→ f(x) = ψ

(
x +




)
– ln x –





x + a

is decreasing and convex on (,∞) if and only if a ≥ /.
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Proof The necessity is obvious; it follows from the inequality limx→∞ xf ′
(x) ≤ . Indeed,

using the asymptotic formulas (.), we have

lim
x→∞ xf ′

(x) =



–




a ≤ ,

which yields a ≥ /.
We now are a position to prove the sufficiency. By differentiation we have

f ′
(x) = ψ ′

(
x +




)
–


x

+



x

(x + a) ,

f ′′
 (x) = ψ ′′

(
x +




)
+


x +





(x + a) –




x

(x + a) .

Using (.), we have

f ′′
 (x + ) – f ′′

 (x) = ψ ′′
(

x +



)
+


(x + ) +





((x + ) + a) –




x

((x + ) + a)

– ψ ′′
(

x +



)
–


x –





(x + a) +




x

(x + a)

=


(x + /) +


(x + ) +





((x + ) + a)

–



x

((x + ) + a) –

x –





(x + a) +




x

(x + a)

= –
P(x)

x(x + )(x + a)(x + )(x + x + a + ) ,

where

P(x) = (a – )x + (a – )x + (,a + ,a – ,)x

+ (,a + ,a – ,)x + (,a + ,a + ,a – ,)x

+ (,a + ,a + ,a – )x

+ (,a + ,a + ,a + ,a – )x

+ (,a + ,a + ,a + a – )x

+ (a + ,a + ,a + ,a + a – )x

+ (,a + ,a + ,a + a + a)x

+ (a + a + ,a + a + a + a)x

+ (a + a + a + a)x + (a + a + a + a).

It is easy to check that the coefficients of the polynomial P(x) are nonnegative for
a ≥ /. Then we have f ′′

 (x + ) – f ′′
 (x) <  for x > . By Lemma  we get that f ′′

 (x) >
limx→∞ f ′′

 (x) = , which implies that f ′
(x) is increasing on (,∞). Therefore, f ′

(x) <
limx→∞ f ′

(x) = , which completes our proof. �



Sun et al. Journal of Inequalities and Applications  (2016) 2016:151 Page 11 of 17

4 Inequalities for the psi function and harmonic number
Denote Fi(x) = fi(x + /) (i = , , ) in Theorems  and . Then, since F is decreasing,
F() = e–γ –/, and limx→∞ F(x) = /, we get the following conclusion.

Corollary 
(i) For x > –/, we have

ψ(x + ) > ln

(
x +




)
+





x + x + /

.

(ii) For x ≥ , we have

ln

(
x +




)
+





x + x + /

< ψ(x + ) < ln(x + α) +





x + x + /
, (.)

where the constants / and α = e–γ –/ ≈ . are the best possible.

Remark  Comparing (.) with (.), we find that, for x > ,

ln

(
x +




)
< ln

(
x +




)
+





x + x + /

< ψ(x + )

< ln(x + α) +





x + x + /
< ln

(
x + e–γ

)
.

In fact, it suffices to show that the last inequality is valid for x > . Let

D(x) = ln(x + α) +





x + x + /
< ln

(
x + e–γ

)
.

By differentiation we have

D′
(x) =


x + α

–



x + 

(x + x + /) –


x + β

=
D(x)

(x + α)(x + β)(x + x + ) ,

where

D(x) = ,(e–γ – α)x + (e–γ – α – )x – (α – e–γ + )x

– (α – e–γ + αe–γ )x – (α – e–γ + αe–γ )

:= ax + ax + ax + ax + a.

It is easy to check that a, a >  and a, a, a < . Then by Lemma  we see that there
is x >  such that D(x) <  for x ∈ (, x) and D(x) >  for x ∈ (x,∞). This indicates
that D is decreasing on (, x) and increasing on (x,∞). Therefore, we conclude that, for
x > ,

D(x) < max
(
D(), D(∞)

)
= .
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Remark  Similarly, we get the following inequalities:




ln
(
x + x + e–γ

)
< ln

(
x +




)
+





x + x + /

< ψ(x + )

<



ln

(
x + x +




)
< ln(x + α) +





x + x + /

for x > . A direct computation shows that

lim
x→∞

ψ(x + ) – 
 ln(x + x + 

 )
x– = –




, (.)

lim
x→∞

ψ(x + ) – ln(x + 
 ) – 




x+x+/
x– =

,
,

, (.)

which implies that the approximation formula of the psi function given in (.) is superior
to (.).

Since F() = e/–γ , by the relation ψ(n + ) = Hn – γ we deduce the following:

Corollary  For n ∈N, we have

γ +





n + n + /
+ ln(n + /) < Hn < γ +





n + n + /

+ ln(n + α),

where / and α = e/–γ ≈ . are the best possible.

Since F is decreasing on (–/,∞), limx→∞ F(x) = , and

F() = e–γ –



e/ =


β, F() = e–γ –




e/ =


β,

we get the following:

Corollary  For x ≥ , we have

ln

(
x +




)
+





x + x + /

< ψ(x + ) < ln

(
x +




)
+





x + x + /

+ ln

[
 +

β

x + 
exp

(
–





x + x + /

)]
,

where β = e–γ – e/ ≈ . is the best constant.

Corollary  For n ∈N, we have

γ + ln

(
n +




)
+





n + n + /

< Hn < γ + ln

(
n +




)
+





n + n + /

+ ln

[
 +

β

n + 
exp

(
–





n + n + /

)]
,

where β = e–γ – e/ ≈ . is the best constant.
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For a = /, since F is decreasing on (–/,∞), limx→∞ F(x) = , and

F() = ln  –



– γ = δ, F() =



– ln



– γ = δ,

we deduce the following:

Corollary  For x ≥ , we have

ln

(
x +




)
+





x + x + /

+ δ∗
 < ψ(x + ) < ln

(
x +




)
+





x + x + /

+ δ,

where δ∗
 =  and δ = ln  – / – γ ≈ . are the best constants.

Corollary  For n ∈N, we have

γ + ln

(
n +




)
+





n + n + /

+ δ∗
 < Hn < γ + ln

(
n +




)
+





n + n + /

+ δ,

where δ∗
 =  and δ = / – ln(/) – γ ≈ . are the best constants.

From Theorem  we can obtain the following Batir-type inequalities for the psi function
and harmonic number.

Corollary  For x ≥ , we have


(x + x + /)

– ln
(
eQ(x) – 

)
+ c < ψ(x + ) <


(x + x + /)

– ln
(
eQ(x) – 

)
+ c∗



with the best constants c = ln(e,/, – ) – / – γ ≈ –. and c∗
 = , where

Q(x) =
,x + ,x + ,x + x + ,

(x + )(x + x + )(x + x + )
.

Proof Let G(x) = F(x + ) – F(x) = f(x + /) – f(x + /). Since f is convex on (–/,∞),
we have

G′
(x) = f ′

 (x + /) – f ′
 (x + /) = f ′′

 (x + / + θ ) > ,

which means that G is increasing on (,∞). Considering

G(x) = exp

(
ψ(x + ) –





(x + /) + /

)

– exp

(
ψ(x + ) –





(x + /) + /

)
– 

= exp

(
ψ(x + ) –





(x + /) + /

)(
eQ(x) – 

)
– ,

G() = exp

(



– γ

)
– e

(
–




– γ

)
–  and lim

x→∞ G(x) = ,
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we have

G() < exp

(
ψ(x + ) –





(x + /) + /

)(
eQ(x) – 

)
–  < ,

which attains the desired inequality. �

The increasing property of G and

G() = exp

(
,
,

– γ

)
– exp

(



– γ

)
– 

yield a sharp bound of harmonic number.

Corollary  For n ∈N, we have

γ +


(n + n + /)
– ln

(
eQ(n) – 

)
+ c

< Hn < γ +


(n + n + /)
– ln

(
eQ(n) – 

)
+ c∗

 ,

where c = / – γ + ln(e,/, – ) ≈ –. and c∗
 =  are the best con-

stants.

Remark  Note that since ψ(n + ) = Hn – γ , G(n) is written as

G(n) = exp

(
Hn+ – γ –





(n + /) + /

)

– exp

(
Hn – γ –





(n + /) + /

)
– .

Then by G() ≤ G(n) < G(∞) we have the following Alzer-type inequalities:

. ≈ exp

(
,
,

)
– exp

(



)
< eHn+–un+ – eHn–un < eγ ≈ .,

where

un =





(n + /) + /
. (.)

Remark  Similarly, it is easy to check that

G(x) = F(x + ) – F(x) = f(x + /) – f(x + /)

is increasing on (,∞). Then, from

–. ≈ 


e/ –



e/ + e–γ
(
e/ – 

)
= G() ≤ G(n) < G(∞) = 
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we derive other Alzer-type inequalities:
(

n +



)
un+ –

(
n +




)
un + d < eHn+ – eHn <

(
n +




)
un+ –

(
n +




)
un + d,

where d =  and d = e// – e// + e–γ (e/ – ) ≈ –. are the best con-
stants with un as in (.).

Using the increasing property of F ′
, and noting that F ′

(–+) = –, F ′
() = (π/ +

/)e–γ –/ – , and F(∞) = , we get
(




π +



)
e–γ –/ –  <

(
ψ ′(x + ) – u′(x)

)
eψ(x+)–u(x) –  < ,

which implies the following:

Corollary 
(i) For x > –, we have

ψ ′(x + ) < –



x + /

(x + x + /) + exp

(
–ψ(x + ) +


(x + x + /)

)
.

(ii) For x ≥ , we have the double inequalities

–



x + /

(x + x + /) + λ exp

(
–ψ(x + ) +


(x + x + /)

)

< ψ ′(x + ) < –



x + /

(x + x + /)

+ λ exp

(
–ψ(x + ) +


(x + x + /)

)
,

where λ = (π/ + /)e–γ –/ ≈ . and λ =  are the best constants.

Remark  Elezovic et al. [] proved the inequality

ψ ′(x) < e–ψ(x) (.)

for x > . It has been improved by Batir [] as
(
x + a∗)e–ψ(x) < ψ ′(x + ) <

(
x + b∗)e–ψ(x)

for x >  with the best constants a∗ = / and b∗ = πe–γ /. The last corollary gives an-
other improvement of (.).

From the proof of Theorem  we see that g(x) >  for x > –/, which can be written as
the following corollary.

Corollary  For x > , we have

ψ ′′(x) – u′′(x – /) +
(
ψ ′(x) – u′(x – /)

) > , (.)

where u(x) is defined by (.).
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Remark  Batir [] showed that, for x > ,

ψ ′(x) + ψ ′′(x) > . (.)

Therefore, inequality (.) can be written as

ψ ′′(x) + ψ ′(x) > �(x),

where

�(x) = –



x – 

(x – x + )

×
(

ψ ′(x) –
,x – ,x + ,x – ,x + ,

(x – )(x – x + )

)
.

Indeed, this result is optimal due to

ψ ′′(x) –



(x – /) – 

((x – /) + ) +
(

ψ ′(x) +



(x – /)

((x – /) + )

)

= ψ ′′(x) + ψ ′(x) –





(x – x + ) �(x),

where

�(x) = –(x – )ψ ′(x) +
,x – ,x + ,x – ,x + ,

(x – x + ) .

A numeric computation shows that �(x) >  for  < x < / and x > /, and so inequality
(.) is better than (.).

From the inequalities f ′
(x) <  and f ′′

 (x) >  on (,∞) for a = /, which are given in
the proof of Theorem , we have the following:

Corollary  For x > , we have the following inequalities:

ψ ′
(

x +



)
<




,x + ,x + 
x(x + ) ,

ψ ′′
(

x +



)
> –




,x + ,x + ,x + ,
x(x + ) ,

ψ ′′′
(

x +



)
< 

,,x + ,x + ,x + ,x + ,
x(x + ) .
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